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Quantifying the biological processes that drive cancer progression remains a key challenge in
oncology. Although the hallmarks of cancer provide a foundational framework for understanding
tumor behavior, existing diagnostic tools rarely measure these hallmarks directly. Here we present a
neural multi-task learning-based framework that estimates hallmark activity using gene expression
data from tumor biopsies. Themodel was trained on transcriptomic profiles from941 tumors spanning
14 tissue types and tested on five independent datasets. It predicts the activity of ten cancer hallmarks
simultaneously andwith high accuracy. Additional validation on large-scale datasets including normal
and cancer samples confirmed its sensitivity and specificity. Predicted hallmark activity was
associated with clinical staging, suggesting biological relevance. A web-based tool was developed to
facilitate integration into research and clinical workflows. This approach enables efficient analysis of
transcriptomic data to inform understanding of tumor biology and support individualized treatment
strategies.

Cancer is an inherently heterogeneous disease, yet it progresses through
well-defined biological principles that govern its development and spread1,2.
Hanahan and Weinberg introduced the concept of the “hallmarks of can-
cer,” a unifying framework that identifies the fundamental capabilities
cancer cells acquire during tumorigenesis3. These core hallmarks include:
(1) sustaining proliferative signaling to drive uncontrolled growth; (2)
evading growth suppressors to bypass regulatory constraints; (3) resisting
cell death to survive environmental and intracellular stress; (4) enabling
replicative immortality to achieve limitless cell division; (5) inducing
angiogenesis to ensure a continuous nutrient supply through neovascular-
ization; and (6) activating invasion andmetastasis to colonize distant tissues.
This framework has been expanded to incorporate emerging hallmarks,
such as (7)deregulating cellular energetics to sustain rapidproliferation, and
(8) avoiding immune destruction by escaping immune surveillance.
Enabling characteristics, including (9) genome instability and mutation,
which accelerate tumor evolution, and (10) tumor-promoting inflamma-
tion, which supports amicroenvironment conducive tomalignancy, further
illustrate the complexity of cancer biology4.

Despite the insights offered by these hallmark frameworks, current
diagnostic approaches often fail to integrate thesemolecular underpinnings
into routine clinical practice. Traditional methods, such as staging systems
(e.g., AJCC and TNM) and grading scales (e.g., Gleason grading), primarily
focus on macroscopic and microscopic tumor characteristics, overlooking
the molecular heterogeneity that drives tumor behavior5,6. Consequently,
patients with the same cancer type, stage, and grade may exhibit divergent
outcomes, exposing the limitations of these approaches. Moreover, these
approaches do not provide insights into the dynamic, micro-evolutionary
molecular changes within tumors, limiting their capacity to guide perso-
nalized treatment strategies7. A hallmark-based diagnostic framework has
the potential to address these limitations by integrating molecular data to
illuminate the biological mechanisms underlying tumorigenesis—an
essential step toward precision oncology, inwhich treatments are tailored to
the individual tumor’s molecular profile8. Although multi-omics technol-
ogies, artificial intelligence, and real-time monitoring have advanced con-
siderably, we still lack a single, unified method that can simultaneously
annotate all hallmark activities in a tumor9,10.
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To address this critical gap, we developed OncoMark, a high-
throughput neural multi-task learning (N-MTL) framework designed to
simultaneously quantify the activity of all cancer hallmarks using tran-
scriptomic data from tumor biopsies. This is, to the best of our knowledge,
the first computational tool specifically designed to predict all cancer hall-
marks concurrently. Upon input, OncoMark calculates the probability of
each hallmark’s activity, providing a detailedmolecular profile of the tumor.
The model underwent a rigorous validation process to ensure robustness
and generalizability. Cross-validation demonstrated accuracy, precision,
recall, and F1 scores exceeding 99%. Testing on five independent external
datasets further confirmed its performance, consistently maintaining a
minimum of 96.6% across these metrics. Additional validation on eight
gold-standard datasets, comprising six cancer (TCGA, MET500, CCLE,
TARGET, PCAWG, and POG570) and two normal (GTEx and ENCODE)
datasets, verified the model’s high accuracy in distinguishing cancer and
normal samples. Moreover, predicted hallmark activity demonstrated sig-
nificant co-association with AJCC stages and TNM staging, with the
strongest co-association observed at advanced stages of cancer progression.
Building on its clinical utility, we have developed a user-friendly software
platform, accessible at https://oncomark-ai.hf.space/, which seamlessly
integrates hallmark activity profiling into research and clinical workflows.

Results
Overview of OncoMark
The hallmarks of cancer comprise a set of core biological capabilities
acquired by tumor cells duringmalignant transformation and progression4.
Despite their central role in oncogenesis, no experimental standard cur-
rently exists for annotating hallmark activity in clinical biopsy samples.
While techniques such as immunohistochemistry (IHC) offer some capa-
city to infer hallmark states, their reliance on single biomarkers limits both
specificity and sensitivity, as no single marker universally defines a given
hallmark11. Consequently, hallmark-annotated biopsy datasets remain
unavailable for model training.

