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Distance-AF improves predicted protein
structure models by AlphaFold2 with
user-specified distance constraints
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The three-dimensional structure provides essential information for understanding biological functions
of proteins. To aid structure determination, computational prediction has been extensively studied.
Despite significant progress, challenges remain on difficult targets, such as those with multiple
domains and proteins that fold into several conformations. Here we present Distance-AF, which aims
to improve the performance of AlphaFold2 by incorporating distance constraints. Distance-AF
reduced the root mean square deviation (RMSD) of structure models to native on average by 11.75 Å
when compared to the models by AlphaFold2 on a test set of 25 targets. Distance-AF outperformed
Rosetta and AlphaLink, which consider distance constraints. The average RMSD values for Distance-
AF, Rosetta, and AlphaLink were 4.22 Å, 6.40 Å, and 14.29 Å, respectively. We further demonstrate its
applications in various scenarios, including fitting structures into cryo-electron microscopy density
maps, modeling active and inactive conformations, and generating conformational ensembles that
satisfy Nuclear Magnetic Resonance data. Distance-AF has the potential to accelerate structural
biology research, facilitate drug discovery, and provide a foundation for integrating experimental and
computational approaches to study protein dynamics and interactions in complex biological systems.

Protein structure prediction is an important problem in biophysics and
computational biology, which has been extensively studied in the past few
decades. The progress of structure prediction methods has been monitored
by biannual events of community-wide assessment, the Critical Assessment
of Protein Structure Prediction (CASP) for over twenty years1. Various types
of methods have been developed over years, such as coarse-grained model-
based methods2–5, and machine learning approaches, particularly deep
learning6–9. CASP14 witnessed a breakthrough by AlphaFold2 (AF2)10,
which achieved an accuracy that is close to experimental resolution for
many targets and analyzed its performance11. Since the release of AF2, it has
been used for many practical applications in biology12, including for mole-
cular replacement in X-ray crystallography13, structure modeling for cryo-
electron microscopy (cryo-EM) maps14–16, and structure-based drug design1

7,18. The use of AF2 models is further facilitated by the AlphaFold Database19

which now holds structure models of over 200 million proteins. AF2 has
made a substantial impact on many areas of biology and biotechnology.

Although AF2 yields accurate structure models in many cases, it still
has several limitations. Firstly, for proteins with multiple domains, AF2

typically builds the individual domain structures correctly but often fails to
capture the relative orientations of the domains. In some proteins, domains
are connected by a linker, which is meant to be flexible. In such cases,
predicting a different domain orientation from the corresponding Protein
Data Bank (PDB)20 entry is not necessarily incorrect; however, it becomes a
problem when the predicted model shows inconsistencies with experi-
mental density data21, Nuclear Magnetic Resonance (NMR), or cryo-EM
maps. Similarly, AF2 often predicts long unstructured loops, which may be
intrinsically disordered regions of the protein, but they are in a particular
conformation in cryo-EM maps and need to be correctly predicted to fit
accurately.

Another noted limitation of AF2 is that it is designed to predict a
static conformation given an input sequence22,23. However, a protein may
have two or more viable conformations that correspond to different
functional or physical states responding to various conditions, such as
interactions with other molecules and environmental conditions24,25.
G protein-coupled receptors (GPCRs) are a representative example
of proteins which have two conformations that correspond to active

1Department of Computer Science, Purdue University, West Lafayette, IN, USA. 2Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
3State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

e-mail: dkihara@purdue.edu

Communications Biology |          (2025) 8:1392 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-025-08783-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-025-08783-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-025-08783-5&domain=pdf
http://orcid.org/0000-0003-0146-1709
http://orcid.org/0000-0003-0146-1709
http://orcid.org/0000-0003-0146-1709
http://orcid.org/0000-0003-0146-1709
http://orcid.org/0000-0003-0146-1709
http://orcid.org/0000-0002-5339-909X
http://orcid.org/0000-0002-5339-909X
http://orcid.org/0000-0002-5339-909X
http://orcid.org/0000-0002-5339-909X
http://orcid.org/0000-0002-5339-909X
http://orcid.org/0000-0003-2910-6725
http://orcid.org/0000-0003-2910-6725
http://orcid.org/0000-0003-2910-6725
http://orcid.org/0000-0003-2910-6725
http://orcid.org/0000-0003-2910-6725
http://orcid.org/0000-0003-4091-6614
http://orcid.org/0000-0003-4091-6614
http://orcid.org/0000-0003-4091-6614
http://orcid.org/0000-0003-4091-6614
http://orcid.org/0000-0003-4091-6614
mailto:dkihara@purdue.edu
www.nature.com/commsbio


