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Multi-omics insights of immune cells in
the risk and prognosis of idiopathic
membranous nephropathy
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Xiaoyi Song1,2,3,7, Wen Zhu1,2,7, Yang Li4,7, Zhanyu Li5, Wanwei Cao5, Jieyu Lu1,2, Wanping Pan1,2,
Jingyue Wei1,2 & Man Li 1,2,6

Idiopathic membranous nephropathy (IMN) is the major cause of autoimmune-related nephrotic
syndrome. The role immune cells play in the risk and prognosis of IMN remains elusive. We employ
multi-omics data and a variety of approaches to evaluate the causal link between 731 immune-cell
phenotypes and IMN. In light of the findings emanating fromMendelian randomization analyses, only
the regulatory T cell (Treg) subtype (CD39+ Tregs) survived from Bonferroni correction and is causally
related to IMN. These cells are significantly enriched in the IMNmicroenvironment and are negatively
correlated with treatment response and prognosis. We validate our findings through multiple
immunofluorescence staining and explore the characteristics of CD39+ Tregs using Single-cell
transcriptome analysis and flow cytometry. Based on the signature genes of CD39+ Tregs, we
construct 107 composited machine-learning models to identify MN. We show the substantial
contribution of CD39+ Tregs in both the risk factor determination and prognosis of IMN.

MembranousNephropathy (MN), the leading cause of nephrotic syndrome
(NS) in non-diabetic adults1 has a global incidence of 12 cases per million
annually2,3. Concurrently, idiopathic membranous nephropathy (IMN) is
an affliction experienced by up to 80% of MN patients4,5 characterized by
immune deposit formation alongside complement-mediated proteinuria.
Despite significant advancements in the understanding of IMN pathogen-
esis over the past decade3, its prevalence continues to rise, making it the
second most common primary glomerulonephritis6 and a major con-
tributor to end-stage renal disease patients7.

IMN reflects a pathological condition characterized by the dysre-
gulation of the immune system8. Immune cells operate as the catalysts for
auto-inflammatory responses in IMN, in addition to creating immune
deposits and the complement. Consequently, immunotherapy has long
been recognized as an essential treatment methodology for IMN9. For
instance, Rituximab, a monoclonal anti-CD20 antibody, has significantly
enhanced the complete remission (CR) rate of IMN by eliminating
excessive B cells10. However, the roles of immune cells in the pathogenesis
of IMN remain partially elusive, and their the immunomodulatory
activity require further elucidation. Investigating the underpinning

mechanisms between immune cells and IMN will advance diagnostics,
treatment strategies, and prognostic evaluations for IMN.

With the advancement of multi-omics technology and an increasing
repository of pertinent data, a unique opportunity presents itself to dissect
multi-factorial phenotypes, regulatory processes, and response patterns of
immune cells in IMN. Previous observational studies have attempted to
characterize the immune microenvironment in IMN, yielding several
intriguing results11,12. However, there is minimal evidence elucidating the
causal relationship between immune-cell phenotypes and IMN.Moreover,
discerning the clinical relevance of this relationship might lead to more
individualized treatment strategies for IMN.

In this study, we integrated multi-omics data to scrutinize the
correlation between immune-cell phenotypes and IMN. Utilizing
batched two-sample bidirectional Mendelian Randomization (MR),
we first examined the causal link between 731 immune-cell pheno-
types and IMN. Proceeding from causality, we sequentially immune
regulatory landscape and evaluated how immune-cell phenotypes
influence the disease status and clinical outcome. Our comprehensive
approach systematically elucidates diagnostic and prognostic
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immune cell - IMN relationships, shedding light on potential bio-
marker and therapeutic targets.

Materials and methods
The comprehensive workflow of the present study is delineated in Fig. 1.
This study received approval from the Institutional Review Board of the

Fifth Affiliated Hospital of Sun Yat-sen University (Ethical approval
number: 2024-S-11), and written informed consent was obtained from all
the patients recruited in this study. All ethical regulations relevant to human
research participants were followed. All supplementary tables of this study
are available in the Supplementary Data 1 file. ForMR analysis, a STROBE-
MR checklist13 was presented in Supplementary Table 1.

Fig. 1 | Study design andworkflowof this study.MNmembranous nephropathy, GWAS genome-wide association study, IV instrumental variable, CR complete remission.
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Fig. 2 | Mendelian randomization analyses evaluate the causal association
between positive immune-cell phenotypes and MN. A Forest plots to visualize the
causal effects of positive immune-cell phenotypes withMN in terms of different MR
methods. B Scatter plots to visualize the effect of harmonized SNPs with positive

immune-cell phenotypes and MN. C MR leave-one-out sensitivity analyses for
positive immune-cell phenotypes on MN. SNP Single-nucleotide polymorphism,
OR odds ratio, CI confidence interval, MN membranous nephropathy, MR
Mendelian randomization, F F-statistic value.
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GWAS data source
A published GWAS summary dataset was obtained from IEUOpenGWAS
project as the main outcome dataset that consisted of 2150 European MN
cases and 5829 European healthy controls14. The immune-cell-phenotype
datasets were also obtained from IEUOpenGWAS project and regarded as