To address this gap, we developed a strategy to generate synthetic,
hallmark-annotated bulk transcriptomic profiles by leveraging single-cell
RNA sequencing (scRNA-seq) data12–14 (Fig.1 and Supplementary Fig. 1).

We first curated gene sets corresponding to each hallmark of cancer and
used these to compute digital hallmark activity scores for individual cells15.
These scores were binarized to indicate the presence or absence of each
hallmark, and cells with identical annotations were aggregated to create
synthetic pseudo-bulk samples. Single-cell profileswerenot useddirectly for
model training, as their resolution captures only localized and often tran-
sient transcriptional activity, which does not reliably reflect the population-
level hallmark patterns observed in clinical biopsies16. Our aggregation
approach preserved biological realism while ensuring training labels were
accurate and noise-free.

However, real-world tumor samples frequently exhibit co-
activation of multiple hallmarks, a complexity not present in our
synthetic training data by design. If synthetic biopsies were con-
structed to include cells with diverse hallmark profiles, reliable binary
annotation of hallmark presence or absence would become infeasible.
Such ambiguity would increase label noise and hinder model per-
formance, particularly in a supervised learning context where robust
class separation is critical for effective training17. Moreover, the
biological processes underlying different hallmarks are highly inter-
dependent, with shared regulatory pathways and transcriptional
programs18. To address both the lack of mixed hallmark states in the
training data and the need to capture inter-hallmark dependencies,
we adopted a multi-task learning (MTL) framework19.

Our MTL architecture is designed with shared backbone layers that
learn generalized transcriptomic features across all hallmarks, paired with
hallmark-specific output heads that refine these representations for indi-
vidual predictions. This setup enables the model to leverage shared biolo-
gical signals and learn hallmark coordination patterns implicitly—even
though the training data contains only non-overlapping hallmark labels.
(Supplementary Fig. 2) By doing so, the MTL framework mitigates the
disconnect between our cleanly labeled synthetic data and the complex,
interwoven hallmark states present in real tumors, allowing the model to
generalize effectively to heterogeneous biopsy transcriptomes. The resulting
predictions are biologically grounded, robust to hallmark co-activation, and
aligned with the functional interplay of cancer hallmark processes. More
details are provided in the Methods section.

Fig. 1 | Overview of the OncoMark framework. Single-cell transcriptomic data
frommultiple cancer types undergo quality control to remove low-quality cells. Each
cell is then scored for hallmark gene expression signatures, followed by binary
annotation (Yes/No) indicating the presence or absence of each hallmark. These

annotated single cells are aggregated to create synthetic pseudo-bulk datasets for
each hallmark. A multi-task neural network (M-TNN) is trained on this synthetic
data, learning a shared feature representation across all hallmarks, with hallmark-
specific output layers enabling accurate prediction of hallmark presence.
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Validation of hallmark annotations in synthetic training data
To assess the accuracy of hallmark annotations used for model training, we
compared the gene expression profiles of hallmark-positive and hallmark-
negative samples within the synthetic (pseudo-bulk) datasets. For each
hallmark, differential expression analysis was performed20, and the results
were visualized as heatmaps representing the log2 fold change and −log10
false discovery rate (FDR) for the associated gene sets (Fig. 2).We observed
strong enrichment of hallmark genes in samples annotated as hallmark-
positive, as indicated by deep blue signals in both the fold change and FDR
panels. Notably, several gene sets displayed infinite FDR values (i.e.,
unadjusted p values of zero), represented as white or missing entries in the
−log10 FDR heatmap, reflecting extremely significant associations. These
findings confirm the reliability of our binary hallmark annotations and
support the validity of the synthetic training data used for model
development.

