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Genetic background and oncogenic driver
determines the genomic evolution and
transcriptomics of mammary tumor
metastasis
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Metastasis remains amajor cause of cancermortality. This study, expanding uponprevious findings in
the MMTV-PyMTmodel, investigated four independent mouse models, representing luminal (MMTV-
PyMT, MMTV-Myc), HER2-amplified (MMTV-Her2), and triple-negative (C3(1)TAg) breast cancer
subtypes. Consistent with previous results, limited evidence for metastasis-associated somatic point
mutations was found for all models. We also found that oncogenic drivers significantly influenced the
number and size of metastasis-specific copy number variations (MSCNVs), but common driver-
independent MSCNVs were rare. Furthermore, analyzing a cohort with varying genetic backgrounds
while maintaining a constant oncogenic driver (PyMT) revealed that genetic background profoundly
impacts MSCNVs. Transcriptome analysis demonstrated that oncogenic drivers strongly shaped
metastasis-specific gene expression (MSGE), with each driver exhibiting distinct expression profiles.
In contrast, MSGE in the PyMT-F1 cohort was more variable across strains. Despite the diversity of
MSCNVandMSGE, functional analysis revealed that bothmechanismsconvergeon themodulation of
key cellular processes, including immune responses, metabolism, and extracellular matrix
interactions. These findings emphasize the complex interplay between oncogenic drivers and genetic
background in shaping the genomic and transcriptional landscapes of metastatic lesions.

In the United States, breast cancer is the most frequently diagnosed cancer
type and accounts for the third highest number of cancer-associated deaths
annually.While patients with localized disease have a 5-year survival rate of
99.6% following tumor resection, the 5-year survival rate drops to 31.9% for
patients with distant metastasis1. This disparity stems from the inability to
effectively treat secondary lesions through either surgical resection or cur-
rent therapeutic strategies. Metastatic tumors reside in microenvironments
and exhibit therapeutic resistances that are distinct from those of the pri-
mary tumors, warranting further research and development to create new
and more specific therapeutic strategies.

Unfortunately, despite many recent advances, the etiology and
mechanisms driving metastasis remain unclear. The conventional model
of metastatic progression was first proposed by Peter Nowell in 1976,
who hypothesized that tumors arise from a single mutated cell and

continue to acquire additional mutations that persist if they enable
survival and growth2. In this model, clones continue to evolve within the
primary tumor (PT), ultimately developing into subclones with meta-
static ability. Recent increased access to DNA-sequencing technologies
has enabled several clinical studies to characterize the genomic landscape
of metastatic tumors3–5. However, although much of the data obtained to
date is consistent with this hypothesis, no metastasis-driver mutations or
acquired genomic aberrations have been identified in any cancer type.
Indeed, current data suggest the acquisition of transcriptomic and epi-
genetic switching mechanisms, rather than mutations, drive dissemina-
tion and secondary tumor growth6–9.

To better understand the etiology of breast cancer metastasis, well-
credentialed, physiologically relevant, and accessible experimental systems
are required. Clinical data, while extraordinarily valuable, is difficult and
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expensive to obtain in large numbers, is experimentally limited, and is
usually confounded by treatment, which may significantly influence data
interpretation. Mouse models of metastatic cancer, therefore, provide a
complementary experimental vehicle to assess the etiology ofmetastasis in a
treatment-naïve, highly controlled setting. Indeed, several genetically
engineered mouse models (GEMMs) have been developed to mimic the
molecular subtypes of metastatic breast cancer found in patients. Our
laboratory and many others have published extensively using the
mammary-specific polyomavirus middle T antigen overexpression mouse
model (MMTV-PyMT) to model the luminal B subtype of human breast
cancers6,10–12. This model was developed in 1992 and faithfully recapitulates
human breast cancer progression and metastasis to the lung13,14.

Previously, we performed genomic and transcriptomic analysis of the
MMTV-PyMT model. By performing whole exome-sequencing (exome-
seq) on genomicDNA (gDNA) frommatchedPT and lungmetastatic (lung
met) tissues, we showed that very few single-nucleotide variants (SNVs)
occur in metastases at a high frequency that are not also found in the
primary tumor and concluded that SNVs are an unlikely driver of
metastasis6. In addition, we observed no obvious metastasis-associated
translocations, but some metastasis-associated copy number variation
(CNV). In this study, we expand upon this work to include both the
MMTV-Myc and the C3(1)TAgmodels, as well as provide greater depth to
our prior analysis of the MMTV-Her2 and PyMT models. In addition, we
have further investigated how an individual’s personal ancestry might
influence metastasis-associated genomic evolution in the MMTV-PyMT
model by analyzing F1 animals generated from crosses between phylo-
genetically related mouse strains that exhibit significant differences in
metastatic efficiency. Consistent with previous analyses, we confirm that
SNVs with a metastasis driver function are not present in most of the
animals analyzed, regardless of oncogenic driver or genetic background.
However, we have identified genetic background as a strong determinant of
PT stability, copy number region size, and gene-set enrichment within
regions of gDNAgain or loss. Further, we show that gene expression at end-
stage is not strongly correlated with CNV in our models. Finally, our work
reveals no common gene or gene-set found within CNV, but rather cellular
processes enriched in metastasis-specific gene expression and alternative
splicing.

Results
Single nucleotide variants are unlikely drivers of metastasis
To evaluate the relative contributions of oncogenic driver and genetic
background to the genomic landscape of primary tumors and lung metas-
tases, we developed twomousemodel cohorts (Fig. 1a). The first cohort, the
“oncogenic driver” cohort, utilized four distinctmousemodels ofmetastatic
breast cancer, eachwith a unique oncogenic driver but identical FVBgenetic
background. The mouse mammary tumor virus (MMTV)-neu (Her2) line
was used to model Her2-amplified (Her2+) breast cancer, a subtype
representing approximately 17% of breast cancer patients15,16. TheMMTV-
Myc (Myc) line was used to model metastatic Myc-driven breast cancer,
which is observed in approximately 30–50% of high-grade tumors17. The
C3(1)/TAg-REAR (C3Tag) line was used to model a metastatic basal-like
subtype, which is seen in 8% of breast cancer patients18,19. Finally, the N-
Tg(MMTV-PyVT)634Mul/J (PyMT) line20, which forms tumors that are
highly metastatic, was used to model activated tyrosine kinase-driven can-
cers, which represent 49% of Luminal B, 32% of Luminal A, 42% of Her+,
and 7% of Basal-like tumors, or 40% of all breast cancers21. Thus, the
“oncogenic driver” cohort was comprised of four groups, PyMT, Her2,
C3Tag, and Myc, with the FVB genetic background held constant. For the
second cohort, or “PyMT-F1” cohort, FVB-PyMT males were bred to
females from seven different genetic backgrounds and tumor-bearing
PyMT-F1 offspring were evaluated. The genetic backgrounds chosen con-
stitute two pairs (MOLF andCAST, BL6, and BL10) and one group of three
(AKR, BALB, SEAGN) closely related strains with inverse metastatic effi-
ciency (high (H) or low (L)) (Fig. 1a and Supplementary data 1)12, per-
mitting us to evaluate the contribution of genetic background on the

genomic landscape with oncogenic driver held constant. We isolated
genomic DNA (gDNA) from matched pairs of primary tumors (PT) and
lungmetastases (Lungmets) fromboth cohorts (Supplementary data 1) and
performed exome-sequencing (exome-seq) (Fig. 1a).