and inactive states26. The development of protocols for generating mul-
tiple biologically relevant conformations is a focus in the post-AF2 era,
and various ideas have been implemented until now22. Approaches
include manipulation on multiple sequence alignments (MSAs) via
subsampling27–29, clustering30, or amino acid replacements31, and deep
generative models32–34.

Practical and feasible approaches to address the aforementioned lim-
itations include incorporating constraints, such as distance information
between amino acid residues, derived from experimental data. AlphaLink35

converts distance restraints from cross-linkingmass spectrometry (XL-MS)
into 128 distogram bins, integrates those into pair representations, and fine-
tunesAF2with recycling updates for couplingmaximizing synergy between
MSAs and crosslinks to produce distance-driven protein structure predic-
tions. Similarly, RASP36 uses NMR NOESY peak intensity restraints as
contact information between amino acid pairs to enhance AF2 predictions.
RASP considers distance restraints as additional edge information,
embedding them into four distinct types of contacts that are incorporated
into MSA, pair representations, IPA attention weight matrix and atom
coordinates separately. These two approaches are effective for handling
experimental data; however, they have two limitations: first, a large number
of distance restraints are required for accurate predictions, typically more
than 10, otherwise, on some cases, their performances are even worse than
AF2. Second, the methods are designed for building a single conformation
and not for generating multiple conformations.

Here, we propose Distance-AF, a deep learning-based approach that
builds upon AF2 by incorporating additional information of distances
between amino acids. We expect distance constraints to be derived from
experimental data, such as crosslinking, cryo-EM maps, NMR mea-
surements, or known residue–residue interactions. Constraints may also
originate from biological hypotheses proposed by users. Based on these
inputs, Distance-AF will generate structure models that users can analyze
to evaluate their hypotheses. We built the method upon AF2 instead of
AlphaFold3 (AF3)37, which was released more recently, because AF3 uses
diffusion model as the network architecture for generating structures
which incorporate a random procedure in the algorithm. On the other
hand, AF2 is a supervised learning-based method and is more suitable for
the overfitting regime to provided distance constraints, which is the core
of the idea of Distance-AF. In contrast to the approaches taken by
Alphalink and RASP, Distance-AF implements distance constraints as an
additional term in the loss function within the structure module of AF2.
This term is iteratively optimized in harmony with other loss terms from
AF2 to ensure that individual domains follow protein-like geometry and
are correctly folded while satisfying the distance constraints. This
approach eliminates the need for a pre-training stage, thereby avoiding
the substantial computational resources required. With this design
without pre-training enables Distance-AF to exhibit flexibility in pre-
dicting diverse protein structures even with a limited number of con-
straints that are insufficient for the other methods. Moreover, Distance-
AF is simple yet effective for iteration processes.

We first show that Distance-AF is able to effectively modify domain
orientation as guided by provided distance constraints to obtain correct
overall conformation. The benchmark study we conducted showed that
Distance-AF performs a large deformation of protein structures, often by a
root-mean square deviation (RMSD) of over 10 Å, by moving domains to
satisfy a fewdistance constraints provided.We also tested its sensitivitywith
rough distance constraints biased varying up to 5 Å that demonstrating
Distance-AF is robust and keeps high accuracy even with approximate
distances. Additionally, we demonstrate that Distance-AF is useful in
building structural models that fit experimental data: Distance-AF suc-
cessfully constructed the conformation of multi-domain proteins that fit a
cryo-EMmap fromAF2models that were globally incorrect.We also show
that Distance-AF was able to generate alternative conformations of GPCRs
in different functional states from a small number of distance constraints
between transmembrane helices. Finally, Distance-AF successfully

generates an ensemble of conformations of proteins based on constraints
provided by NMR.