Robust performance across internal cross-validation
We evaluated ourmodel performance in predicting cancer hallmarks using
a five-fold cross-validation repeated twice. Our model performance in
predictingAIMhallmark achieved an accuracy of 99.97%and anF1 score of
99.97%, with a balanced accuracy of 99.97%, tested on 729 patients (3364
positive and 4184 negative samples). Similarly, the DCE hallmark demon-
strated an accuracy of 98.91% and an F1 score of 97.99%, achieving a
balanced accuracy of 98.88% across 764 patients (3841 positive and 4249
negative samples). The EGS hallmark delivered exceptional performance
with an accuracy of 99.95% and an F1 score of 99.92%, supported by a
balanced accuracy of 99.96%, evaluated on 711 patients (3724 positive and
3168 negative samples). The GIM hallmark attained an accuracy of 98.73%
and an F1 score of 98.68%, with a balanced accuracy of 98.74% across 395
patients (1282 positive and 846 negative samples). The RCD hallmark
showed strong metrics, achieving an accuracy of 99.93%, an F1 score of
99.92%, and a balanced accuracy of 99.93%, tested on 652 patients (2590
positive and 2833 negative samples). The SPS hallmark exhibited perfect
performance, achieving 100% accuracy, F1 score, and balanced accuracy,
validated on 695 patients (3305 positive and 3796 negative samples). The
AID hallmark achieved an accuracy of 99.71% and an F1 score of 99.96%,
with a balanced accuracy of 99.74%, evaluated across 691 patients (2832
positive and 3671 negative samples). The IA hallmark recorded an accuracy
of 99.92% and an F1 score of 99.87%, with a balanced accuracy of 99.91%,
tested on 705 patients (2318 positive and 4334 negative samples). The ERI
hallmark demonstrated an accuracy of 99.28% and an F1 score of 98.53%,
alongside a balanced accuracy of 99.08%, across 816 patients (3205 positive
and 7238 negative samples). Lastly, the TPI hallmark achieved an accuracy
of 99.43% and an F1 score of 99.13%, with a balanced accuracy of 99.57%,
testedon730patients (2326positive and4824negative samples) (Fig. 3a and
Table 1). The confusion matrix demonstrated strong classification perfor-
mance, with clear separation between true positives and false predictions
across hallmarks. (Supplementary Fig. 3) For the ROC curves, all cancer
hallmark predictions achieved near-perfect true positive rates (TPR) across
all thresholds, with AUROC values of 1.00 ± negligible standard deviations,
indicating robust discrimination between positive and negative samples for
eachhallmark (SupplementaryFig. 4a). Similarly, theprecision-recall curves
confirm themodels’ ability tomaintainhighprecision at varying recall levels
for each hallmark. The precision values remained consistently high, even as
recall approached 1.0, highlighting the reliability of predictions in identi-
fying positive cases without sacrificing precision (Supplementary Fig. 4b).

Generalizability across independent external cohorts
Themodelwas validatedonfive external datasets,withperformancemetrics
reported for OncoMark’s predictions. On the dataset from ref. 21, an
accuracy of 97.26% and an F1 score of 96.19% were achieved across 13
patients (105 positive and 41 negative samples). Yost et al.22 achieved an
accuracy of 99.64% and an F1 score of 99.42% on 23 patients (175 positive
and 105 negative samples). The dataset from ref. 23 achieved an accuracy of
97.40%andanF1 score of 93.46%, validatedon45patients (260positive and

395 negative samples). Both Gao et al.24 and Nam et al.25 achieved perfect
metricswith100%accuracy andF1 scores on fourpatients (1positive and22
negative samples) and ten patients (65 positive and 50 negative samples),
respectively (Fig. 3b and Table 1). The ROC curves show high AUC values
for datasets from ref. 21 (0.98), ref. 22 (0.99), and ref. 23 (0.97), whereas
datasets fromGaoet al.24 andNamet al.25 achievedperfectAUCscores of 1.0
(Supplementary Fig. 4c). Similarly, precision values remained close to 1.0
across recall levels for most datasets, with ref. 21 (0.99), ref. 22 (0.99), and
ref. 23 (0.98) achieving excellent results, whereasGao et al.24 andNamet al.25

maintained perfect values (Supplementary Fig. 4d). Altogether, the external
validation included 95 patients with 627 positive and 600 negative samples,
highlighting the robust generalizability and performance of the models.

Superior discrimination of normal and malignant tissues
The hallmark-specific signature probabilities predicted by OncoMark
across normal (GTEx and ENCODE) and cancer datasets (TCGA, CCLE,
POG570, PCAWG, TARGET, and MET500) revealed a critical biological
distinction underlying tissue homeostasis and malignancy (Fig. 4a and
Supplementary Fig. 5). In normal datasets, hallmark activities exhibit tightly
regulated density distributions, reflecting the stable, balanced biological
processes essential for maintaining normal cellular function. In contrast,
cancer datasets display a marked shift, with significantly elevated prob-
abilities for hallmark-specific signatures, indicative of dysregulated path-
ways driving tumor progression.

To contextualize OncoMark’s performance, we also compared it
against several standard machine learning models, including logistic
regression (LR), support vector classifier (SVC), decision tree (DT), random
forest (RF), XGBoost, and multi-layer perceptron (MLP). (Supplementary
Fig. 6a–f) Unlike OncoMark, these baseline models exhibited a strong bias
toward assigning near-zero probabilities for hallmark signatures across all
samples. This resulted in acceptable performance for normal tissues but
consistently poor sensitivity for cancer samples, indicating that standard
models failed to learn meaningful patterns associated with malignancy.
Instead, they defaulted to predicting hallmark inactivity across all inputs,
highlighting a lack of genuine discriminative learning.

The Kolmogorov–Smirnov (K–S) test further validated the hallmark
distributional differences captured by OncoMark, with K–S statistic values
exceeding 0.7 and p values effectively zero for all hallmarks (Table 2). These
findings highlight both the biological significance of OncoMark’s hallmark
activity profiles and its superior capacity to distinguish between healthy and
malignant states—a performance not replicated by baseline approaches.