We have previously shown that high allele frequency, metastasis-
specific SNVs were not found at consequential rates in a smaller mouse
cohort6. Using the exome-seq data from this larger cohort described above,
we expanded the number of individuals used for SNV analysis. Consistent
with our previous data, high frequency, metastasis-specific SNVs were not
observed, suggesting that common metastasis driver mutations, analogous
to common tumor driver mutations, are not major drivers of tumor pro-
gression (Supplementary fig. 1). However, as previously demonstrated6, low
frequency metastasis-specific SNVs were observed, suggesting that either
there are many low frequencymetastasis driver SNVs or subsets of patients
in which metastasis-specific SNVs contribute to tumor progression. How-
ever, due to the low frequency of the potential metastasis driver SNVs,
subsequent analysis focused on copy number variation (CNV) induced by
regions of genomic gain or loss to determine whether genome rearrange-
ment functioned as more frequent metastasis driving events. Herein,
through use ofNexus CopyNumber Software 10.0, we have evaluatedCNV
differences across sites (PTor Lungmets), bothwithin andbetween cohorts.

Oncogenic driver has little influence over CNV event number
Wefirst evaluated the oncogenic driver cohort, visualizingPTandLungmet
data separately for each FVB model, and calculated the average percent of
the genome with CNV (Supplementary data 2).We observed no significant
difference in the percentage of the genome with DNA gain or loss between
PT and Lung mets, and no difference between oncogenic driver models
(Fig. 1b). The average percentage of the genome with CNV ranged between
43–58% in PTs and 46–53% in Lung mets (Fig. 1b and Supplementary
fig. 2). Similarly, the average number of regions with CNV did not differ
significantly between tissue type or model (Fig. 1c and Supplementary
data 2). To determine whether the high degree of CNV observed was the
result of whole genome duplication, the samples were reanalyzed using the
ABSOLUTE algorithm22. Unlike human tumors23, no evidence whole
genome duplication was observed in the mouse samples.

Despite having a similar degree of CNV overall, we observed key dif-
ferences in the size ofDNA regionswith amplification or deletion.While no
significant differences were noted in the CNV length for the Myc and Her2
models, CNV regions in the PTswere shorter in PyMTand longer inC3Tag
compared to their matched Lungmets (Fig. 1d and Supplementary data 3).
When analyzing regions of gain or loss separately, we found that regions of
DNA gain were significantly larger (3572–4057 kb) than those of loss
(806–1340 kb) in PTs from three models (Her2, Myc, and PyMT), and in
Lung mets from all models (2497–3483 kb gains, 1370–2330 kb losses)
(Supplementary fig. 3a, b). However, despite these slight but consistent
differences in CNV gain and loss length, the four FVB oncogenic driver
models maintained a similar number of regions and genes impacted by
CNV (Fig. 1e).

Oncogenic driver determines metastasis-specific CNV event
number and size
We next focused on metastasis-specific CNV (MSCNV) for eachmodel, or
regions altered in Lung mets but not PTs. Interestingly, oncogenic driver
played a significant role in the number of MSCNV regions and the number
of genes within them (Supplementary data 4). The Myc driven model had
the highest number of MSCNV regions (10,576) impacting the highest
number of genes (16,134), followed by PyMT (5198 regions, 10,823 genes),
Her2 (3003 regions, 9213 genes), and C3Tag (818 regions, 3007 genes)
(Fig. 1f, g and Supplementary data 4, 5). Regions of MSCNV were even
shorter in length than the average LungmetCNVby around 10-fold, 200 kb
compared to 2000 kb, respectively (Fig. 1h and Supplementary fig. 3c).
Overall, there were small but significant differences in the average length of
MSCNV between models (Fig. 1h). When evaluating CNV gain and loss
separately, we again observed significant differences in the length of
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MSCNV regions in amodel-dependentmanner (Supplementary fig. 3c and
Supplementary data 4). Myc and C3Tag MSCNV regions of gain were
significantly longer than regions of loss, while the opposite was observed for
PyMT, and no difference was observed for Her2. This data reveals an
oncogenic driver-dependent influence on MSCNV number and size, thus
impacting the number of genes with Lung met-specific CNV (Fig. 1i).

Genetic background alters CNV event number and size
We next performed similar analyses on samples from our PyMT-F1 cohort
to evaluate the contribution of genetic background to CNV when the
oncogenic driver (PyMT) was held constant (Fig. 1a and Supplementary
data 1). While the percentage of the genome impacted by CNVwas similar
inLungmet tissue across strains (53–73%), significantly lesswas observed in
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PTs fromBALB andAKR F1mice, at only 18.24% and 33.89%, respectively
(Fig. 1j, Supplementaryfig. 4a and Supplementary data 2).More specifically,
BALB and AKR had fewer regions of CNV within PT gDNA compared to
matched Lung met tissue (Fig. 1k). Interestingly, when comparing the
number of regions of Lungmet CNV between all F1s we noted a divergence
where gDNA from BL6, BL10, MOLF, and CAST tissues had between 600
and 900 regions, but gDNA from BALB, SEAGN and AKR had 3000–4000
regions (Fig. 1k). Due to the heterozygous genetic background of the F1
PyMT mice, we were also able to assess regions of allelic imbalance. While
gDNA from most strains had a similar number of regions with allelic
imbalance in PT and Lung mets (18–40), CAST andMOLF, closely related
wild-derived strains, had a much higher number (65–128) (Supplementary
figs. 3d, 5 and Supplementary data 2).

When measuring CNV region size in tissue from PyMT F1s we
observed an inverse relationship with region number. BL6, BL10, MOLF,
and CAST F1 mice had larger regions of CNV than SEAGN, BALB, and
AKR (Fig. 1l and Supplementary data 3). We theorized that this inverse
relationship was likely responsible for the relatively constant percentage of
the genome impacted by CNV, excluding BALB and AKR PTs. In addition
to differences between strains, we also observed small but significant dif-
ferences in the length of CNVs in Lungmets compared to PTs in CAST and
BALB F1s (Fig. 1l). Analysis of region size was further broken down to
genomic gains, losses, and allelic imbalance (Supplementary fig. 3e, f).
Regions of genomic loss trended larger than those of gain in both PT and
Lung mets, regardless of background (Supplementary fig. 32f). Further, in
some F1 strains, the regions of allelic imbalance in PT and Lungmet gDNA
were significantly larger than the average CNV size. In strains with larger
allelic imbalance, the size was roughly double the length of average CNV
(Supplementaryfig. 3e, f and Supplementary data 3). Taken together, PyMT
F1 models have unique CNV fingerprints shaped by CNV region number
and region size, therefore altering the number of genes impacted by
CNV (Fig. 1m).

Genetic background alters metastasis-specific CNV event
number and size
Wenext focused onMSCNVamong the PyMT-F1 cohort. First, the closely
related BL6 and BL10 strain pair had the fewest number of MSCNV, with
only 50 and 39, respectively (Fig. 1n and Supplementary data 4). Closely
related BALB, SEAGN, and AKR had the highest number of MSCNV,
ranging from 2448 to 24,650. Though both MOLF and CAST are wild-
derived strains, they exhibited vastly different numbers ofMSCNV regions,
at 1201 and 26, respectively. Interestingly, the number of regions of allelic
imbalance within MSCNV did not appear to correlate with strain-
relatedness and ranged from a single region observed in BL10 F1s to 121
regions in AKR F1s (Supplementary fig. 3g).

Aswe observedwith the oncogenic drivermodels (Fig. 1g), the number
of genes impactedbyMSCNVcorrelated closelywith thenumberof regions,
rather than the size of CNV region. BL6, BL10, and CAST had the smallest
number of genes impacted by CNV, ranging from 139 to 264 (Fig. 1o and
Supplementary data 5). BALB, SEAGN, and AKR had the highest number

of genes contained within MSCNV, ranging from 2820 to 24,615 (Fig. 1n).
Further, the number of genes altered by CNV appeared to be evenly dis-
tributed between regions of gain and loss. Finally, the number of genes
found within regions of metastasis-specific allelic imbalance also correlated
with thenumber of regions rather than region size (Supplementaryfig. 3g-i).