Results
Overview of Distance-AF
Distance-AF builds on the AF210 network architecture to predict protein
structures while incorporating distance constraints. Thismethod is effective
when AF2 does not build a predicted structure that agrees with known
domain arrangements. Users can input a few distance constraints between
specified domains, which are integrated into the loss function of AF2, and
the structure is iteratively updated until the specified distances are satisfied.
The code and example files aswell as instruction are provided in theGitHub
repository, https://github.com/kiharalab/Distance-AF. In the Method sec-
tion, we provided brief instructions. Figure 1a illustrates the framework of
Distance-AF.

Distance-AF consists of two modules. The first module is Evoformer,
the same one as used in AF2. Evoformer takes a MSA constructed from a
query protein sequence as well as a matrix that contains pairwise residue
information that is constructed from theMSA embedding, and computes a
MSA embedding and a pair embedding through iterative optimization
between the two embeddings to ensure they have consistent information10.
To construct an MSA for a query protein, similar sequences were searched
on the Uniref30 database38. Then, a single sequence embedding, which
corresponds to the query sequence, is extracted from the MSA embedding
and passed to the structural module together with the pairwise embedding
and the user-specified residue-pair distance constraints as additional input
information. A residue-pair distance is defined by the Euclidean distance
between Cα atoms of two residues taken from two domains, which need to
be moved to achieve a desired global conformation of the target protein. As
we examined later, about 6 constraints are sufficient to move domains into
desired positions.

Distance-AF employs an overfitting mechanism, iteratively updat-
ing network parameters until the predicted structure satisfies the given
distance constraints. Thus, the network was not pretrained on a training
set; rather it starts with the same weights as the original AF2. This
iterative process allows the model to fine-tune the coordinates, enforcing
them to follow the provided distance information, which is provided in
the form of a distance loss that is combined with other loss terms
(Fig. 1a). More concretely, Distance-AF constructs structure models in
the following steps in the structural module. First, the structure module
operates invariant transformation to predict the 3D coordinates of heavy
atoms of the target protein using the single and pair representations from
the Evoformer module. For the predicted structure, a loss function called
the distance-constraint loss is then computed, which measures the
divergence between distances in the predicted structure and user-
provided distances of pairs of Cα atoms:

Ldis ¼
1
N

XN

i¼1

ðdi � d0iÞ2 ð1Þ

wheredi is the specifieddistance constraints on the ithpair ofCα atoms,d0i is
measured distance in the predicted structure for the correspondingCα atom
pair; and N is the number of distance constraints. This distance-constraint
loss is combinedwith the intra-domain FAPE loss10 (Supplementary Fig. 1),
the angle loss, and the violation terms into the total loss as defined in Eq. 2.
These loss terms are illustrated in Supplementary Fig. 2. As shown, the
weight for the distance-constraint loss is changed according to the level of
satisfaction with the loss:

L ¼

1:0 � Ldis þ Lfape þ Langle þ Lvio Ldis > 10

2:0 � Ldis þ Lfape þ Langle þ Lvio 5 < Ldis < 10

4:0 � Ldis þ Lfape þ Langle þ Lvio 1 < Ldis < 5

1:0 � Ldis þ 10 � Lfape þ Langle þ Lvio Ldis < 1
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Fig. 1 | Overall framework of Distance-AF. a The network consists of two modules.
The first module is Evoformer fromAF2, which takes the protein sequence as input and
computes the single representation and the pair representation. The second part, the
structure module, is modified from AF2, where the distance constraints between resi-
dues, which is another input information, is considered and used to in loss optimization
through an iterative process. This fine-tuning process continues until the loss converges.
b Learning curves of four loss functions for the first 1000 iterations. An AF2 model for

PDB: 6P66 of chain A is used in this example, which had an RMSD of 20.65 Å to the
native. The structure has two domains. The first domain ranges from residues 5 to 253,
and the second domain is from residues 261 to 471. We used six distance constraints,
between specific residue pairs (30, 378), (71, 290), (132, 333), (166, 310), (178, 406), and
(251, 463). Six time steps, 0, 100, 255, 400, 600, and 1000 are highlighted. c The
structure of the six steps, shown in panel b, final predicted and native structures, are
visualized. The final structure has an RMSD of 4.27 Å.
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where the first term, Ldis, is defined in Eq. 1. The second component, Lfape, is
the intra-domain FAPE loss, a penalty term for the pair-wise frame-aligned
point error of residues within individual domains defined by users. This
term is to prevent the local structure of domains from being destroyed by
lowering Ldis. The third and fourth loss terms are angle and violation loss,
the same terms as AF2. Langle penalizes the deviation of predicted backbone
torsion angles and dihedral angles at sidechain. Lvio penalizes unidealized
bond lengths, peptide bond angles and atom clashes that are inconsistent
with physical properties10. In Distance-AF, as the true structure of a target
protein is unknown, we take the original structure predicted by AF2 as the
reference against which intra-domain FAPE, angle, and violation loss are
computed.