Detection of metastasis hallmark in primary tumors
To evaluate the ability of OncoMark to detect hallmark activity associated
with metastatic progression, we focused on the Activating Invasion and
Metastasis hallmark using datasets from Vareslija et al.26 and Cosgrove
et al.27, comprising matched primary and metastatic tumor transcriptomes.
Given that all patients had confirmed metastatic disease, we reasoned that
the primary tumors should already exhibit transcriptional programs
indicative of metastatic potential. We therefore applied OncoMark exclu-
sively to primary tumor samples. The model predicted elevated activity for
the Activating Invasion and Metastasis hallmark across these cases, sug-
gesting that it captures biologically relevant signatures reflective of early
metastatic competence (Fig. 4b).

Hallmark activity increases with advancing clinical cancer stage
Given the critical role of clinical staging in hallmark progression, we
extended themodel’s application to theCancerGenomeAtlas (TCGA) data
to further investigate hallmark co-occurrence patterns across various AJCC
and TNM staging systems. We quantified co-occurrence using odds ratios
(ORs) to assess the strength of associations between specific hallmarks and
their corresponding clinical stages28. We found a dynamic progression of
hallmark activity corresponding to different clinical cancer stages, offering
valuable insights into the biological changes associated with tumor devel-
opment and progression. In the AJCC stages, hallmark activities
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Fig. 2 | Validation of hallmark annotations in synthetic training data.Heatmaps
depict the log2fold change and−log10FDR values for hallmark gene sets, comparing
hallmark-present versus hallmark-absent samples for each hallmark. Deep blue
intensity in both the log2fold change and −log10FDR panels indicates strong and

significant enrichment of the gene set in hallmark-positive samples, supporting
accurate hallmark annotation. Blank areas in the −log10FDR heatmap indicate
infinite FDR values (i.e., unadjusted p values of zero), corresponding to highly
significant associations.
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progressively increased from Stage I to Stage IV, with the most significant
co-association observed at advanced stages, underscoring the critical role of
hallmark pathways in promoting tumor aggressiveness (Fig. 5a). The
metastasis stage (M0 toM1) revealed increased hallmark activity associated
with metastatic potential, while the node stage (n0 to n2/3) demonstrated
intensified activity with greater lymph node involvement, highlighting the
role of hallmark pathways in tumor spread and metastasis (Fig. 5b, c). A
similar trend is observed in tumor stages (t1 to t4),where hallmark activity is
highest in t4, reflecting the elevated engagement of these pathways in
advanced and aggressive tumors (Fig. 5d). Collectively, these findings
highlight the dynamic regulation of hallmark pathways during cancer
progression and their potential as biomarkers for disease staging and
therapeutic intervention.

Therapeutic associations of hallmark activity with patient survi-
val outcomes
We examined the impact of cancer therapies on patient outcomes, speci-
fically overall survival (OS), disease-free survival (DFS), and progression-
free survival (PFS). Using TCGA data, we investigated how cancer drugs
influence hallmark activity. Associations between hallmarks and drug
treatments were quantified for all cancer patients and incorporated as fea-
tures in a logistic regression model, with survival status as the dependent
variable. The feature weights derived from the trained logistic regression
model were interpreted as impact scores, offering a quantitative measure of
each drug’s contribution to improving patient survival. These impact scores
were used to rank the efficacy of different treatments in terms of their ability

to alter hallmark pathways. For disease-free survival (DFS), hallmark ERI
demonstrated strong associations with anastrozole, AIM with cyclopho-
sphamide, TPI with radiation, and RCDwith trastuzumab and vinorelbine,
as indicated by higher impact scores. These findings suggest that these
therapies effectively target and modify the underlying hallmarks that drive
tumor recurrence (Fig. 6a). In progression-free survival (PFS), hallmark
RCD was predominantly influenced by cyclophosphamide, trastuzumab,
and vinorelbine, reflecting these drugs’ potential to suppress disease pro-
gression. The high impact scores of these treatments highlight their efficacy
in disrupting hallmark-specific pathways crucial for tumor growth and
metastasis (Fig. 6b). Foroverall survival (OS), hallmarkERIwas significantly
modulated by anastrozole and leuprolide, RCD by cyclophosphamide and
trastuzumab, GIM and IA by irinotecan, and SPS by radiation, as reflected
by high impact scores (Fig. 6c). These results underscore the capacity of
these therapies to enhance patient survival by effectively targeting hallmark
pathways central to tumor progression.

Discussion
Tumor staging and grading are indispensable for cancer assessment,
offering insights into tumor size, spread, and cellular differentiation5.
However, these conventional metrics primarily reflect anatomical and
morphological characteristics, often failing to capture the molecular
mechanisms driving tumor behavior29. Cancer progression is governed not
only by physical growth but also by hallmark biological processes4. Identi-
fying and quantifying these hallmarks could provide a more nuanced
understanding of tumor biology, uncovering therapeutic vulnerabilities and

Fig. 3 | Performance evaluation ofOncoMark using cross-validation and external
datasets. a Bar plots summarize precision, recall, F1 score, accuracy, and balanced
accuracy from two independent rounds of five-fold cross-validation. Individual dots
represent performance on each fold, and error bars denote standard deviations.

b OncoMark’s generalizability is assessed across synthetic data created from five
independent external datasets, using the same evaluation metrics, highlighting
robust and consistent predictive performance.
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resistance mechanisms that traditional diagnostic methods overlook30,31.
Routine cancer diagnostics, such as imaging and histopathology, are limited
in their ability toassessmolecular hallmarks due to their focus onobservable
features rather than the underlying gene expression profiles that drive
hallmark activation. Advances in transcriptomics and machine learning
offer the potential to bridge this gap32. By leveraging these tools, hallmark-
specific molecular patterns can be identified and quantified, enabling more
precise assessments of tumor biology. This approach may complement
conventional methods, enhancing prognostic accuracy and supporting
personalized therapeutic interventions.