MSCNV region size again followed an inverse relationship with region
number. SEAGN, BALB, and AKR had the smallest regions of MSCNV,
ranging from 49 to 83 kb, whereas CAST had the largest average size of
1250 kb (Fig. 1p andSupplementary data 4).ComparisonofMSCNVlength
between F1 strains revealed that each strain had a statistically different
MSCNV length from all other F1s, and only BL6 and BL10 were not sta-
tistically different from one another. When region size for MSCNV was
further broken down to gDNA gain, loss, and allelic imbalance, we noted
once again that regions of allelic imbalance were larger than gain or loss for
six of the seven F1 strains, a difference that was statistically significant in
BALB and AKR (Supplementary fig. 3i). Metastasis-specific regions of gain
and loss varied greatly in size across F1models, but therewas little difference
in size when comparing regions of loss and gain within the same F1 strain
(Supplementary fig. 3i). Together, this data reveals that metastasis-specific
CNV follows a linear trend betweenCNV regionnumber and region length,
as well as between region number and the number of genes with CNV,
which is modulated in a strain-dependent manner (Fig. 1q).

Genetic background shapes gene set enrichment in CNV
Wenext determined if specific genes or pathways were commonly enriched
in MSCNV. For the FVB oncogenic driver models, 1676 genes were com-
monly found within regions of MSCNV across all four models, which
accounted for 10-56% of the overall number of genes within MSCNV in
each model (Fig. 2a and Supplementary fig. 6a). Gene ontology (GO)
analysis of this common gene set revealed enrichment of cell adhesion,
granzyme-mediated cytolysis, and T-cell viral response pathways (Supple-
mentary fig. 6b and Supplementary data 6). Comparison of GO analysis
performed with the MSCNV gene sets from each FVB model individually
revealed25pathways commonly impacted byMSCNV:11 immune-related,
four metabolic, two developmental, and eight uncategorized (Fig. 2b, Sup-
plementary fig. 6c and Supplementary data 7). Notably, one of the unca-
tegorized pathways was Cellular response to nicotine, which we previously
identified in a prior large transcriptomic study and showed that exposure to
nicotine significantly increased mammary cancer metastasis in a mouse
allograft model11.

Interestingly, several of the immune-relatedpathways containedCNV-
altered gene families clustered within a single locus. Furthermore, pathways
enriched by CNV had both significant metastasis-specific gain and loss
(Fig. 2b). A 400 kb region of chromosome 4 was altered in six of the 11
immune-related pathways common to the oncogenic driver cohort
MSCNV.Within this region, metastatic samples had genomic gain flanked
on either side by genomic loss, but the inverse was observed in PTs (Fig. 2c).
This locus contains a cluster of 23 interferon genes similar to a region
housing several ortholog interferon genes on human chromosome 9 p21.3.
Additionally, we identified a 3000 kb region on chromosome 17 with both

Fig. 1 | Model and genetic background shape MSCNV. a Schematic overview of
mouse models, tissues collected, and analyses performed in this study. Histograms
showing b the average percentage of the genome and c the average number of regions
withCNVwith standard deviation (SD), PT (blue), and lungmets (red).dDot plot of
individual CNV region lengths from aggregate data (the average indicated by black
line). eMultivariate bubble plot showing average CNV number and aggregate total
number of genes with CNV for PT (squares) and lungmet (circles) from eachmodel,
with bubble size corresponding to CNV region size. Total number (black) of regions
(f) and genes (g) with significant CNV gain (dark purple) and loss (light purple) in
MSCNV. h Dot plot showing individual CNV region lengths from MSCNV (the
average indicated by red line). i Multivariate bubble plot showing average CNV
number and aggregate total number of genes with CNV for MSCNV (circles) from
each model, with bubble size corresponding to CNV region size. j Histogram
showing the average % of the genome and k average number of regions with CNV

with SD, PT (blue), and lung mets (red). l Dot plot showing individual CNV region
lengths from aggregate data with all animals per model combined (the average
indicated by a line).mMultivariate bubble plot showing average CNV number and
aggregate total number of genes with CNV for PT (squares) and lung met (circles)
from each model, with bubble size corresponding to CNV region size. n Total
number (black) of regions and o genes with significant CNV gain (dark purple) and
loss (light purple) in Lungmets compared to PT.pDot plot showing individual CNV
region lengths from MSCNV (the average indicated by red line). qMultivariate
bubble plot showing average CNVnumber and aggregate total number of genes with
CNV forMSCNV(circles) from eachmodel, with bubble size corresponding toCNV
region size. Significance determined by Kruskal–Wallis test (d, h, l, p) or unpaired t
test (b, c, j, k). *(p < 0.05), **(p < 0.01), ***(p < 0.001) ****(p < 0.0001), $ = sig-
nificantly different from 6 groups, # = significantly different from 5 groups, ø =
significantly different from 4 groups. Fig. 1a was generated using BioRender.
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Fig. 2 | FVB driver models have metastasis-specific regions and gene families
withCNV. aHistogram showing the percent overlap inMSCNVgene lists from each
model. Numbers within bars indicate gene number common to all (purple), shared
among some (yellow), or unique to eachmodel (green). bDAVID analysis clustering
of 1676 MSCNV genes common to all models with enrichment in CNV gain (blue)
or loss (red) indicated by −Log10(p value) (dotted line indicates cutoff for

significance (≥1.3). Heatmap indicating % lung met-specific gain in blue (% PT
gain−% LM gain) and lung met-specific loss in red (% PT loss−% LM loss) for
genes within a single genomic region from the c Adaptive immune response,
d immune response, and e Granzyme mediated programmed cell death signaling
pathway. CNV signal traces from PT and lungmets aligned usingNexus 10 genomic
view and the Myc model data set.
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metastasis-specific gain and loss.Within this locus are the 32H2 genes that
make up the major histocompatibility complex (MHC). Specifically, we
observed a common amplification of H2-Q genes and deletion of H2-M
genes in metastases and the inverse in PTs (Fig. 2d). A third region of
interest was observed on chromosome 14 that stretched approximately
150 kb and included seven granzyme (Gzm) genes that can be foundwithin
two of the common immune pathways.We observed significant Lungmet-
specific deletion of this locus across all four FVB driver models (Fig. 2e).
While several more loci were identified as major contributors to each
enriched gene ontology, we noted that PyMT and Myc often aligned, but
C3Tag and Her2 samples were more variable (Supplementary data 8).

We performed a similar analysis for the PyMT-F1 cohort. The 25
common pathways identified from the FVB oncogenic driver model ana-
lysis were compared to GO terms enriched inMSCNV from each F1model
individually using several two-group Venn diagram analyses. AKR had the
highest overlap of 17 pathways, followed by BALB (6), SEAGN (2), and
MOLF (1), while BL6, BL10, and CAST had no overlap (data not shown),
suggesting that genes within regions of MSCNV are enriched in a genetic
background-dependent manner, as F1s with the highest GO overlap were
also the strains most closely related to FVB. Additionally, comparative
analysis of gene lists from regions of MSCNV revealed that, except for in
BALB F1s, most genes were subject to CNV inmore than one strain but no
genes were commonly altered in all strains (Fig. 3a, Supplementary fig. 6d
and Supplementary data 5). Similarly, comparison of gene ontologies
enriched by CNV were largely unique to each PyMT-F1 strain and there
were no GO terms enriched by MSCNV across all strains (Fig. 3b, Sup-
plementary fig. 6e and Supplementary data 9).