the main exposure, with a total of 3757 European subjects included15. It
included the most diverse immune-cell phenotypes and a considerable
sample size throughout the available data. A summary of the GWAS
datasets and resources pertinent to this study is given in Supplementary
Tables 2-3.
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Nephrotic transcriptome cohorts
From the European Renal cDNA Bank (ERCB) cohort16,17, we obtained
whole-genome glomerular microarray expression profiles for 223 subjects
(21 MN patients) and tubulointerstitial expression profiles for 219 subjects
(18 MN patients). For the Nephrotic Syndrome Study Network (NEP-
TUNE) cohort18,19, we scrutinized microarray profiles from two sets: the
initial cohort 125 subjects (48 MN patients) and an additional 160 subjects
(43MNpatients), yielding71MNsubjects after deduplication.Wevalidated
our findings using a published RNA-seq cohort20 (GSE115857) with
86 subjects (11MN patients). Additionally, we acquired expression profiles
via RNA sequencing conducted on blood samples from 53 subjects (13MN
patients) collected from the Fifth Affiliated Hospital of Sun Yat-sen
University.

Systematic MR screening for the causal immune-cell phenotype
of MN and MN risk factors
The associations between immune-cell phenotypes and target outcomes
(MN or MN risk factors) were estimated using Two-sample MR21. The
genetic variants used as IV should exceed our prespecified thresholds
(P < 5×10-8 with biomarker, variants pruned if r2 > 0.001). To avoid weak
instrumental variable bias, we evaluated the SNP-exposure association
strengths using the F statistic (F > 10), and a minor allele frequency
(MAF) > 0.01 was applied to eliminate rare variants and prevent con-
founding results (Supplementary Table 4). All statistical power for each
instrumental variable was estimated using “mRnd”22. Additionally, instru-
mental variables from the human leukocyte antigen (HLA) region were
excluded due to their strong pleiotropic effects. To assess the robustness of
our results, several sensitivity analyseswere employed: (i) CochranQ test for
heterogeneity23; (ii) MR-Egger’s intercept for horizontal pleiotropy24; (iii)
influential outlier IVs due to pleiotropywere identifiedusingMRPleiotropy
Residual Sum andOutlier (MR-PRESSO)25.We usedmultipleMRmethods
(MR Egger, Weighted median, Simple mode, and Weighted mode) to cal-
culate the MR estimates.

We employed a two-sample MR framework incorporating the sensi-
tivity analyses for both primaryMR (immune-cell phenotypes→MN) and
two-stepMR (Step-1MR:MNrisk factors→MN; Step-2MR: immune-cell
phenotypes→MNrisk factors). Effects on binary or quantitative outcomes
are reported as odds ratios (ORs) with their 95% confidence intervals (CIs).
All statistical tests were two-sided and considered statistically significant at
PCausalEstimate≤ 6.84 × 10−5 (Bonferroni-corrected P value for 731 immune-
cell phenotypes: 0.05/731 = 6.84 × 10−5), PQ-stat ≥ 0.05, PEgger-Intercept ≥ 0.05,
and PGlobalTest ≥ 0.05. For the final positive immune phenotypes and risk
factors, a bidirectional MR analysis was conducted to verify the directional
causality with MN. All statistical analyses were performed using “Two-
SampleMR” R package21.

Mediation analysis
If there is a causal correlation between an immune-cell phenotype and both
MN as well as risk factors, a mediation analysis was executed. For each
established risk factor of secondaryMN that we examined (Hepatitis B/C26,
Hashimoto thyroiditis4, Lung cancer27, Prostate cancer27, Rheumatoid
arthritis28, Systemic lupus erythematosus28, Type 2 diabetes28, Nonsteroidal

anti-inflammatory drugs29, Obesity30, and Hypertension30), instrumental
variables were derived from GWAS summary statistics restricted to Eur-
opean populations (Supplementary Table 2-3). We utilized the Product
method to ascertain the beta value of the indirect effect and the Delta
method to compute the standard error and the CI31.

Single-cell transcriptome analysis
A total of three publicly available scRNA-seq datasets (GSE17145811,
GSE24130212, and GSE13168532) were obtained, including 9 patients with
IMN and 6 healthy donors. For each dataset, a uniform analysis pipeline –
MAESTRO33 was adopted to perform quality control, batch effect removal,
data integration, clustering, and cell-type annotation. The criteria of cellular
quality assessment were as follows1: 200 <nFeatures <70002; mitochondrial
gene ratio<30%.Cellswere categorizedaccording to their respectivemarker
genes previously reported in the literature11,12. The doublets were filtered by
the R package “DoubletFinder”34. The biological trajectories of cells were
analyzed by the R package “Monocle”35. The cell-cell paracrine commu-
nications analysis was performed using “CellChat”36. Significant interac-
tions were selected with a P-value < 0.05. Genes related to the immune-cell
phenotype were identified using the “FindMarkers” function with default
parameters. The significant differential expression genes (adjusted P-
value < 0.05and average fold-change>1)were collected toperform the gene
set enrichment analysis (GSEA). The immune-cell phenotype signature
score was calculated using the “GSVA” package37. The top 20 phenotype-
related genes were derived from the differential gene analysis of the scRNA-
seq analysis.Weutilized theGene SetVariationAnalysis (GSVA)method to
compute the signature score. The “gsva” function was utilized, setting
parameters as1: method = “ssgsea”2; kcdf = “Gaussian”3; min.sz = 10. This
was done to calculate the normalized enrichment scores in individual
samples for a representation of the enrichment of a specific immune
population.