As shown in Eq. 2, the entire framework is optimized via the inte-
grated loss with a dynamic reweighting mechanism to tune the global
gradients depending on the level of satisfaction of Ldis. This design is
needed to balance between Ldis and the other terms because minimizing
Ldis will distort the initial structure from AF2, which will increase the
other loss. At the beginning of the iteration, when Ldis is large, its weight
is set to a small value to avoid distorting the local structures of individual
domains. As the iteration progresses, the weight of Ldis is increased to
guide the domains toward their correct relative positions. Once the
domains are nearly correctly positioned, the weight of Ldis is reduced
again to refine and restore any local structural distortions introduced
during the domain adjustment process. The weight values were deter-
mined from observation of the behavior of intermediate model con-
formations in a very early stage of the development of this method using
a couple of targets used at that time. As described, Distance-AF employs
an over-fitting process to satisfy user-provided distance constraints by
iterative optimization procedure. By default, structure optimization
under Eq. 2 is performed for up to 30,000 iterations. This number was
chosen based on the observation that large proteins (e.g., those with more
than 1000 residues) are sufficiently optimized by this number of itera-
tions. Usually we terminated a run much earlier as the convergence of the
loss function is observed. Optimization should continue until the overall
loss function (Eq. 2), and in particular the distance loss (Eq. 1), has
saturated. After the optimization, we reported the resulting modeling
accuracy values, RMSD and TM-score39, GDT-TS40, and GDT-HA40

using the software TM-score39 and PyMOL41.
InFig. 1b, c,we showan example of the iterative structural deformation

by Distance-AF. This is a predicted structure from chain A of XPB-Bax1
complex (PDB ID: 6P66), which has two domains (residue 5-253 and 261-
471). In this example, RMSD improved from 20.65 Å to 4.27 Å by applying
Distance-AF in comparison with the native structure (PDB ID: 6P66).
Figure 1b shows four loss functions separately, the distance loss, the FAPE
loss, the angle loss, and the violation loss. In Fig. 1c actual structures at key
steps are visualized. At time 0 (Fig. 1c), the two domains were predicted
correctly by AF2, however the relative orientation of the two individual
domains are largely different from the native structure (shown on the right
of Fig. 1c). The distance loss is at itsmaximum, but the FAPE isminimumas
it is a fresh output from AF2. But this improvement came at the cost of a
noticeable increase in the FAPE loss. At the beginning of the iteration, the
violation loss sharply spiked indicating that atom clashes occurred and
quickly relaxed. The FAPE loss kept rising because the overall structure was
distorted from the starting conformation. Iteration 255 corresponds to a
peak in the FAPE and angle losses and a convergence point for the distance
loss, indicating that the distance constraints are nearly satisfied, but local
structures are compromised. This can be seen in the structure; the domains
are almost at their correct relative position, while helices in the smaller
domain is distorted. Iterations 400 and 600 represent intermediate stages
during the convergence of the FAPE, angle, and violation losses, signifying
thatDistance-AF is actively involved in the recovery of local structureswhile
maintaining stability in the distance loss. At Iteration 1000, all four loss
functions are almost converged, indicating an accurate predicted structure is
produced in terms of overall conformation. At this point, helices of the
smaller domain were also recovered.

Performance on improvement over incorrect AF2 models
Wefirst testedDistance-AFon25 incorrect structuremodels constructed by
AF2. These models were selected from the AlphaFold Database19 with the
following criteria: First, we selected entries in the AlphaFold Database that
have corresponding entries in PDB by the date of March 15th, 2023. From
them, we selected AF2 models which have an RMSD over 10 Å to the
corresponding PDB structures with a resolution of 3.0 Å or better that were
determined by X-ray crystallography or cryo-electronmicroscopy and have
an average pLDDTof 0.75 or higher. The corresponding PDB entries for an
AFDB entry was identified by first examining the correspondence of PDB
entries for the UniProt ID of the AFDB entry.We also performed sequence
alignment to ensure that the PDB entry covers more than 80% of the
AFDB entry.