We previously reported differing metastatic efficiency of the mouse
strains included in this study (Fig. 1a and Supplementary data 1)12.
Therefore, we next asked if F1-PyMT metastases from strains with either
high or low metastatic efficiency might have similar genomic evolution
and common MSCNV. To test this, genes within CNV gain, loss, and
allelic imbalance, as well as enriched GO terms were compared among
strains with low (SEAGN, BL6, andMOLF) and high (BALB, AKR, BL10,
and CAST) metastatic efficiency. For low metastatic efficiency strains, we
identified four genes commonly altered by MSCNV, but no commonly
enriched GO terms (Fig. 3c, d). The Chrm4 and Amrba1 genes are found
within a region of metastasis-specific genomic gain on mouse chromo-
some 2 (human chr11 p11.2), whereas Vmn2r29 and Pbrm1 are found on
mouse chromosome 7 and 14, respectively, and have MSCNV loss
(Fig. 3e). In contrast, high metastatic strains revealed no common genes
within regions of MSCNV, but all strains had enrichment of the Cell
adhesion GO term (Fig. 3fg). Heatmap analysis showed high variability
between strains for genomic gain or loss of factors within the Cell
adhesion ontology gene list, except for a locus on mouse chr18 encom-
passing a stretch of 19 protocadherin genes (Fig. 3h and Supplementary
data 4). BALB and AKR showed amplification of this region in metastatic
tissue compared to PTs, whereas BL10 and CAST showed amplification
within the PT DNA not seen in the metastases, therefore resulting in a
comparative metastasis-specific loss in this region (Fig. 3h).

As well as genes within regions of loss and gain, we assessed imbalance
between the FVB and non-FVB allele induced by CNV and enriched in
Lung mets. Allelic imbalance of a common gene or gene set was not
observed across this cohort (Supplementary fig. 7a). Additionally, we did
not observe allelic imbalance common to strains with either high or low
metastatic efficiency (Supplementaryfig. 7b, c).However,whenweobserved
allelic imbalance within each closely related strain pair, common regions of
imbalance were identified. In BALB and SEAGN PyMT F1 mice we
observed common allelic imbalance in two regions, Chr1qH3 and
Chr11qB4 (Supplementary fig. 7d). Interestingly, four genes found within a
region of amplification onChr1qH3 had an allelic imbalance in BALBLung
mets that was not observed in the PTs, but SEAGN showed the inverse with
allelic imbalance in the PT not observed in Lung mets. The second region
encompassed three genes with allelic imbalance in both BALB and SEAGN
PTs that was not enriched in Lung mets (Supplementary fig. 7d). These

seven genes are similarly arranged within the human genome at loci Chr1
q23.3 and Chr17 p13.2, respectively. MOLF and CAST PyMT F1s also had
two common regions ofmetastasis-specific allelic imbalance.A region of PT
and Lungmet genomic gain on Chr7q resulted in allelic imbalance in Lung
mets from both strains (Supplementary fig. 7e). This locus houses 11 genes
and corresponds to the human Chr10q26 which contains the same set of
ortholog genes. A second region within mouse Chr18q was also a site of
genomic gain and common Lung met-specific allelic imbalance, encom-
passing 10 genes that are also found together within human Chr5q31.3
(Supplementary fig. 7e). The third strain pair, BL6 and BL10, both had
metastasis-specific allelic imbalance, but no common regions could be
identified (Supplementary fig. 7f). Taken together, this data suggests that
genetic background is a stronger determinant than oncogenic driver in
shaping the enrichment of CNV-altered genes in the metastatic genome.

Metastatic gene expression is not shaped by CNV
We next asked if genes in MSCNV regions were differentially expressed in
the metastatic lesions by performing bulk RNA-sequencing (RNA-seq) of
RNA isolated from matched PT and Lung met tissue collected from the
oncogenic driver and PyMT-F1 cohorts. We found significant variation in
the number of genes within regions of CNV that were expressed in meta-
static tumors (Fig. 4a and Supplementary data 10). CAST had the lowest
expressionwith only 8%ofMSCNVgenes found in the RNA-seq signal, but
BALB had the highest with 58%. We next performed differential gene
expression analysis between Lungmets and PTs for eachmodel and asked if
genes with MSCNV had altered expression compared to PTs (Supple-
mentary data 11). Again, we observed high variability within the data, with
the FVB-MYC model showing the lowest number of MSCNV genes with
altered expression (0.01%), and PyMT F1-AKR showing the highest (33%).
When we examined the genes within MSCNV that also had significant
differential gene expression compared to the PT, we noted that the
expression change did not correspond to the CNV type (gain or loss)
(Fig. 4b, c). Taken together this shows a poor association betweenCNVtype
and direction of any changes in gene expression at the macro metastasis
stage (Fig. 4d–n).

Oncogenic driver and genetic background shape metastatic
gene expression
As MSCNV was not a major contributor to metastasis-specific gene
expression (MSGE) within metastatic lesions, we analyzed our RNA-seq
data to determine how oncogenic driver or genetic background impacted
MSGE. To begin, all samples were visualized together by unsupervised
principal component analysis (PCA), which resulted in four distinct clusters
differentiated by oncogenic driver (Fig. 5a). When the analysis was limited
to individual models within the oncogenic driver cohort there was no sig-
nificant separation of PT and Lungmet samples (Fig. 5b–e). Together, these
results indicate that oncogenic driver is a stronger determinant of sample
similarity than tissue type or genetic background.

Gene expression analysis comparing Lung met and PTs revealed
that the extent to which MSGE differs from the primary tumor is also
oncogenic driver-dependent. Using a cut-off of p < 0.05 and FDR < 0.1,
the PyMT model had significant changes in the expression of 561 genes,
C3Tag 113, Her2 64, and Myc only 4 genes (Fig. 5f and Supplementary
data 11). While the Her2 andMycmodels showed an even distribution of
up- and down-regulated genes, the PyMT and C3Tagmodels favored up-
regulation of metastasis-specific genes (Fig. 5g–j). Alternatively, regulated
genes in the C3Tag and Her2 models overlapped with those from PyMT,
but only a single gene, Pcdh17, was commonly altered in metastatic tissue
from all four models (Supplementary fig. 8a, b). According to The
Genotype-Tissue Expression (GTEx) project, PCDH17 is highly and
specifically expressed in Lung tissue and therefore may simply represent
the stroma in which the tumor cells reside (Supplementary fig. 8c).
However, this is challenged by the observation that Pcdh17 is also
expressed in PT tissue in a genetic background-dependent manner in the
PyMT-F1 cohort (Supplementary fig. 8d). Based on these data, we
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conclude that the MSGE of these models is largely oncogenic driver-
dependent.

Similarly, GO analysis revealed that there were no Lung met-specific
gene expression pathways common across all oncogenic driver models
(Supplementary fig. 8e and Supplementary data 12). However, it was noted
that theMycmodelMSGE only enriched a single pathway, theWnt Signaling
pathway. Three pathways, Complement and coagulation cascades, Platelet

activation, andMalaria, were significantly enriched and shared by the Her2,
C3Tag, and PyMT models (Fig. 5k). Interestingly, while these pathways are
related by their involvement with red blood cell biology, the gene lists that
define them overlap less than 7% (Supplementary fig. 8f). Upon assessment
of the genes within each pathway, we noted that Her2, C3Tag, and PyMT
enrich largely independent gene sets except for the cell adhesion molecules
Icam1, Vwf, and Itgb2 (Fig. 5l and Supplementary data 13).