Diagnostic marker-based prediction model development and
validation
A total of 12 extensively used machine learning algorithms, namely Lasso,
Ridge, Enet, Stepglm, SVM, glmBoost, LDA, plsRglm, RandomForest,
GBM, XGBoost, and NaiveBayes, were employed to develop an efficient
tissue-to-blood classification prediction model utilizing selected bio-
markers. A total of 107 combination methodologies were implemented in
the final calculation of the models. To train the models, ERCB was selected
as the reference dataset. For external validation, we utilized expression
profiles from tissue samples inNEPTUNEandGSE115857, as well as blood
samples of patientswithMNorhealthydonors collected locally. Evaluations
of the models’ performance were undertaken by calculating the area
underneath each model’s Receiver Operating Characteristic curve
(AUROC) and subsequently representing the results visually through
heatmaps.

Multiple immunofluorescence staining
A total of 6 biopsy tissues of IMN and 6 normal donors were obtained from
the Fifth Affiliated Hospital of Sun Yat-sen University along with 13 IMN
biopsies of 7 IMN patients who achieved CR (24-hour proteinuria <0.3 g

Fig. 3 | Single-cell transcriptome analysis delineates the landscape of T-cell
population in the immunemicroenvironment of IMN. AUMAP plot showing the
distribution of cell types in the IMN ecosystem from the integrated scRNA-seq
datasets included in this study.BViolin plots showing the selectedmarker genes that
were used to identify the cell types in this study. The relative expression level of these
genes was compared between IMN samples and healthy kidneys. Case, IMN;
Control, healthy kidney. C t-SNE projections of sub-clustered T cells, labeled in
different colors.DBoxplots illustrating the fraction of T-cell subtypes in IMN (n = 9)
and healthy kidney (n = 6), respectively. The two groups were labeled in different
colors. Case, IMN; Control, healthy kidney. The P-value was calculated by the
Wilcoxon test. The error bars represent the errormargins. EHeatmap indicating the

expression of selected gene sets in T-cell subtypes, including naive, resident, inhi-
bitory, cytokines, co-stimulatory, transcriptional factors (TF), and cell types.
F Pseudotime-ordered analysis of T-cell subtypes from IMN and healthy samples. T
cell subtypes are labeled by colors.GHeatmap showing the dynamic changes in gene
expression of T-cell subtypes along the pseudotime (lower panel). The distribution
of T-cell subtypes during the transition (divided into 4 phases), along with the
pseudo-time. Subtypes are labeled by colors (upper panel). IMN idiopathic mem-
branous nephropathy, PT proximal tubule cells, LOH loop of Henle cells, IC
intercalated cells, PC principal cells, Mes mesangial cells, Pod podocytes, DT distal
tubule cells, PEC parietal epithelial cells, Mac macrophages, Mono monocytes, EC
endothelial cells, Treg regulatory T cell.
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with stable renal function at 6 months) and 6 IMN patients who did not
achieve CR before Rituximab treatment. Paraffin-embedded tissue sections
were completely dewaxed in xylene and subsequently rehydrated using a
series of ethanol gradients. Antigen retrieval was performed by heating the
sections for 15minutes at 95 - 98°C in sodium citrate buffer. The sections
were then incubated overnight at 4°C with primary antibodies. Once

complete, the slide was further incubated with a primary antibody cocktail
containing anti-CD4 (1:100, ab183685, Abcam,UK), anti-CD39 (1:100, 11-
0399-42, Invitrogen,USA), andanti-FOXP3 (1:100, 14-5773-82, Invitrogen,
USA), at 4°C overnight. Subsequently, the tissues were incubated using
secondary antibody cocktails containing Alexa Fluor 647 (1:500, 4414S,
CST, USA), Alexa Fluor 555 (1:500, 4417S, CST), and Alexa Fluor 488
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(1:500, 4408S, CST, USA) for 60min at room temperature. Finally, the
Panorama pathological scanner (3DHISTECH Ltd., Hungary) was used to
capture tissue images, while HALO software (version 3.5) was used for
processing image data. The cell ratio is defined as the count of a specific
celltype occupies the count of all the cells observed in a slide.