Subsequently, we examined whether a protein model is likely to con-
tain two or more domains by clustering residues based on the Predicted
Aligned Error (PAE) provided by AFDB, which reflects the uncertainty in
thedistances between residuepairs in themodel. Typically, inmulti-domain
protein models, residues within the same domain exhibit low PAE values,
whereas residue pairs across different domains show high PAE values. To
identify such domain-specific patterns, we performed clustering using the
PAE matrix while varying the number of clusters. After each clustering, we
checked whether any residue pairs belonging to different clusters had PAE
values below 3Å. If four or more such pairs were observed, suggesting that
the corresponding domains should be merged, we reduced the number of
clusters and repeated the clustering process. From the resulting clusters, we
first excluded residues with a pLDDT score below 70. Then, if a cluster
contained 50 ormore remaining residues, it was considered a domain.Only
proteinswith twoormore suchdomainswere retained for subsequent visual
inspection.

Additionally, AFDB models and their corresponding PDB entries
were visually inspected using PyMOL. Entries were excluded if they
contained long disordered regions (approximately >30 residues), gaps in
the PDB structure, or were complexed with other chains that appeared
critical for determining the conformation. Models were also excluded if
they lacked clear domain structures, exhibited domain swapping, or
contained local domain regions that were entirely incorrect. A domain
structure was considered incorrect if the RMSD of the region exceeded
2.0 Å. Thus, the 25 selected targets have a high confidence (pLDDT) but
globally incorrect orientations of domains. The length of proteins in the
dataset varied from 138 to 830. The 25 targets are listed in Supplementary
Data 1. These 25 targets are non-redundant; each pair has less than 25%
sequence identity between them (Supplementary Fig. 3). For each target,
six distance constraints that connect two domains of the protein were
applied in Distance-AF. Constraints were selected so that residues
involved in the constraints were spread in each domain and initial dis-
tances in the AF2 model deviate largely from the correct distance. We
show the benchmarking results in Fig. 2a.

Figure 2 summarizes modeling results by Distance-AF. Individual
results are provided in Supplementary Data 2. We compared with three
methods, the original AF2, Rosetta42,43, and AlphaLink35. To run Rosetta
and AlphaLink, the same set of distance constraints were applied
(Methods). Models were evaluated using four metrics, the RMSD, TM-
Score39, GDT-TS40 and GDT-HA40. The higher the better for the latter
three metrics. The data in Fig. 2a–c, are provided in Supplementary
Data 2, 3, 4, respectively.

When compared to AF2 models, apparently Distance-AF built more
accurate models than AF2 for all 25 targets. Distance-AF reduced RMSD of
models on average by 11.75Å. 18 out of 25 targets had an RMSD under 5 Å
while all 25 targets by AF2 had an RMSD larger than 10 Å. Regarding TM-
score,Distance-AF yielded an averageTM-score of 0.834 compared to 0.622
by AF2. For other two metrics, Distance-AF/AF2 demonstrate average
scores of 0.751/0.594 on GDT-TS, 0.598/0.522 on GDT-HA, respectively.

Figure 2a presents comparisons with Rosetta and AlphaLink, respec-
tively. Distance-AF outperformed both in the four key metrics across most
of the targets. The average RMSD values for Distance-AF, Rosetta, and
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AlphaLink were 4.22 Å, 6.40 Å, and 14.29 Å, respectively. In terms of TM-
Score, Rosetta and AlphaLink achieved 0.728 and 0.644, respectively, which
were significantly lower than Distance-AF’s 0.834. The improvement of
AlphaLink over AF2 was observed to be marginal.