Fig. 3 | PyMT F1 models have no common gene
sets or ontologies enriched by MSCNV. Histo-
grams of the percent overlap in gene lists (a) andGO
terms (b) enriched by MSCNV in each model.
Numbers within bars indicate gene number com-
mon to all (purple), shared among some (yellow), or
unique to each model (green). Venn diagram ana-
lysis of gene sets (c) and GO terms (d) enriched by
MSCNV in low metastatic efficiency strains.
e Heatmap indicating % lung met-specific gain in
blue (%PT gain−%LMgain) and lungmet-specific
loss in red (% PT loss−% LM loss) for genes with
MSCNV in low metastatic efficiency strains. Venn
diagram analysis of gene sets (f) and GO terms (g)
enriched inMSCNV from highmetastatic efficiency
strains. h Heatmap indicating % lung met-specific
gain in blue (% PT gain−% LM gain), lung met-
specific loss in red (% PT loss−% LM loss), and
lung met-specific allelic imbalance (Al. Imb.) in
purple (% PT Al. Imb.−% LM Al. Imb.) for genes
with MSCNV in high metastatic efficiency strains
from the Cell adhesion pathway within a single
locus. CNV signal traces from PT and Lung mets
aligned using Nexus 10 genomic view of the BL10
and BALB model data sets.
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RNA-seq data was next analyzed for metastasis-specific changes in
transcript levels to assess model–specific splicing. Upon comparison of
Lungmets and PTs from the oncogenic driver cohort, we identified a single
transcript significantly altered inmetastases compared to PTs and common
to all models (Supplementary fig. 9a and Supplementary data 14). Rnase4
isoform2, and not isoform 1, was significantly increased inmetastatic tissue
compared toPT (Supplementaryfig. 9b, c).Rnase4 isoform1and2 share the

same promoter and coding exons but have unique 5’ untranslated regions
(UTRs)24,25. We noted that overall expression of Rnase4 remained
unchanged, which may be explained by a compensatory, although non-
significant, decrease of isoform 1 (Supplementary fig. 9b). We asked if
Rnase4 might also be alternatively spliced in lung metastases across the
PyMT-F1 cohort. A statistically significant increase in levels of isoform 2
was observed in BALB, SEAGN, and BL6, but not any of the remaining

Fig. 4 | MSCNV does not significantly impact
metastasis-specific gene expression. a Histogram
of the percentage of genes withMSCNV that are not
expressed (blue), expressed in lung mets with no
change from PT (pink), and differentially expressed
in lung mets compared to PTs (red). Numbers listed
before eachmodel name represent theMSCNVgene
set size. Histograms showing the percentage of genes
with MSCNV-gain (b) or MSCNV-loss (c) that had
significant up regulation (green) or down regulation
(yellow) in lung mets compared to PTs. Paired vol-
cano plots for the MSGE of genes within regions of
MSCNV gain or loss for each FVB driver model
(d–g) and PyMT-F1 model (h–n).
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strains (Supplementary fig. 9d). Comparative analysis of splicing across the
PyMT-F1 cohort revealed no commonly altered transcripts, suggesting that
metastasis-specific splicing may be determined in-part by genetic back-
ground (Supplementary fig. 9e).

We next asked how genetic background could shape gene expression
programs in macro-metastases. Upon visualization of PT and Lung met
gene expression by unsupervised PCA for each PyMT-F1 strain, we
observed no distinct separation between tissue types for BL6, MOLF, and
CAST (Fig. 5m–o), but distinct clustering of samples by tissue in BALB,

SEAGN, and BL10 (Fig. 5p–r). The heterozygous PyMT F1s had a higher
degree of MSGE compared to homozygous FVB PyMT samples, with the
number of altered genes ranging between 814 and 3226 for BL6, BL10,
SEAGn, MOLF, and CAST (Fig. 5s, t and Supplementary data 11). Com-
parison of the MSGE between the F1s using a six-part Venn diagram
analysis showed that close genetic background did not always correspond
with highest overlap in MSGE (Supplementary fig. 10a). MOLF, BL6, and
BALBMSGE were most similar to their corresponding strain pairs, CAST,
BL10, and SEAGN, respectively, with about 50% of the MSGE in these

Fig. 5 | Metastatic gene expression is shaped by oncogenic driver and genetic
background. a Unsupervised PCA of RNA-seq data from PT and Lung met tissues
across all FVB driver and PyMT-F1mousemodels. Unsupervised PCA of individual
PT and lung met samples from FVB Her2 (b), FVB C3Tag (c), FVB Myc (d), and
FVB PyMT (e). f Histogram of the number of alternatively expressed genes in lung
mets vs. PT for each FVB driver model (FDR < 0.05). Volcano plots with sig-
nificantly up regulated genes in green and down regulated genes in yellow forMSGE
in FVB Her2 (g), FVB C3Tag (h), FVB Myc (i), and FVB PyMT (j). k Histogram
showing the enrichment score for commonly enriched pathways fromMSGE of the
C3Tag, Her2, and PyMT models. l Histogram showing the fold change of genes

common to pathways enriched by MSGE. Unsupervised PCA of individual PT and
lung met samples from BL6 (m), MOLF (n), CAST (o), BALB (p), SEAGN (q), and
BL10 (r). s Volcano plots with significantly up regulated genes in green and down
regulated genes in yellow for MSGE in the PyMT-F1 models. t Histogram of the
number of alternatively expressed genes in lung mets vs. PT for each PyMT-F1
model (FDR < 0.05). u Histogram showing the enrichment score for commonly
enriched pathways from MSGE of the F1-PyMT models. Histograms showing the
fold change of common MSGE enriched in the Focal Adhesion (v) and Renin
Secretion pathways (w).
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strains overlapping with the MSGE of their closely related counterparts.
However, SEAGN had the highest overlap in MSGE with CAST, while
CAST and BL10 strains had a higher percentage of overlap with one
another. Furthermore, we noted that MSGE was also highly individualized
between F1 strains, with unique changes in gene expression accounting for
23–58%ofMSGE (Supplementaryfig. 10a).Only 60 geneswere common to
MSGE of all strains (1.9–13.6%of totalMSGE for each F1 strain), and these
were enriched for extracellularmatrix, cell adhesion, autophagy factors, and
glycoproteins as determined by DAVID analysis (Supplementary data 15)2
6,27.

Further GO analysis was performed using the MSGE for each PyMT-
F1 strain (Supplementary data 16). Venn diagram analysis of the enriched
pathways revealed ECM-receptor interaction, Gap junction, Focal adhesion,
and Renin Secretion as four pathways commonly enriched byMSGE across
all PyMT-F1s (Fig. 5u). The genes included in the KEGG ECM-receptor
interaction and Gap junction pathways overlap with the Focal adhesion
pathwayby74%and30%, respectively, but not one another (Supplementary
fig. 10b). As such, when we compared the MSGE of each pathway between
strains we identified four commonly altered genes (Thbs2, Col1a2, Vwf, and
Egflam) from theFocalAdhesionpathway thatwere also foundwithin either
the ECM receptor interaction or Gap junction pathways (Fig. 5v and Sup-
plementary data 17). Furthermore, three genes (Adrb2, Npr1, and Acer2)
from the Renin Secretion pathway were upregulated in the MSGE of all
F1 strains (Fig. 5w). Based on GTex project data, none of these commonly
altered genes are Lung-specific, all are expressed in breast tissue, and some
are ubiquitously acrossmany tissues (Supplementary fig. 10c). In summary,
while the same pathways were enriched by all strains, each F1 appears to
modulate gene expression differently to achieve enrichment of these
pathways.

MSCNV and MSGE from both cohorts target common cellular
processes
Analyses conducted in this study sought to identify commonalities between
models. However, in many instances, particularly among PyMT-F1s, the
modelsweremore unique than similar. Indeed, we noted that the oncogenic
drivermodels had 38–72%ofMSCNV enriched pathways that were unique
to each model, and the altered genetic background of the PyMT-F1 cohort
resulted in no commonly enriched genes or pathways from MSCNV, but
rather 60–88% unique pathways in each F1 strain (Fig. 2a and Fig. 3a). To
visualize and summarize the differences between models the top 70 GO
terms fromMSCNV gain and loss were sorted into thirteen categories and
the percent of each categorywithin the top pathways presented as heatmaps
(Fig. 6a and Supplementary data 7, S9). Immune (cyan) and metabolic
(pink) pathways were dominant across all four oncogenic driver models, in
both MSCNV gain and loss. However, each model displayed a unique
distribution of pathways, and MSCNV gain and loss were also distinct
within the same model, which was most pronounced in the C3Tag model
(Fig. 6a). MSCNV loss among the PyMT-F1 BALB, AKR, and SEAGN
models most closely resembled the distribution observed in the oncogenic
driver models, with immune and metabolic pathways dominant, but
developmental pathways (gray) were the most significantly enriched across
this cohort. From this analysis, we conclude that despite exploiting the same
oncogenic driver, genetic background has a stronger influence on the genes
enriched within MSCNV (Fig. 6a).