Flow cytometry sorting and IL-10 enzyme-linked
immunosorbent assay
We collected around 5ml blood samples from 5 patients with IMN and 5
healthy donors to extract the peripheral blood mononuclear cells, respec-
tively. Red blood cells were removed by LymphoprepTM (07851, STEM-
CELL, Germany). Afterwards, the cells were diluted to 5×107/mL in PBS
containing 2%FBS and 1mM EDTA. Next, we used EasySepTM Human
CD4+CD127lowCD25+ Regulatory T Cell Isolation Kit (18063, STEM-
CELL, Canada) and EasySepTM Magnet (18000, STEMCELL, Canada) to
sort the regulatory T cells (Tregs) from PBMC. Cells were stained with the
anti-CD39 (1:200, 11-0399-42, Invitrogen, USA), which is an antibodywith
pre-labeled. Then, these Tregs were sorted on BD FACSaria (BD Bios-
ciences, USA), and the CD39+ cells (Tregs) were obtained for further cell
culture. Flow cytometric analysis was performed and analyzed using
CytExpert V2.5 software (Beckman Coulter, USA). For the identification of
cell populations and visualization in this paper, cells were stained with the
corresponding antibodies after fixation/permeabilization. We used a pri-
mary antibody cocktail containing anti-CD4 (1:200, ab183685,Abcam,UK)
and anti-FOXP3 (1:200, 14-5773-82, Invitrogen, USA) following by a sec-
ondary antibody cocktail containing Alexa Fluor 647 (1:500, 4414S, CST,
USA), Alexa Fluor 555 (1:500, 4417S, CST, USA) to stain the Tregs. The
gating strategy was as followed: Inital gating on a forward scatter area (FSC-
A) versus forward scatter height (FSC-H) plot was performed to exclude cell
doublets and aggregates, ensuring analysis was restricted to single cells.
CD39+ Tregs were defined with thresholds established using appropriate
isotype controls ( >104). Gating boundaries were determined using
unstained controls, fluorescence-minus-one controls, and isotype controls
to ensure specificity and minimize background noise. We mainly used the
histograms to draw the gating boundaries for visualization and the dot plot
was used to sorting the target cell population.

For IL-10 enzyme-linked immunosorbent assay, we collected the
CD39+ Tregs and used the ImmunoCult™-XF Medium (10981, STEM-
CELL, Canada) to culture them. After a 5-day cultivation, we examined the
concentration of IL-10 in the cell culture medium by Human IL-10 ELISA
Kit (EH0009, HUABIO, China). The optical density was examined using a
Varioskan LUX Multimode Microplate Reader (Thermo, USA) set to
450 nm corrected with 570 nm.

RNA sequencing
We collected blood samples from 23 patients with nephrotic syndrome and
30 healthy donors to perform RNA sequencing. All participants were
recruited from the Fifth Affiliated Hospital of Sun Yat-sen University and
have provided informed consent which was approved by the Institutional
Review Board of the Fifth AffiliatedHospital, Sun Yat-sen University. Total
RNA extraction, transcriptome sequencing, and data analysis were

conducted as previously reported38. The process was detailed in Supple-
mentary Methods.

Statistics and reproducibility
Statistical analysis was performed using R software (version 4.2.1). Con-
tinuous data were compared using Student’s t-test or Kruskal–Wallis test.
Categorical data were analyzed using Chi-square test or Fisher’s exact test.
The diagnostic efficiency ofmodels wasmainly quantified by the AUC. The
CI of AUC was calculated using 10,000 bootstrap replicates. Kaplan-Meier
curves between survival groups were compared by log-rank test. For all
statistical tests, a P < 0.05 was considered statistically significant. The flow
cytometry sorting and IL-10 enzyme-linked immunosorbent assay experi-
ments were conducted for three replicates to ensure to guarantee
reproducibility.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Identification of IMN-associated immune-cell phenotypes
Acomprehensive analysis of 731 immune-cell phenotypeswas conducted to
ascertain their causal relationships with MN. Initially, three immune-cell
phenotypes were deemed as potentially causal (Fig. 2A): CD39+ Tregs,
CD39+&CD8+T cells, andCD28+&CD45RA+&CD8+T cells. Sensitivity
analyses further substantiate the causal associations (Fig. 2B, C) through
only CD39+ Treg survived Bonferroni correction (P = 6.54 × 10−5). The
STROBE-MRchecklist and all procedurefiles (SupplementaryTable 4-8) of
MR analyses can be found in SupplementalMaterial, and there were no IVs
that showed horizontal pleiotropy and heterogeneity. Genetic predisposi-
tion to CD39+ Treg enrichment is correlated with an increased risk of MN
(OR [95%CI] = 1.068 [1.0284, 1.110]). The reverse MR analysis showed no
significant effects ofMN on these immune cell phenotypes (Supplementary
Tables 9–13).

To decipher the prospective causal mechanisms that link the putative
causal immune-cell phenotype with MN, we implemented a two-step MR
analysis focusing on conventional MN risk factors. Initially, we executed
MR analyses to delineate the causal interactions of the risk factors withMN.
Subsequently, we evaluated the causal repercussions of the putative causal
immune-cell phenotype on the underscored risk factors. Among all
potential mediators, type 2 diabetes had the strongest positive impact on
MN(OR [95%CI]= 1.78 [1.45, 2.19], Supplementary Fig. 1) in “Step-1”MR
analysis. Both lung and prostate cancer demonstrated a positive correlation
with MN (OR [95% CI] = 1.51 [1.48, 1.54] and OR [95% CI] = 1.54 [1.44,
1.64], Supplementary Fig. 1). Interestingly, smoking showed a negative
correlationwithMN (OR [95%] = 2×10−4 [1×10-4, 6×10−4]). The remaining
risk factors had no significant effects on MN (P > 0.05). Additionally, no
evidence supported the reverse causal association from MN to any candi-
date risk factors (Supplementary Table 13). Nevertheless, the “Step-2 MR”
analysis detected no correlation between the MN-associated immune-cell
phenotype (CD39+ Treg) and any of the three emphasizedMN risk factors