In Fig. 2b, we perturbated the distances in the constraints and exam-
ined how the inaccurate constraints affected themodeling results. From the
same six constraints, 10 constraint sets were generated by perturbating each
distance by up to 5.0 Å. The modeling results with these perturbated con-
straints were plotted relative to the average perturbation. Apparently, a
correlationbetween the averageperturbationand the accuracyof themodels
was observed. The Pearson’s correlation of the average perturbation dis-
tance and RMSD, TM-Score, GDT_TS, and GDT_HA, was 0.262,−0.277,
−0.311, and −0.303, respectively. Although a weak correlation was gen-
erally observed, the modeling results demonstrated robustness. For exam-
ple, 62.8% of the models remained within an RMSD of 6.0 Å, retaining the
correct overall fold, even when the average perturbation was up to 2.0 Å.
Similarly, in terms of TM-Score, 44% of models had scores above 0.8 for
average perturbation up to 2.0 Å. Interestingly, there are about 22% of the
cases when perturbations even made more accurate models. Upon closer
examination, we observed that such improvements happenwhenperturbed

constraints, particularly for longer distances, allow a domain to optimize its
relative orientation or escape a local minimum during convergence. In
Fig. 2c, we conducted an additional ablation study using four randomly
selected targets (1MKMChainA, 2Z99ChainA, 5HXYChainA, and 5KEC
Chain A). We varied the number of constraints from 0 (equivalent to the
vanilla AlphaFold2) to 30. For each constraint setting, we randomly added
or removed constraints to achieve the desirednumber.Weobserved that the
models became more accurate as the number of constraints increased. The
accuracy values nearly plateaued when four to six constraints were used,
with minimal improvements beyond six constraints.

Note that these 25 targets are difficult to correctly fold with AF337 as
well as AlphaFold2(AF2)-Conformations28 (Supplementary Fig. V). AF2-
Conformations generated 130 different conformations by using different
subsamples from the input multiple sequence alignment. AF3 and AF2-
Conformations did not make much improvement over AF2 in most of the
targets. Distance-AF performed substantially better than AF3 and AF2-
Conformations.

Distance-AFmodels have slightly higherMolprobity scores44 and atom
clash scores (Supplementary Fig. 5) but the values are in a similar range as
that are observed in experimental structures in PDB. This is partly because

Fig. 2 | Modeling performance of Distance-AF. The dataset of 25 targets was used.
a comparison of Distance-AF(D-AF) against AF2 (blue circles), Rosetta (orange
squares), and AlphaLink (green triangles) in terms of four metrics, RMSD, TM-
Score, GDT-TS, and GDT-HA. b Modeling results with perturbated distance con-
straints. For a set of six distance constraints used for a target, the distance was
perturbated randomly between ±5.0 Å for 10 times. Thus, 10 (perturbations) x 25

(models) =250 model results were plotted. Resulting models were evaluated in
the four metrics relative to the average perturbation. c The model quality in the
four metrics are shown with a different number of distance constraints. Four
targets were used, 1MKMA, 2Z99A, 5HXYA, and 5KECA.The number of con-
straints used were 0, 1, 2, 3, 4, 6 (our default setting; shown in crosses), 10, 14, 18, 22,
26, and 30.
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the loss function includes the violation loss (Eq. 2), which is used in AF2 to
avoid unphysical stereochemistry of proteins. Applying structure relaxation
bymolecular dynamics (MD) further improvesMolprobity and atom clash
scores (Supplementary Fig. 5) to the level that is better than the startingAF2
models. ApplyingMD only changes RMSD by 0.01 Å (from 4.11 to 4.12 Å)
on average (Supplementary Data 2).

Examples of models built by Distance-AF
In this section, we discuss six illustrative examples of models generated by
Distance-AF. The first example (Fig. 3a) is the model of the
fibrillarin–Nop5pcomplex45 (PDBID: 1NT2, chain ID:B).This 258-amino-
acid protein consists of two domains: the N-terminal domain, which

features a long α-helix (on the right side of the figure), and the C-terminal
domain, which contains six helices. AF2 placed the N-terminal domain in
an incorrect relative position (cyan), resulting in an RMSD of 11.83 Å.
Correcting the N-terminal domain required a hinge motion at the linker
between the two domains, a task that Distance-AF handled straightfor-
wardlywith proper constraints. After applyingDistance-AF, theRMSDwas
reduced to 2.28 Å.