We next extended this analysis to visualize differences in MSGE from
RNA-seq data (Fig. 6b). We again observed an enrichment of immune
pathways across the oncogenic drivermodels, except for in theMycmodel,
which had limited MSGE and only a single enriched pathway (Supple-
mentary fig. 8a and Supplementary data 12, S16). For the PyMT-F1 cohort,
we observed more similarity in metastasis-specific gene expression path-
ways across strains, compared to the wide variety enriched byCNV(Fig. 6a,
b).We noted that despite seeing no common developmental pathways, this
categorymade up themajority ofMSGE-enriched ontologies among five of
the models. In addition, ECM, migration, and proliferative pathways were
enriched to varying degrees in the MSGE of each PyMT-F1 strain.

Interestingly, the MSGE in the PyMT-F1 cohort represented fewer cate-
gories compared to theMSCNV-enriched pathways. Overall, due to the low
number of genes and pathways common to MSGE across all PyMT-F1
strains, we conclude that while genetic background can have a profound
impact on gene expression within metastatic lesions, these changes may
ultimately impact the same cellular processes. This analysis demonstrated
that a more diverse genetic background, modeled by the heterozygous
PyMT-F1 cohort, shiftedMSGE to more developmental and less immune-
related ontologies. However, Extracellularmatrix (green) genes appear to be
commonly modulated by MSGE across all models.

Finally, we assessed pathways enriched by metastasis-specific splicing.
In both the oncogenic driver and PyMT-F1 cohorts, we noted that fewer
pathways were significantly enriched by alternatively spliced genes com-
pared toMSCNV andMSGE (Fig. 6c and Supplementary data 18). Despite
there being no common alternatively spliced transcripts across the eleven
models used in this study, we noted that metabolic and RNA processing
(purple) ontologies were dominant in all models. However, eachmodel had
a unique distribution of pathways significantly enriched by metastasis-
specific splicing programs.

Discussion
Metastasis is a complex phenotype, driven by the interplay of tumor cell
intrinsic, microenvironmental, and systemic factors28. Classic cytogenetics
studies andmore recent sequencing-based work has shown that metastases
usually arise from a single, or at most a limited number, of subclones within
the primary tumor29. In addition, clinical and experimental data suggest that
only a small fraction of disseminating tumor cells are able to form secondary
lesions30. These and other data have been interpreted to suggest that tumors
evolve over time until a subset of tumor cells acquire all of the necessary
attributes to successfully complete the metastatic cascade.

To date, however, in contrast to what has been observed in primary
tumors, sequencing studies in clinical samples have not revealed the pre-
sence of high frequency, reproducible SNVs associated with metastatic
progression31–33. In contrast, previous studies from our laboratory, com-
paring matched primary and metastatic lesions from the highly metastatic
MMTV-PyMT mouse model of breast cancer, did identify reproducible
metastasis-associated point mutations in Shc1 and Kras. These studies,
however, were performed on a muchmore genetically homogeneous set of
animals than is observed in the human population, suggesting that these
potential metastasis driver mutations might only represent a small fraction
of the patient population. In addition, these observations were made for a
single oncogenic driver model, PyMT, rather than the multiple oncogenic
initiating events observed for human patients.

To better understand how genomic evolution may contribute to
metastatic progression in commonly usedGEMMs and to compare them to
the expanding clinical data, we have extended our previous work to include
two additional models of breast cancer metastasis, the C3(1)TAg and
MMTV-Myc models, and expanded on the previously analyzed MMTV-
Her2 model. Moreover, for the MMTV-PyMT model, we have expanded
the repertoire to include pairs of phylogenetically related strains with sig-
nificantly different inherited propensity to metastasize to include popula-
tion diversity into the analysis. The total data set analyzed in this study
consists of 197matched primary andmetastatic lesions spanningmodels of
luminal, Her2, and basal-like breast cancer.

Consistent with our previous study, analysis of the expanded data set
failed to reveal high frequency SNVs associated withmetastasis across all of
themodels.However, a total of 13 geneswere identified thatweremutated in
2 or more independent animals, The most frequently observed gene was
Kras, which had metastasis-associated activating mutations in 5 out of 197
animals. All of the remaining genes with metastasis-associated SNVs were
present in only 2 or 3 animals. Reproducible metastasis-associated SNVs
were not observed in 84% (166/197) of the animals. This suggests that SNVs
do not play a significant role in metastatic progression. A similar result was
observed for synchronous lymph node metastasis in human patients34,
though metastasis-specific SNVs were observed in the metachronous
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distantmetastases. However, since themetachronous lesions were collected
after anthracycline treatment, it is unclear whether these SNVs represent
metastasis drivers or therapeutic response. A second study by Siegel et al. 35

also concluded that the majority of metastasis drivers were copy number
alterations, rather than SNVs. Furthermore, Hoadley et al. 36 also found few
metastasis-specific mutations, which were rarely expressed, and concluded
that these SNVs were more likely passengers than drivers, consistent with
our results. However, our ability to identify low frequency metastasis-
associated SNVs in mouse models, compared to human clinical studies,
suggests that there may be either rare SNVs in particular patient popula-
tions, or many SNVs that contribute at a low frequency to metastatic pro-
gression, which are more readily apparent through sequencing of multiple
genetically identical independent sample pairs. Deeper sequencing and
significantly increasing the number of samples per group may enable the
identification of additional low frequency metastasis drivers, particularly
those that might be selectively lost at the secondary site due to clonal
selection. The mouse data generated here, however, is consistent with cur-
rent clinical data suggesting that there is a lack of high frequency activating
mutations for precisionmedicine for anti-metastatic therapies thatwould be
of benefit for significant fractions of breast cancer patients.

We subsequently performed CNV analysis on the data to determine
whether there were common CNVs that might contribute to metastatic
progression. Analysis revealed that oncogenic drivers on the FVB homo-
zygous genetic backgroundhad similar degrees ofCNVinbothprimary and
secondary lesions, though there were differences in the size of the CNVs
between models. Further, in both PTs and lung metastases we observed
some strains with high numbers of small events and others with small
numbers of larger events, accounting for the similar degree of copy number
change overall. Notably, the size of copy number events in this study are
within the range observed across cancer types by Steele et al. in a recently
published analysis of copy number signatures from clinical data37. The
major determinant of CNV variation, however, was genetic background.
This was most apparent in the comparison of the phylogenetically related
BALB and SEAGn strains. The SEAGn strain was generated by a cross
between BALB and PJ mice, followed by 20 generations of brother-sister
mating38. This congenic strain genome is 50% BALB yet shows significantly
less genomic stability compared to the BALB primary tumor. Together this
data suggests that genetic backgroundmaydirect themechanisms leading to
copy number events.

Further analysis focused on metastasis-associated events revealed
common CNVs, associated genes, and gene ontologies across the oncogene
driver models on the FVB homozygous background. However, these
common metastasis-associated features are lost when the genetic back-
groundwas varied in theMMTV-PyMTcohort. This suggests thatwhile the
analysis of the four homozygous FVBoncogenicmodelsmay be valuable for
identification of some commonmetastaticmechanisms, they are unlikely to
represent the majority of the human patient population. Moreover, con-
sistent with our previous observations of inheritedmetastatic susceptibility,
this suggests that an individual’s personal ancestry is a major factor in
metastatic genome evolution. In addition, these data suggest that there are
likely multiple paths that tumor cells utilize to achieve metastatic compe-
tency, which indicates thatmultiple strategies to prevent or treat established
lesions may be required across the human population.