Fig. 4 | Differential analysis of cell communication of immune environment
between IMN and healthy kidney. A t-SNE plot showing the relative expression
level of ENTPD1 (the coding gene for CD39) in Tregs within the microenvironment
of IMN and healthy kidneys. Case, IMN; Control, healthy kidney. B Circle plot
showing the differential number of cell-cell interactions among various cell types in
themicroenvironment between IMNand healthy kidney. The color red indicates the
increased interactions, while the color blue represents the decreased interactions.
C Barplot compares the total number of inferred cell-cell interactions within the
microenvironment of IMN and healthy kidney. Case, IMN; Control, healthy kidney.
DHeatmap visualizes the differential number of ligand-receptor interactions among
different cell populations between IMN and healthy kidneys. The rows represent the
signaling senders’ interactions, and the columns represent the signaling receivers’

interactions. E Bubble plot showing the differential dysfunctional signaling of reg-
ulatory T cells with other immune populations in microenvironment of IMN and
healthy kidney by comparing the communication probabilities. Case, IMN; Control,
healthy kidney. FViolin plots showing the expression level of SPP1-related signaling
genes among various cell types in the microenvironment between IMN and healthy
kidney. G Wordcloud plot visualizes the differentially enriched signal in IMN
compared to the healthy kidney. IMN idiopathic membranous nephropathy, PT
proximal tubule cells, LOH loop of Henle cells, IC intercalated cells, PC principal
cells, Mes mesangial cells, Pod podocytes, DT distal tubule cells, PEC parietal epi-
thelial cells, Mac macrophages, Mono monocytes, EC endothelial cells, Treg reg-
ulatory T cell.
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(SupplementaryTable 13), suggestingCD39+Treg couldbe an immune-cell
phenotype primarily associated with IMN.

Tregs in the immune microenvironment of IMN
We next examined the T cells in an integrated single-cell transcriptome
dataset (9 IMN and 6 controls, 121,824 cells). After quality control, around

27% of the cells were filtered mainly due to the high expression of mito-
chondrial genes. A total of 89,129 cells were included in the final down-
stream analysis. Before clustering, batch correctionwas conducted based on
“Sample ID” (Supplementary Fig. 2). The landscape of single-cell profiles is
depicted in Fig. 3A. Cell populations were categorized based on established
marker genes (Fig. 3B).We isolated all T cells (2408 cells) for subpopulation
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analysis. The re-clustering of T cells unveiled 8 distinct populations
(Fig. 3C). All subtypes were shared across patients and between IMN and
normal specimens. A comparison of T-cell subtypes ratios showed no sig-
nificant differences between the IMN and normal group. Notebly, Tregs
frequency in IMN sampleswas not higher than in normal kidneys (Fig. 3D).
The characteristics of these T-cell subpopulations are shown in Fig. 3E.

Next, we investigated immune state dynamics and cellular transitions
in T cells infiltrating in MN. (Fig. 3F). Intriguingly, Tregs surfaced earlier
than the other T-cell subtypes along the trajectory (Fig. 3G), suggesting their
potential role in regulating the immune microenvironment during the
initial onset of IMN. By identifying the transitional genes and conducting
pathway analysis, we characterized the transcriptional changes in inter-
mediate T-cell states. T cells trajectories in IMN comprised four distinct
phases (Fig. 3G). Functional genes of Tregs, such as FOXP3, IL10RA, and
SPP1, were highly expressed in T cells at the initial state.

The role of Tregs in cell-cell interactions of IMN
The CD39+Tregs were identified by the expression of ENTPD1 (the coding
gene of CD39). If the expression ofENTPD1was not zero in a Treg, we then
classified this Treg as a CD39+ Treg. The scRNA-seq data indicated a
predominant enrichment of CD39+ Tregs in the IMN samples, contrasting
with their near absence in the normal kidneys (Fig. 4A). We subsequently
examined differential cellular interactions and ligand-receptor pathways in
the microenvironment of IMN and normal samples. Relative to the nor-
mative state, there was a significant escalation in cell-to-cell interactions
within thedisease state (Fig. 4B)with 569new interactions identified in IMN
compared to the normal samples (Fig. 4C). As shown in Supplementary
Fig. 3, most of the increased pathways in IMN are immunologically related.
Additionally, the PARs-related pathways39 exhibited up-regulation in IMN,
with IMN’s hypercoagulability and thrombosis risk. Conversely, the inter-
action of podocytes was diminished in IMN, while the interaction between
podocytes and immune cells was enhanced (Fig. 4D), consistent with the
prevalent podocyte damage in IMN40.

Further cell-type-specific analysis revealed Tregs exhibited high
activities as both sender and receiver of ligand-receptor conductors. Com-
pared to the normal kidney, SPP1 was identified as the primarily up-
regulated secretory protein mediated by Tregs in IMN microenvironment
(Fig. 4E). Tregs in IMN primarily utilized the SPP1-CD44 and SPP1-
(ITGA4+ ITGB1) (Fig. 4E and Supplementary Fig. 4). Consistently, SPP1-
related signaling maintained its ranking at the top when compared to all
other increasing ligand-receptor pathways in IMN (Fig. 4F), indicating that
Tregs could significantly impact the process of renal fibrosis of IMN.