The next example is amodel of the LysR-type transcriptional regulator
(LTTR) protein46 (PDB ID: 1IXC, chain ID: A) (Fig. 3b). AF2 positioned the
294-residue CbnR subunit in an incorrect orientation (the cyan domain on
the left), with nearly a 90° deviation from the correct orientation relative to
the long linker helix. Similar to the first example, correcting this required a

Fig. 3 | Six examples of models built by AF2 andD-AF.Detailed evaluation results
are available in Supplementary Data 1 and 2. For each example, three structures are
shown: the native structure (green), the superimposed model by AF2 (cyan) to
native(green), and the superimposed model by D-AF (magenta) to native(green);
aTheNop5p subunit offibrillarin/Nop5p complex (PDB: 1NT2, chain: B, 258 amino
acids). AF2 RMSD: 11.83 Å, D-AF RMSD: 2.28 Å. b CbnR subunit from a LysR
family transcriptional regulator (PDB:1IXC, chain:A, 295 amino acids). AF2 RMSD:
16.33 Å, D-AF RMSD: 1.96 Å. c The LarsR protein of LasR-Aqs1 complex from

Pseudomonas aeruginosa (PDB: 6V7W, chain: B, 239 amino acids). AF2 RMSD:
18.69 Å, D-AF RMSD: 2.18 Å. d Single MgsA protomer with three domains of the E.
coli MgsA protein (PDB: 3PVS, chain: A, 447 amino acids), AF2 RMSD: 17.63 Å,
D-AF RMSD: 3.07 Å. e The Raf1 subunit from assembly of RuBisCO (PDB: 6KKN,
chain: A, 376 amino acids), AF2 RMSD: 17.90 Å, D-AF RMSD: 5.42 Å; fAprotein of
two tandemRNArecognitionmotifs ofHuman antigen R (PDB: 4EGL, chain: A, 177
amino acids), AF2 RMSD: 13.73 Å, D-AF RMSD: 7.83 Å.
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large hinge motion between domains. Distance-AF successfully performed
this adjustment, reducing the RMSD from 16.33 Å to 1.96 Å.

Figure 3c is a model for the transcriptional regulator LasR protein47,
composed of 239 amino acids (PDB ID: 6V7W, chain ID: B). This protein
has an N-terminal ligand-binding domain, characterized by an α-β-α
sandwich structure, connected with a smaller DNA-binding α-helical
domain. In the correct conformation, the interface of these two domains
forms a ligand (3-oxo-C12-HSL) binding pocket. The linker between the
two domains has 13 residues. AF2 placed the DNA-binding domain in a
wrong orientation; the two domains even do not have any physical (cyan).
Correcting the orientation needed rotation of the DNA-binding domain
almost 180°, which is successfully achieved by D-AF. The overall RMSD
improved from 18.69 Å to 2.18 Å by D-AF.

The next example in Fig. 3d also needed a largemotionwith rotation of
a domain for correcting an AF2 model. This is maintenance of genome
stability protein A (MgsA)48 of Escherichia coli, which is 446 residue long
(PDB ID: 3PVS, chain ID: A). It has an N-terminal ATP-binding domain
(residues approximately up to 165), an α-β class structure shown around the
topmiddle of thefigure.This is followedby twodomains: a largeα-helical lid
domain (residues ~166–247) and a C-terminal tetramerization domain
(residues ~251–446), both shown on the left side of the figure. AF2 placed
these two domains completely opposite the ATP-binding domain (cyan),
resulting in a large RMSD of 17.63 Å. However, D-AF accurately reposi-
tioned these two domains to the opposite side with an about 180° flip,
reducing the RMSD to 3.07 Å.

Figure 3e provides an example where the model by D-AF had an
imperfect rotation angle of a domain. The protein shown is the RuBisCO
accumulation factor Raf1 from Anabaena sp. PCC 712049, which has two
distinct domains: an N-terminal α-helical domain (Raf1α, residues 1–197)
and a C-terminal β-sheet domain (Raf1β, residues 221–347) (PDB ID:
6KKN, chain ID: A). These domains are connected by a long linker of 23
residues, spanning ~60.9 Å. This domain arrangement is crucial for the
protein’s function, as two Raf1β domains must be swapped between two

copies of the protein to pack against each other. As shown in the figure, AF2
misplaced the Raf1β domain (cyan). While D-AF managed to position it
closer to the correct location, there was a slight error in its rotational
orientation, resulting in an RMSD of 5.42 Å.

The final example (Fig. 3f) features an ELAV-like protein with two
tandem RNA recognition domains50(PDB ID: 4EGL, chain ID: A). AF2
incorrectly positioned the second domain (cyan), as shown in the bottom
left of the figure. D-AF managed to adjust the domain closer to its correct
spatial position, with a partial rotation toward the correct orientation
(magenta); however, further rotation is needed for optimal alignment with
the native structure. The RMSD was reduced from 13.73 Å to 7.83 Å,
reflecting the improvement in orientation, though the domain’s positioning
remains suboptimal.