OncoMark addresses these challenges by quantifying the activation
states of cancer hallmarks using a multi-task neural network trained on
synthetic biopsy transcriptomics data. By identifying hallmarks, Onco-
Mark enables the stratification of tumors based on molecular profiles
rather than solely anatomical characteristics. This molecular stratification
may reveal biologically aggressive tumors that appear indolent through
traditional grading and staging methods, improving risk assessment and
early detection of relapse or resistance. Additionally, hallmark-driven
profiling might uncover novel prognostic biomarkers, enhancing perso-
nalized care and disease outcome predictions11. Furthermore, OncoMark
capacity to capture hallmark interdependencies offers a comprehensive
view of tumor heterogeneity, which is critical for advancing precision
oncology. Beyond prognosis, OncoMark offers significant potential in
therapy design by identifying hallmark-specific vulnerabilities. For
instance, tumors characterized by hallmark activation of angiogenesis
may benefit from anti-angiogenic therapies, while those with genomic
instability might respond to DNA damage repair inhibitors. OncoMark
also ensures clinical relevance across diverse types of cancer, potentially
supporting the development of tailored treatment strategies. Moreover,
tracking hallmark states over time might help guide therapeutic adjust-
ments and monitor treatment responses, which could contribute to
improving patient outcomes31.

Despite its promise, the widespread adoption of OncoMark faces
several challenges. Thehigh cost of transcriptomicprofiling and theneed for
specialized infrastructure limit accessibility in many healthcare systems,
particularly in resource-limited settings. Integration into clinical workflows
will require significant adaptations, including updates to diagnostic guide-
lines and training for healthcare providers. Moreover, validation of the
OncoMark model on real-world data was not possible due to the unavail-
ability of ground truth hallmark data, and comprehensive benchmarking
could not be conducted in the absence of tools capable of annotating these
hallmarks. However, these challenges may diminish with technological
advancements. The declining cost of sequencing, development of portable
sequencing devices, and emergence of cloud-based analytical platforms
could democratize access to transcriptomic analysis33. Additionally, the
growing integration of electronic health records and data-sharing initiatives
may facilitate the incorporation of hallmark-based diagnostics into clinical
practice.

In conclusion,OncoMark is, to our knowledge, the first computational
tool to predict all hallmarks of cancer simultaneously. By bridging the gap
between molecular biology and clinical practice, OncoMark has the
potential to enhance prognostication, improve therapeutic targeting, and
support the transition toward precision oncology.With continued advances
in technology and infrastructure, hallmark-based diagnosticsmay become a
routine component of personalized cancer management, offering patients
more accurate and effective care.

Methods
Data overview
We used a comprehensive dataset of 3.1 million single-cell tran-
scriptomes from 14 tumor sites (Head and neck, lung, liver/biliary,
kidney, prostate, sarcoma, brain, breast, pancreas, neuroendocrine, col-
orectal, ovarian, skin, and hematologic), collected from 941 patients
across 56 studies worldwide as part of the Weizmann 3CA repository, to

Table 1 | Sample information along with performance evaluation of OncoMark for the prediction of ten cancer hallmarks

Mean metrics of fivefold cross-validation repeated twice

Accuracy Precision Recall f1 Balanced_accuracy Positive Negative Patients

AIM 0.999735 0.999408 1 0.999704 0.999761 3364 4184 729

DCE 0.989122 0.997113 0.979959 0.988409 0.988685 3841 4249 764

EGS 0.999565 1 0.999195 0.999597 0.999597 3724 3168 711

GIM 0.987289 0.992222 0.986761 0.989429 0.987435 1282 846 395

RCD 0.999262 0.998462 1 0.999229 0.999293 2590 2833 652

SPS 1 1 1 1 1 3305 3796 695

AID 0.997077 0.993696 0.999647 0.996657 0.997371 2832 3671 691

IA 0.999248 0.999142 0.998707 0.998922 0.999123 2318 4334 705

ERI 0.992816 0.991242 0.985337 0.988262 0.990734 3205 7238 816

TPI 0.994266 0.9828 1 0.991302 0.995747 2326 4824 730

28747 39143 6888

846 (unique
patient)

Validation of the model on five external datasets

Dong
et al.21

0.97260274 1 0.96190476 0.98058252 0.980952381 105 41 13

Yost et al.22 0.99642857 1 0.99428571 0.99713467 0.997142857 175 105 23

Pal et al.23 0.9740458 1 0.93461538 0.96620278 0.967307692 260 395 45

Gao et al.24 1 1 1 1 1 22 9 4

Namet al.25 1 1 1 1 1 65 50 10

627 600 95 (unique
patient)