CD39+ Tregs signature development and the clinical relevance
To validate our earlier findings of CD39+ Tregs enrichment in IMN, we
performedmultiple immunofluorescence staining on kidney biopsies from
6 IMNpatients and6healthydonors (Fig. 5A).Analysis of comparative data

unveiled a significant enrichment of CD39+ Tregs within the IMN micro-
environment (Fig. 5B). For amore in-depth understanding of CD39+Tregs,
we identified a total of 83 signature genes through differential gene analysis
(Supplementary Table 14) which were prominently associated with
immunomodulation-related biological processes andTreg-related signaling
(Fig. 5C). Utilizing the GSVA algorithm, we constructed a signature score
using the top 20 signature genes (ranked by fold change) to quantify CD39+

Tregs enrichment. We calculated the signature scores via the microarray
expression profiles from the NEPTUNE dataset across diverse phenotypes
(Supplementary Table 15). The signature score in each pathological type of
NS was significantly elevated compared to normal kidney tissue
(P < 0.0001, Fig. 5D).

As for clinical parameters, patients who eventually achieved CR
exhibited lower signature scores compared to those who could not achieve
CR post-treatment (P = 0.048, Fig. 5E). Using the median signature scores
(median threshold = 0.363) as a cutoff, we stratified patients into high- and
low-score groups. The CR rate was substantially higher in the low-score
group (74% vs 49%, P = 0.12, Fig. 5F), and time to CR was shorter (median
325 vs 617 days, P = 0.18, Fig. 5G). The low-score group possessed a rela-
tively higher eGFR level (P = 0.16, Supplementary Fig. 5A) and slightly
lower proteinuria (P = 0.39, Supplementary Fig. 5B) compared to the high-
score group. For external validation, we procured kidney biopsy samples
from 13 additional IMN patients (7 CR vs 6 non-CR) by multiple immu-
nofluorescence staining (Fig. 5H). CR patients maintained lower CD39+

Treg ratio (P = 0.0082, Fig. 5I). These findings were subsequently corro-
borated in our in-house RNA-seq cohort (Supplementary Fig. 6).

The immunosuppressive function of CD39+ Tregs and its
correlation with renal fibrosis
To further investigate the immunosuppressive function of CD39+Tregs, we
isolated CD39+ Tregs from the blood of patients with IMN and healthy
donors (Fig. 6A and Supplementary Figs. 7 and 8).We compared the ability
of IL-10 secretion of CD39+Tregs in blood of 5 IMNpatients with 5 healthy
donors. The results showed that the CD39+ Tregs in IMN patients secreted
more IL-10 than those in donors (P = 0.011, Fig. 6B), suggesting a more
powerful immunosuppressive function of CD39+ Tregs in IMN patients.
Meanwhile, in order to examine the potential association between CD39+

Tregs and renal fibrosis, we calculated the kidney fibrotic microenviron-
ment (FME) score41 to evaluate the degree offibrosis in IMNpatients within
ERCB and NEPTUNE cohorts. The Spearman correlation analysis showed
the signature scores were significantly relevant to the FME scores (Fig. 6C,
D). Then, we further divided the patients into high-score and low-score
groups by the median of the FME scores of patients in NEPTUNE cohort
(median threshold=3.077).Approximately 60%of patients in the low-score
group achieved CR, compared to only 35% in the high-score group
(P = 0.11, Fig. 6E). In addition, the high-score group spent more time than
low-score group to reach CR (P = 0.01, Fig. 6F).

Fig. 5 | Characteristics of CD39+ Treg and the clinical relevance with MN.
A Immunofluorescence images showing the distribution of CD39+ Tregs in IMN
and healthy kidney, using antibodies CD4, FOXP3, and CD39. Scale bars, 100 μm.
B Boxplots showing the fraction of CD39+ Tregs in IMN (blue) and healthy kidney
(red) samples calculated by the regions of interest from immunofluorescence ima-
ges. The CD39+ Treg ratio was defined as the count of CD39+ Tregs occupies the
count of all the cells observed in a slide. The P-value was calculated by theWilcoxon
test. The error bars represent the errormargins.CBar chart showing the enrichment
of specific biological processes and signaling pathways of CD39+Tregs, based on the
signature gene set consisting of the marker genes of CD39+ Tregs obtained from the
single-cell transcriptome data. The scale bars and line charts were integrated to show
the proportion of genes (accounting for the 83 genes) that were enriched in each GO
term or pathway.D Boxplots showing the CD39+ Tregs signature scores of different
pathological groups of nephrotic syndrome and normal kidney samples in the
NEPTUNE dataset. The error bars represent the error margins. E Boxplot showing
the CD39+ Tregs signature scores of the complete remission (CR) group and that of