Similar to theCNVanalysis, transcriptional analysis demonstrated that
themost significant determinants of gene expression were oncogenic driver
and genetic background. Surprisingly, CNV status did not show strong
correlation with metastasis-specific gene expression when analyzing mac-
roscopic metastatic lesions. One possible explanation for this is that
alterations in gene expression due to CNV are important during the earliest
stages of dissemination, extravasation and adaptation to the secondary site.
Once resident in the secondary site epigenetic regulation mediated by
microenvironmental influences of the pre-metastatic niche and metastatic
tumor bedmay reprogramanddominate the transcriptional programof the

Fig. 6 | Oncogenic driver and genetic background shape unique MSCNV and
MSGE to target common cellular processes. Categorization of the top 70 (or
otherwise indicated) significantly enriched gene ontologies from MSCNV (a),
MSGE (b), and lung met-specific alternative splicing (c). Uncategorized ontologies
were excluded from the heat maps. Color intensity represents the percent of the
analyzed pathways that fell within that category.
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macroscopic metastatic tumors. Additional investigations into the epige-
netic state of the matched primary and metastatic tumors in these models,
however, will be necessary to address this possibility.

Examination of the data at a broader level provides cause for optimism.
Although individual Gene Ontology terms from CNV and transcriptome
analysis were not shared across the models and genotypes, grouping indi-
vidual ontologies into broader categories demonstrates potential com-
monalities that might be targeted. When considered as broad categories,
developmental pathways, ECM,RNAbiology, andmetabolism appear to be
common metastatic categories across all of the animals, although different
Gene Ontologies are affected in each of the cohorts (Fig. 7). Each of these
broad categories have already been previously associated with metastatic
disease. Importantly, a recent sequencing study also identified metabolism
and RNA biology ontologies distinguishing matched primary and meta-
static breast cancer samples35, providing greater confidence that the results
reported here are translationally relevant. The data presented here suggests
that to generate therapies that have broad applicability across patient
populationsmore in-depth analysis of these categoriesmay be necessary. In
particular, since the models used here appear to rely on different pathways
within each of the broad ontology categories, targeting any single pathway is
unlikely to be efficacious in a large percentage of the patient population.
Further investigations into pathway intersections within the broad metas-
tasis categories, however, might identify critical convergence points that
might be targeted in either single or combination therapies to suppress
metastasis establishment or metastatic lesion viability.

This study has focused on the characterization of the genomic evolu-
tion of commonly used mouse models of breast cancer progression and
metastasis. A major strength of this study is the ability to generate multiple
genetically identical animals for each model and genotype, enabling more
accurate dissection of the role of oncogenic driver and genetic background
on tumor evolution and transcriptional output. Limitations of this study
include potential biological differences between the two species. In addition,
many of the features observed in these models recapitulate events observed
in human cancer progression. For example, human tumors also experience
significant copy number alterations, with up to 25% of the genome of all
human tumors acquiring somatic amplificationsofdeletions.Moreover, like

the mouse tumors examined here, human tumors tend to accumulate a
higher number of copy-number alterations than single nucleotide
mutations39. Furthermore, human circulating tumor cells often have copy-
number alterations thatmore closely resemblemetastatic lesions rather than
the primary tumors40, suggesting that copy-number alteration provides a
selective advantage for metastatic progression. Increased copy-number
alteration has also been associated with increased probability of metastasis
and mortality in prostate cancer41, consistent with the data presented here.

Limitations of this study, however, include potential differences
between the two species.Mouse andhuman immune andmetabolic systems
are known to have differences, which may potentially contribute to differ-
ences in the important tumor-stromal cell interaction during metastatic
dissemination and colonization. In addition, the mechanism of copy-
number alteration may differ between mouse and human. Whole genome
duplication is a frequent event in human metastatic tumors23. However,
analysis of the primary andmetastatic lesions in themousemodels suggests
that these tumors had not experienced whole genome duplication. In
addition, although the use of multiple inbred strains has introduced genetic
diversity for theMMTV-PyMTmodel, the remaining three models studied
here were limited to the FVB/N homozygous background, which precluded
the ability to investigate the role of genetic diversity in these models. In
addition, the metastases examined here were limited to pulmonary lesions
and for most animals limited to a single metastatic lesion per animal. This
precluded investigations into the potential tissue-specific differences as well
as performing phylogenetic tracing analysis.

Despite these limitations, here we have demonstrated that (1) Genetic
background plays a role in primary tumor stability and the size of copy
number event regions, (2) Genetic background is a strong determinant of
which genes are specifically enriched in CNV, (3) Oncogenic driver and
genetic background shapes gene expression in metastatic tumors, and (4)
Metastasis-specific ontology clusters, rather than individual Gene Ontolo-
gies, identify common biological programs in metastatic disease that might
be considered for clinical intervention (Fig. 7). An increased understanding
of the complex interplay between these factors will provide guidance for the
improved use and interpretation of these models in relation to human
patient populations for the investigation of progressive metastatic disease.

Fig. 7 | Host genetic background shapes metastatic SNVs, CNVs, and gene expression more than oncogenic driver. Schema summarizing a murine model genetic
background and oncogenic driver and the unique (black diamonds) or common (white boxes and solid lines)metastasis specific b genomic alterations and c gene expression.
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Methods
Ethics statement
We have complied with all relevant ethical regulations for animal use. The
research described in this study was performed under the Animal Study
Protocol LPG-002, approved by the National Cancer Institute (NCI) Ani-
mal Use and Care Committee. Animal euthanasia was performed by cer-
vical dislocation after anesthesia by Avertin.

Genetically engineered mouse models and tissue isolation
FVB/N-Tg(MMTV-PyVT)634Mul/J (PyMT), FVB/N-Tg(MMTVneu)
202Mul/J (Her2)malemicewereobtained fromThe JacksonLaboratory. FVB/
N-Tg(C3(1)-TAg) (C3-TAG) and FVB/N-Tg(MMTV-Myc) (MYC) male
mice were a generous gift from Dr. Jeffrey Green (NCI, Bethesda, MD). Male
PyMT mice were crossed with female wild-type FVB/NJ, MOLF/EiJ, CAST/
EiJ,C57BL/6J,C57BL10/J,BALB/cJ, Sea/GnJ, andAKR/Jmice,whichwerealso
obtained from The Jackson Laboratory. Male Her2, C3-TAG, andMYCmice
were crossed with female wild-type FVB/NJmice. All female F1 progeny were
genotypedby theLaboratoryofCancerBiology andGenetics genotype core for
the PyMT, Her2, Myc, or C3-TAG gene. Transgene-positive female animals
werehoused in standard isolator cages andprovided foodandwaterad libitum.
PyMT-positive female animals were aged to permit tumor initiation and
growth until animals reached humane endpoints or were expected to reach
humane endpoints by the next daily monitoring. For the MMTV-Myc,
MMTV-Her2andC3(1)-TAgmodels, tumors fromanimalswith single lesions
were surgically resected at or before tumors reached 1 cm in any direction.
Animals were then aged an additional 60 days or until they approached
humane endpoints, whichever came first. All animals were housed in the same
room in the building 37 vivarium.Mice were euthanized using intraperitoneal
Avertin to anesthetize followed by cervical dislocation. All primary tumors
generated by one animal were isolated, weighed, randomly sampled, and
combined into a single cryovial. Metastatic nodules and normal (tail) tissue
were also isolated immediately following euthanasia, placed in cryovials, and
snap frozen in liquid nitrogen. Tissue samples were then stored at−80 °C.

Humane endpoints included hunched posture, rough hair coat;
dehydration (reduced skin turgor, sunken eyes); rapid or labored
breathing, dyspnea, coughing; reduced/impaired mobility affecting the
ability to obtain food or water; pallor or cyanosis (evident in the general
appearance of the feet, muzzle or ears which may turn white or blue);
hemorrhage or bleeding from any orifice; diarrhea, constipation or
markedly reduced food intake; signs of neurological impairment for
example seizures, paralysis, circling, head tilt; impaired ability to urinate
or defecate; visible jaundice (yellow discoloration to ears, muzzle, or feet);
loss of >15% normal body weight. Additional humane endpoints inclu-
ded tumors interfering with normal movement that impaired their ability
to perform bodily functions, significantly impaired gait, or impaired their
ability to obtain food or water; tumors interfering with normal bodily
functions such as urination, defecation, breathing, chewing, or swal-
lowing; or dyspnea at cage side observation.

gDNA and RNA isolation
The combined primary tumor tissue fromonemousewas ground ondry ice
and small fragments were taken for nucleotide extraction isolation. Whole
metastases were used for gDNA or RNA isolation.