Themodel’s predictive accuracywas assessed using five-fold cross-validation repeated twice on the primary dataset and validated on five independent external datasets.Metrics include accuracy score,
precision score, recall score, f1 score, and balanced accuracy. Sample information includes the number of positive and negative samples, along with the number of patients fromwhich the given samples
were generated.
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generate synthetic (pseudo-bulk) datasets. (Supplementary Table 1) For
model training and cross-validation, we used 90% of the studies
(encompassing 846 patients from 51 studies). For external validation, we
used the remaining 10% of studies, which were excluded from the
training set. These five excluded studies—refs. 2125—included a total of
95 patients. Additionally, we collected real-world bulk transcriptomic
data from publicly available sources, including The Cancer GenomeAtlas
(TCGA, n = 6679), MET500 (n = 868)34, POG570 (n = 570)35, Cancer Cell
Line Encyclopedia (CCLE, n = 1019)36, therapeutically applicable
research to generate effective treatments (TARGET, n = 734), Pan-cancer
analysis of whole genomes (PCAWG, n = 1210)37, and normal datasets
from genotype-tissue expression (GTEx, n = 8228)38, and the encyclo-
pedia of DNA elements (ENCODE, n = 329)39,40. These datasets were
used to evaluate the sensitivity and specificity of OncoMark in predicting
hallmark activity in both synthetic and real-world settings. The detailed
methodology for processing and sampling real-world bulk tran-
scriptomic data were outlined in the Supplementary Methods. All
datasets were publicly available, de-identified, and obtained with

Table 2 | The Kolmogorov–Smirnov (K–S) test statistic and p
value of the hallmark-specific probability difference in the
model prediction

K–S statistic P value

AIM 0.774614245 0

DCE 0.75721041 0

EGS 0.745627737 0

GIM 0.765449288 0

RCD 0.730226773 0

SPS 0.758095703 0

AID 0.768465534 0

IA 0.690902835 0

ERI 0.770428872 0

TPI 0.739581973 0

Fig. 4 | Generalizability ofOncoMark across diverse biological contexts. aThe left
panel displays probability density distributions of hallmark predictions in normal
tissue datasets (GTEx and ENCODE), revealing hallmark-specific variation in
healthy tissues. The right panel contrasts this with hallmark activity in cancer

datasets (TCGA, CCLE, POG570, PCAWG, TARGET, and MET500), showing
pronounced shifts in predicted probabilities consistent with malignant transfor-
mation. b Density plot for the activating invasion and metastasis hallmark across
primary tumor sites with known metastatic cases.
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appropriate consent from participants in their respective studies. Insti-
tutional permissions for data use were secured by respective studies,
negating the need for further ethics approvals.

Synthetic data construction
Single-cell RNA-seq data processing and quality control. Prior to
synthetic data generation, raw single-cell RNA sequencing (scRNA-seq)
data underwent rigorous quality control (QC) to ensure reliability and
biological relevance of downstream analyses41,42. The following QC cri-
teria were applied:

•Mitochondrial content filtering: Cells with mitochondrial transcript
content exceeding 15% were excluded to eliminate stressed or dying cells,
which typically exhibit elevated mitochondrial RNA levels due to leakage.

• Transcript count thresholding: Cells expressing fewer than 200 or
more than 6000 genes were discarded to remove low-quality cells and
potential multiplets. These thresholds ensured the retention of biologically
meaningful cells with appropriate RNA content.

Importantly, we did notfilter cells basedon cell type, nor didwe restrict
the analysis to malignant cells. This approach preserved the cellular het-
erogeneity characteristic of real tumor biopsies, including stromal and
immune infiltration. Additionally, we intentionally refrained from applying
batch correction to the source transcriptomes to retain technical variability
introducedbydiffering sequencing platforms, library preparationprotocols,
and contributing centers. This design choice allowed the synthetic data to
emulate the complexity of real-world transcriptomic profiles.

Gene set curation for cancer hallmarks. Gene sets associated with
cancer hallmarks were curated from multiple databases, incorporating
only genes identified in at least two independent sources43–48. To evaluate
their prognostic relevance, we applied a Cox proportional hazards model
using patient-level expression and survival data from The Cancer Gen-
omeAtlas (TCGA)49. Genes with hazard ratios (HR) <1.05 were excluded
to enrich for features with a stronger association to adverse clinical
outcomes and tumor progression. The resulting gene sets were further

refined via manual literature curation to ensure inclusion of genes
mechanistically implicated in hallmark-related biological processes.
(Supplementary Data 1)