the not-CR group. The error bars represent the error margins. F Stacked bar plot
showing the CR ratio in high-score and low-score groups (grouped by themedian of
CD39+ Tregs signature score). G Kaplan-Meier analysis shows the CR rate of
patients with the time spent on treatment, characterized by either low (blue) or high
(yellow)CD39+Tregs signature scores.H Immunofluorescence images showing the
distribution of CD39+ Tregs in tissue slides of patients who achieved CR or did not
after Rituximab treatment, using antibodies CD4, FOXP3, andCD39. Scale bars, 300
μm. I Boxplots showing the fraction of CD39+ Tregs in CR (blue) and Not-CR (red)
IMN samples calculated by the regions of interest from immunofluorescence images.
TheCD39+Treg ratiowas defined as the count of CD39+Tregs occupies the count of
all the cells observed in a slide. The P-value was calculated by theWilcoxon test. The
error bars represent the errormargins. Themedian CR time, the number of patients,
and the risk classification are indicated in the figure. Significance was calculated
using the log-rank test. MN membranous nephropathy, IMN idiopathic membra-
nous nephropathy, FSGS focal segmental glomerular sclerosis, MCD minimal
change disease, LD live donor, CR complete remission.
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CD39+ Tregs signature genes can be used as a potential
diagnostic marker to identify MN
To expand the usage of CD39+ Tregs signature genes to help distinguish
MN from normal kidney and other pathological types of NS, we aimed to
develop adiagnosticmodel. Byusing theERCBcohort as the training set, we
evaluated 107 machine-learning models across various external validation
cohorts, calculating averageAUCvalues for each.The clinical characteristics
of the development and external validation cohorts were presented in
Supplementary Tables 16–19. The Lasso algorithm demonstrated the most

effective model performance with a mean AUC of 0.833 across validation
cohorts. The best model was constructed by 21 selected signature genes
(Supplementary Table 20), including 11 candidates without previously
established mechanistic link to IMN (Supplementary Table 21). The path-
way enrichment analysis of the selectedgeneswas showed in Supplementary
Fig. 9. The most effective model achieved high AUCs for different cohorts:
0.978 (95% CI: 0.963–1.00) for NEPTUNE cohort (a kidney-tissue micro-
array and mRNA-seq cohort, Fig. 7B), 0.818 (95% CI: 0.668–0.969) for
GSE115857 (a kidney-tissue mRNA-seq cohort, Fig. 7C), and 0.702 (95%

Fig. 6 | CD39+ Tregs have a stronger immunosuppressive function in IMN
patients and is associated with the fibrosis process. A Flow cytometry sorting of
CD39+ Treg cells. B Boxplots showing the IL-10 secretion concentration (pg/ml) of
CD39+ Tregs in IMN (blue) patients and healthy donors (red). The error bars
represent the error margins. C Scatter plot showing the Spearman correlation
between the CD39+Tregs signature score and the FME score in patients withMNof
ERCB dataset.D Scatter plot showing the Spearman correlation between the CD39+

Tregs signature score and the FME score in patients with IMNofNEPTUNEdataset.
E Stacked bar plot showing the CR ratio in high-score and low-score groups
(grouped by the median of FME score). F Kaplan–Meier analysis shows the CR rate
of patients with the time spent on treatment, characterized by either low (blue) or
high (yellow) FME scores. FME fibrotic microenvironment, MN membranous
nephropathy, CR complete remission.
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Fig. 7 | Construction and validation of theMNdiagnosticmodel based onCD39+

Tregs signature genes. AThe area under ROC curve (AUC) values of 107machine-
learning algorithm combinations in the development cohort and three external
validation cohorts. B The ROC curve of the best model in the NEPTUNE dataset.

C The ROC curve of the best model in the GSE115857 dataset.D The ROC curve of
the best model in the Blood Sample dataset was generated in this study. The AUC
value and the corresponding 95% confidence interval are labeled.
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CI: 0.554–0.850) for our blood sample cohort (a blood mRNA-seq cohort,
Fig. 7D). Moreover, the CD39+ Tregs signature genes could also be used to
diagnose NS with machine learning methods in blood samples using
35 signature genes (Supplementary Table 20) with the best AUC around 0.7
(Supplementary Fig. 10A-D).

Discussion
In this study,we systematically explored the causal relationship between 731
immune-cell phenotypes and MN. The significant role of CD39+ Tregs in
both the risk factor determination and pathogenesis of IMN was revealed
and elucidated by the integrative multi-omics analysis. CD39+ Tregs sig-
nificantly correlate with clinical outcomes in IMN patients, establishing
CD39+ Tregs as a prognostic biomarker for disease progression and treat-
ment response. Moreover, the CD39+ Tregs gene signature showed good
diagnostic accuracy for MN and NS in blood-based testing.

Kidney injury can be an inadvertent consequence of systemic immune
disorders. Immune cells sustain peripheral tolerance to circulating antigens,
including the immune complexes42. The critical intersection positions
immune cell as key contributor to the advancement of kidney diseases,
spanning acute kidney injury to chronic kidney disease. A comprehensive
investigation into the relationship between immune cells and IMN could
provide novel insights into disease mechanisms and therapeutic targets
for IMN.