For gDNA isolation, tissue was lysed using Tail Lysis Buffer (100mM
Tris-HCl pH 8.0, 5mM EDTA, 0.2% SDS, 200mM NaCl, 0.4mg/ml pro-
teinase K) at 55 °C overnight. Samples were then placed in a shaking
(1400 rpm) heat block for 1 h at 55 °C. RNaseA (Thermo Fisher Scientific)
was added (2mg/ml final) and lysates were incubated on the bench for
2min. gDNAwas then isolated using theZR-DuetDNA/RNAMiniPrep kit
(Zymo Research).

For RNA isolation, the tissue was mechanically dissociated using a
tissue grinder while submerged in 1ml of TriPure (Roche). 200 μl of
chloroform (Sigma-Aldrich) was then added and the soluble fraction was
isolated by centrifugation at 12,000 rpm for 15min at 4 °C. RNA was then
precipitated with the addition of 500 μl isopropanol and incubation of the

sample at −20 °C for 2 h. Pure RNA was then extracted using the RNA:
DNA mini-prep kit (Zymogen) and samples were eluted in 100 μl (PT) or
50 μl (metastases) of DEPC water (Quality Biological). RNA was isolated
from cell lines using TriPure as described above, but following isopropanol
precipitation, RNAwaswashedwith 75% ethanol (Sigma-Aldrich) followed
by 95% ethanol before being resuspended in 100 μl of DEPC water.

All samples that passed initial quality control were used for sequencing
analysis. No samples were excluded for any reason other than low yield or
poor quality. No randomization was performed.

Sequencing and analysis
All analyses were carried out on the NIH Biowulf2 high performance
computing environment. All analyses were performed using software
default parameters if not otherwise specified.

Exome sequencing and data analysis. Exome sequencing was per-
formed by the NCI Center for Cancer Research (CCR) Genomics Core
and the NCI Illumina Sequencing Core. Exome libraries were prepared
by the Genomics Lab using Agilent SureSelectXT Mouse All Exon target
enrichment kit. Libraries were barcoded and pooled before sequencing
on an Illumina HiSeq3000 or HiSeq4000 to an average depth of 40×.
Samples were trimmed of adapters using Trimmomatic software. Bam
files were uploaded into Nexus Copy Number 10.0 (BioDiscovery) and
processed using SNP-FASST2 Segmentation. The trimmed reads from
tumor gDNA were aligned to normal tail gDNA sequence from each
model, and then to the mouse NCBI build 38 (mm10) reference genome.

RNA sequencing and data analysis. RNA quality was tested using the
Agilent 2200 TapeStation electrophoresis system, and samples with an
RNA integrity number (RIN) score >7 were sent to the Sequencing
Facility at Frederick National Laboratory. Preparation ofmRNA libraries
and mRNA sequencing was performed by the Sequencing Facility using
the HiSeq2500 instrument with Illumina TruSeq v4 chemistry. RNA-seq
data were mapped to mm10 and analyzed using Partek Flow software.

Single nucleotide variant analysis. This analysis was performed as
described in our previously published work6.

Copy number analysis. Following initial data processing, the Total copy
number events and%of the genome changed by copynumber for each sample
were downloaded from the Data Set tab. Aggregate data from PTs and lung
mets was attained by selecting only the sample from the desired tissue type
within the Data set tab, and then selecting View and then Aggregate.
Aggregate regions of CNVwere defined as having a p value cutoff below 0.05
and an aggregate percent frequency of 35% and above. Region length, event
type, number of genes, and gene names were exported as .txt from aggregate
analysis. Average region length, total number of events and total number of
genes were calculated using Excel (Microsoft).

For lung met-specific CNV analysis, the Classic comparison tool was
utilized in Nexus. In the Data Set tab, all samples from one mouse model
were selected before navigation to the Comparisons tab. From here, a
comparison was added using Tissue as the distinguishing factor, and
Average was selected as the comparison baseline. Upon selection of the
comparison and then View, lung met specific event type, region length, p
value, number of genes, and gene names were exported as .txt files. Average
region length, total number of events, and total number of genes were
calculated using Excel. By highlighting specific CNV events within the
comparisonView tab, a pathway enrichment analysiswas performed for the
genes found within regions of CN Gain or CN Loss. A list of enriched
Biological Processeswas exported as a .txtfile including p values. The percent
CN gain, loss, or allelic imbalance in the primary tumors and lung mets for
each gene within each pathway was obtained by selecting the individual
biological process name. Calculation of % Lung met gain or loss−% PT
gain or loss was performed in Excel and heat maps were created using the
Excel conditional formatting tool.
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ABSOLUTE whole genome duplication analysis. Reference files were
trimmed using the Trim galore42, before being aligned to the mm10
genome using the Bwa-mem2 package42,43. We then used Gatk to sort,
deduplicate, and recalibrate the resulting files44. Using Gatk’s
Mutect2 somatic variant caller, SNPs were called for all tumor-normal
pairs. TheRpackages copywriter andDNAcopywere used to detect Copy
Number Aberrations within tumor samples and format the data for
integration with our SNP data45,46. We used the R package BubbleTree to
integrate CNA and SNP information to analyze tumor purity and
ploidy47.

RNA sequencing and data analysis. RNA quality was tested using the
Agilent 2200 TapeStation electrophoresis system, and samples with an
RNA integrity number (RIN) score >7 were sent to the Sequencing
Facility at Frederick National Laboratory. Preparation ofmRNA libraries
and mRNA sequencing was performed by the Sequencing Facility using
the HiSeq2500 instrument with Illumina TruSeq v4 chemistry.

RNA-seq data was analyzed using Partek Flow software (Kanehisa
Laboratories). RNA-seq readswere uploaded into Partek Flow, alignedwith
the mousemm9 genome assembly, gene counts were then determined, and
then normalized. Principal Component Analysis was performed using
unsupervised principal component analysis for either all samples, or sam-
ples filtered by mouse model. Differentially expressed gene lists were gen-
erated Gene Specific Analysis (GSA) for FVB-Driver models and Dseq2 for
PyMT-F1models. Differential gene expression was defined as a fold change
with a false discovery rate less than 0.05. TheDifferential expressionof genes
within regions of CNV was defined as fold change with FDR less than 0.1.
Volcano plots for Lung met v PT gene expression were created using
unfilteredGSA results for allmodels.Gene ontology analysiswas performed
using differentially expressed gene lists and the Partek Flow Gene Set
Enrichment tool. Pathways enriched with a p value less than 0.05 were
considered significant. Gene ontology categories were assignedmanually to
the top 70 pathways or if less than 70 pathways were significantly enriched
thenall pathwayswith p < 0.05were included.Heatmapswere created using
the Excel conditional formatting tool, where color intensities were deter-
mined by the percent of the enriched terms found within each category out
of the total terms categorized.

Differential splicing analysis was performed using Partek flow.
Following alignment to mm9 genome assembly, transcript counts were
normalized and then each model was analyzed using the Partek tool to
detect all splicing and differential splicing in Lung mets v PT. Alternative
splicing was defined as both transcript differential expression with p
value less than 0.05 and an alt-splicing p value less than 0.05. Using these
p value cuts-offs, alternatively spliced gene lists were analyzed by Partek
Gene Set Enrichment to identify pathways enriched by lung
met alternatively spliced genes. Significantly enriched pathways were
defined as those with p values less than 0.05.

Statistics and reproducibility
Statistical analysis was performed using GraphPad Prizm software, using t
tests or ANOVA analysis with correction for multiple testing, as required.
Sample numbers can be found in Supplementary Table 1.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The sequencing data described in this study are available from the
Sequence Read Archive (PRJNA1090863) or the Gene Expression
Omnibus (GSE142387).
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