Computation of digital hallmark scores. Digital hallmark scores were
computed across 3.1 million single cells using UCell, a robust method for
quantifying gene signature enrichment in scRNA-seq data15. UCell cal-
culates gene signature scores for single-cell RNA sequencing (scRNA-
seq) data based on the Mann–Whitney U-statistic. Given a gene
expressionmatrixX of sizeG × C, whereG is the number of genes andC
is the number of cells, UCell first constructs a relative rank matrix R by
ranking the expression values within each column (i.e., each cell). Due to
the sparse nature of scRNA-seq data—characterized bymany zero values
—low-ranking genes tend to form a long, uninformative tail. To address
this, all ranks greater than a predefined threshold rmax (default = 1500)
are set to rmax+ 1, therebymitigating the influence of this tail. For each of
the hallmark signatures consisting of n genes, the UCell scoreU 0

j for each
cell j in X is computed:

U 0
j ¼ 1� Uj

n � rmax

Where Uj is the Mann–Whitney U statistics computed by:

Uj ¼
Xn

i¼1

r�i;j �
n nþ 1ð Þ

2

Threshold determination and binary label assignment. To assign
binary hallmark labels to single cells, we benchmarked three thresholding
algorithms: Otsu50, Yen51, and Isodata. Given the tissue-specific expres-
sion patterns of hallmark-associated genes, we computed digital score
thresholds independently for each tissue site and hallmark. Threshold
performance was evaluated based on the separation of bimodal hallmark

Fig. 5 | OncoMark reveals associations between hallmark activity and clinical
cancer staging. Heatmaps display associations between hallmark activity and key
clinical staging metrics such as (a) AJCC stage, b metastasis stage, c lymph node

involvement, and d tumor size. Color intensity reflects the strength of association,
with darker hues indicating stronger relationships. Asterisks (*) denote statistically
significant associations (p < 0.05).
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score distributions. Otsu’s method consistently outperformed others and
was adopted for subsequent analyses (Supplementary Fig. 7).

Rather than applying a single cutoff, we defined upper and lower
thresholds per hallmark and tissue type. Cells with scores above the upper
threshold were labeled as hallmark-positive, while those below the lower
threshold were labeled as hallmark-negative. Cells with intermediate scores
were excluded to minimize label ambiguity.

Synthetic biopsy generation for model training and validation. Fol-
lowing label assignment, synthetic pseudo-bulk datasets were created by
aggregating hallmark-positive or hallmark-negative single cells12–14,52. For
each tumor site (n = 14), we selected 200 cells per sample (where avail-
able) from either class of each hallmark and summed their gene
expression values to form a pseudo-bulk profile. This aggregation strat-
egy enabled the modeling of hallmark-specific transcriptomic signals
while retaining biological heterogeneity. The choice of 200 cells balanced
representational depth with the need for adequate sample diversity for
training.

For validation, we generated synthetic datasets from five indepen-
dent scRNA-seq studies. To mitigate inductive bias, we reused the
previously established hallmark thresholds but adopted a modified
aggregation strategy. Specifically, we included all available hallmark-
positive or negative cells per patient, applying only a minimum count
threshold of 100 cells. This resulted in variable pseudo-bulk sizes, better
reflecting the inherent heterogeneity and compositional imbalance
of real tumor samples. These datasets were used exclusively for testing
the generalizability and robustness of our model, across unseen
conditions.

Feature selection and gene filtering. To identify the most informative
genes while accounting for missing data, we implemented a variance-
based feature selection approach53. Gene-wise variance was computed
across all pseudo-bulk samples. Genes with undefined or zero variance
were excluded. The top 10,000 genes with the highest valid variance were
retained. To ensure consistency across hallmark-positive and -negative
datasets, we intersected the top variable genes from both classes, yielding
a final set of 9326 features for model training.

Fig. 6 | Linking hallmark activity to drug response and clinical outcomes.
Heatmaps show the impact of various anticancer drugs on hallmark activity,
alongside their associations with (a) disease-free survival, b progression-free

survival, and c overall survival.Darker shades correspond to stronger drug–hallmark
interactions, revealing key therapeutic contributions to improved patient outcomes.
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Data normalization and preprocessing. To ensure uniform feature
representation, missing gene values were imputed as zeros. All datasets—
including both synthetic and external validation sets—were transformed
into rank space tominimize batch effects and negate the effects of diverse
data normalization techniques across diverse datasets54. Expression
values were subsequently log2-transformed and z-score standardized
(mean = 0, standard deviation = 1) across samples. These normalization
steps were done to improve model convergence.

Model architecture
The OncoMark framework leverages a deep learning approach to predict
hallmark activity in biopsy samples, emphasizing both hallmark-specific
precision and the biological interplay among hallmarks. The model archi-
tecture is structured as a multi-task neural network, consisting of a shared
base layer and task-specific output layers19. The shared base layer processes
the input features x 2 Rd to extract pan-hallmark characteristics that are
universal across all cancer hallmarks, resulting in a latent representation
h ¼ f shared xð Þ. The task-specific output layers then refine these shared
representations by focusing on hallmark-specific features, enabling the
model to capture the nuanced interplay between hallmarks. Each output
layer produces an independent probability ŷi ¼ σðf taski ðhÞÞ;where i 2f1; . . . ; 10g and ŷ ¼ ŷ1; ŷ2; . . . ; ŷ10

� � 2 0; 1½ �10 represents the model’s
prediction of hallmark presence across all ten hallmarks. This architectural
design reflects the interconnected nature of hallmark activities observed in
tumor biology and ensures that predictions are biologically meaningful. By
combining a shared representation with hallmark-specific refinement, the
framework achieves accurate predictions that alignwith the cooperative and
dynamic behavior of hallmarks in cancer progression. The detailedmodel’s
architecture, and trainingmethodology are elaborated in the supplementary
methods (Supplementary Figs. 2, 8).