The pathogenesis of IMN involves both circulating immune network
complexes and auto-reactive immune cells activation directed toward
healthy kidney cells43. Despite antibodies being secreted by B cells, the sig-
nificant contribution of T cells to the immune system cannot be overlooked.
As upstream of B cells, the imbalance of T cells prompts the immunological
pathological state of IMN. A thorough understanding of T cell subsets is
therefore necessary for a comprehensive explanation of B cell subset
modifications. Our study found that CD39+ Treg is indispensable not only
to the pathogenesis of IMN but also to its appropriate clinical treatment.

Tregs play a significant role in immunosuppression by responding
uniquely to diverse immune reactions and environments44. Our research
focused on a specific Treg subtype (CD39+ Tregs) that is more prevalent in
IMN than in healthy kidneys. Previous studies have revealed that CD39+

Tregshave amorepowerful immunosuppressive function thanCD39-Tregs
among autoimmune diseases45,46. In this study, our research focused on a
specific Treg subtype (CD39+ Tregs) that is more prevalent in IMN than in
healthy kidneys. Meanwhile, we revealed that the CD39+ Tregs in blood of
IMNpatients secretedmore IL-10 than those indonors. TheseCD39+Tregs
regulate the immune network of IMN primarily through the SPP1 - CD44
and SPP1 - (ITGA4+ ITGB1) pathways. The increased co-expression and
interaction between SPP1+ immune cells andTregs had been revealed in the
CD44-enriched region47. SPP1 is correlated to the development of patho-
logical fibrosis, which is a key pathological alteration in the progression of
MN48. Previous studies have revealed that Tregs were associated with tissue
fibrosis in chronic tissue injury49. They overexpressed markers of hyper-
activation and fibrosis in the fibrotic environment and were suspected to
aggravate renal fibrosis50,51. In this study, we found the immunosuppressive
function of CD39+ Tregs in IMN patients was more powerful than those in
healthy individuals. However, they were significantly correlated with renal
fibrosis and associated with a worse prognosis. In addition, they were also
suspected to be related to the treatment resistance of Rituximab. The
increase of CD39+ Tregs could be a pathological and physiological change
that occurs during the compensatory to decompensated stage of this disease.

Our clinical analyses revealed that lower CD39+ Tregs ratio were
associated with poorer treatment response and worse clinical outcomes in
MN patients. While current diagnostic standards depend on invasive renal
biopsy52, we developed a machine learning-based diagnostic model using
CD39+Tregs signature genes. Themodel demonstrated excellent diagnostic
capabilities in external validation and offers the potential for non-invasive
blood-based MN detection. All these findings revealed a potential usage of
CD39+ Tregs in the diagnosis and treatment.

Our study has several limitations. Firstly, we could not perform stra-
tified analyses due to the lack of individual-level data, potentially over-
looking variations between different groups. Secondly, we observed variable
performance of our diagnostic models across independent validation
cohorts. This inter-cohort variability may be caused by technical hetero-
geneity in sequencing platforms and biological differences between sample
types (kidney tissue vs. blood). Moreover, there was still the absence of a
suitable method to estimate the sample power of different analyses in this
study. Finally, a comprehensive interpretation of the CD39+Tregs and their
function in IMN’s microenvironment necessitates additional experimental
exploration.

The clinical implementation of our diagnostic models for MN and NS
will require validation through extensive blood-based cohort studies to
enhance their reliability, coupled with optimization of the gene signature to
develop a streamlinedPCR-based blood assay requiring fewer than 10 target
genes for improved diagnostic accessibility. Additionally, targeting deple-
tion of CD39+ Tregs could potentially overcome Rituximab resistance and
reduce treatment duration in IMN, while immunomodulatory approaches
targeting these cells might attenuate renal fibrosis progression. However,
excessive CD39+ Treg reduction could disrupt immune homeostasis,
necessitating further research to establish optimal therapeutic windows and
precise modulation strategies for maintaining their beneficial immuno-
suppressive functions while mitigating profibrotic effects.

In conclusion, applying a multi-omics causality approach has enabled
us to highlight the causal link between CD39+ Treg and IMN. The
knowledge gathered from our findings serves as a significant resource for
enriching the understanding of immune-cell-related risk and prognostic
effect in IMN.

Data availability
The summary-level data of GWAS used in this study are publicly available
(https://gwas.mrcieu.ac.uk/ and http://ftp.ebi.ac.uk/pub/databases/gwas/
summary_statistics/). Detailed information on these data can be found in
Supplementary Table 1 and the STROBE-MR checklist (Supplementary
Data 1). Single-cell transcriptomic data were downloaded from Gene
Expression Omnibus (GSE171458, GSE241302, and GSE131685). NEP-
TUNEandERCBdata are available atNephroseq.org and through theGene
Expression Omnibus (GSE104954, GSE104948, GSE182380, GSE104066,
GSE133288, GSE197307). The previously published MN-related RNA-seq
cohort can be obtained from GSE115857. The RNA-seq data of blood
samples generated in this study have been deposited in the GSA human
database (https://ngdc.cncb.ac.cn) under accession number HRA008427.
The numerical source data behind the Figures of this study can be found in
SupplementaryData 2file.All data that support thefindingsof this study are
available online and can be obtained from the corresponding author upon
reasonable request.
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