Model training and hyperparameter optimization
The model was trained on a balanced dataset comprising 67,930 samples
with 9326 input features representing gene expression profiles. Of these,
57,735 samples (85%) were used for training, and 10,195 samples (15%)
were used for validation, with data splitting performed separately for each
hallmark using the train-test splitmethod to ensure balanced representation
across both sets. To prevent catastrophic forgetting (a phenomenonwhere a
model forgets previously learned information when trained on new tasks),
data from all hallmark tasks were merged and shuffled randomly during
training, avoidinghallmark-specificbatches and ensuringuniformexposure
of the model to all hallmark datasets. The Adam optimizer, with a learning
rate of 0∙0001, was employed to minimize the binary cross-entropy loss,
which was calculated independently for each hallmark prediction task and
combined into a weighted average using task-specific indicators to ensure
balanced learning. Early stopping, with a patience of six epochs, was
implemented to prevent overfitting by halting training when validation loss
showed no improvement, while a learning rate scheduler further adjusted
the learning rate by reducing it by 0∙5 after three consecutive stagnant
epochs, with a minimum threshold set at 1e-6. Training was conducted for
50 epochs with a batch size of 256. Although validation losses consistently
improved, gains becamemarginal in later epochs, leading to the decision to
halt training after 50 epochs before full convergence (Supplementary Fig. 9
and Supplementary Table 2).

Evaluation protocol and performance metrices
Our methodology incorporated a five-fold cross-validation repeated twice
to ensure robustmodel assessment. In each iteration, four foldswere used to
train themodel,while thefifth foldwasdivided into twoequal parts: onepart
served as a validation set for model selection and performance monitoring,
and the other part was reserved for independent performance evaluation.
(Supplementary Table 3) Moreover, the model was also validated on five
independent datasets. Model performance was assessed using the F1 score,
accuracy score, precision score, recall score, balanced accuracy, confusion

matrix, area under the precision-recall curve (AUC-PR) and the receiver
operating characteristic curve (AUC-ROC). (Supplementary Data 2) We
report themean and standard deviation (SD) of these AUC values across all
repetitions of cross-validation to capture variability and reliability. Addi-
tionally, the model was applied to two normal datasets, Genotype-Tissue
Expression (GTEx) and The Encyclopedia of DNA Elements (ENCODE),
as well as six cancer datasets from The Cancer Genome Atlas (TCGA),
MET500, POG570,CancerCell LineEncyclopedia (CCLE), Therapeutically
Applicable Research to Generate Effective Treatments (TARGET), and
Pan-Cancer Analysis of Whole Genomes (PCAWG). Probability density
distributions of hallmark predictions were plotted to assess the model’s
ability to identify hallmark occurrences in cancer datasets, with no hallmark
predictionsmade fornormal samples.Todeterminewhether theprobability
distributions between cancer and normal samples differ significantly, the
Kolmogorov–Smirnov (K–S) test was conducted, providing statistical
insights into these differences55,56.

Statistics and reproducibility
Python v3.11.0 with numpy v2.0.2 and pandas v2.2.3 was used for data
analysis, and matplotlib v3.9.2 and seaborn v0.13.2 for visualization. Ten-
sorflow v2.18.0 was used for training the model. Differential expression
analysis was conducted using PyDESeq2 v0.5.1. Scipy v1.14.1 was used for
conducting all the statistical tests. All p values resulting from the corre-
sponding statistical tests were used without any adjustments or modifica-
tions, except for differential expression analysis, where p values were
transformed using −log10.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All synthetic data generated in this study is publicly available at https://
doi.org/10.5061/dryad.zw3r228jc57. The source data for all the figures in
the manuscript is provided in the Supplementary Data 3. The single-cell
data used in this study is publicly available at https://www.weizmann.ac.
il/sites/3CA/. MET500 and TARGET data are publicly available at
https://xenabrowser.net/datapages/. The TCGA data can be obtained
from https://gdac.broadinstitute.org/. The PCAWG data were down-
loaded from https://www.cbioportal.org/. GTEx data were publicly
available at https://www.gtexportal.org/home/. CCLE data were publicly
available at https://sites.broadinstitute.org/ccle/datasets. ENCODE data
were publicly available at https://www.encodeproject.org/. POG570 data
were publicly available at bcgsc.ca/downloads/POG570/.

Code availability
All codes generated in this study are publicly available at https://github.com/
SML-CompBio/OncoMark. The web server can be accessed here: https://
oncomark-ai.hf.space/. The Python package is available here: https://pypi.
org/project/OncoMark/. The comprehensive documentation for using
OncoMark is available at https://oncomark.readthedocs.io/en/latest/.
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