In summary, D-AF successfully repositioned domains by satisfying
distance constraints without distorting the individual domain structures.
Themethod performs particularly well when only hingemotion is required.
However, finding the correct domain orientation was occasionally less
successful when rotational adjustments were involved.

Modeling disordered tails
In this section, we presentmore extreme cases in which a terminal region of
target proteins, connected by a disordered region, is misplaced in the AF2
models (Fig. 4). In these cases, the disordered region is not even crystallized
due to its excessive flexibility. Individual data is provided in Supplemen-
tary Data 5.

The first example (Fig. 4a) is a 393-residue protein (PDB: 3MSV) that
has an N-terminal helix (residues 13–33; indicated by arrows in the figure)
which is largely misplaced by AF2 (cyan). In the AF2 model, the helix is
positioned at the top right of the figure, with minimal residue contacts with
the main body of the structure. D-AF successfully relocated the helix to the
correct position, reducing the RMSD from 12.9 Å to 2.3 Å. The second
example (Fig. 4b) features a long disordered region at its C-terminus, where
the tail segment (residues 368–373) interacts with the central region of the

Fig. 4 | Four examples of correcting a terminal region of a structure connected by
a disordered region. For each example, three structures are shown: the native
structure (green), the superimposed model by AF2 (cyan) to native (green), and the
superimposed model by D-AF (magenta) to native (green). Arrows indicate the
position of the terminal region that was revised by D-AF. Six constraints were used
for distance-AF input. The domain information is in Supplementary Data 5. a The
hypoxic regulator of sterol synthesis Nro1 from Schizosaccharomyces pombe (PDB:

3MSV, chain: A, 393 amino acids). AF2 RMSD: 12.9 Å, D-AFRMSD: 2.3 Å. b FERM
domain of focal adhesion kinase from Gallus gallus (PDB: 3ZDT, chain: A, 377
amino acids). AF2 RMSD: 5.0 Å, D-AF RMSD: 1.7 Å. c C-terminal domain of
Ribosomal RNA-processing protein 5 from Saccharomyces cerevisiae (PDB: 5NLG,
chain: A, 314 amino acids). AF2 RMSD: 9.6 Å, D-AF RMSD: 1.6 Å. d Serine protease
domain from Ryegrass mottle virus (PDB: 6FF0, chain: A, 275 amino acids). AF2
RMSD: 10.6 Å, D-AF RMSD: 3.4 Å.
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protein. AF2 placed the tail in a completely isolated location (on the left side
of the figure), whereas D-AF correctly positioned it at the binding site. The
protein in the next example (Fig. 4c) has a horseshoe-like conformation that
consists of multiple short helices. The first helix (res: 1–11) is largely mis-
placed to the left bottom in the figure. D-AF successfully moved it to its
correct binding site, reducing the RMSD from 9.6 Å to 1.6 Å. In the final
example (Fig. 4d), the C-terminal tail (residues 256–265), initially placed on
the left side of the structure byAF2 (cyan), was relocated to the opposite side
byD-AF (magenta). These examples demonstrate thatD-AF is also effective
in correcting disordered tail regions, even when large structural rearran-
gements are required.

Application to structure fitting in cryo-EMmaps
Next,we appliedDistance-AF for protein structurefitting to cryo-EMmaps.
In structure modeling for a cryo-EM map, it is common to fit predicted
models by AF2 to the map density15,51–53. However, the predicted con-
formation often does notmatch the density, even when individual domains
are correctly predicted. In such cases, manual adjustment of domain posi-
tions is required. InFig. 5,we show four examplesofmodeling improvement
by using Distance-AF. These targets are selected from the DAQ-Score
database54, which contains structure models built from cryo-EM and
deposited to PDB. The map resolution ranges from 2.5 to 5Å, and the
structures show sufficient overlap and cross-correlation coefficient with the
map. The DAQ score55 indicates that the structures do not have modeling
errors.However, theAF2-predictedmodel exhibits a large discrepancy,with
an RMSD of over 8Å. As shown in the left panel of each example, AF2
models have individual domain structures essentially correct but one of the
domains are largely displaced even to outside of the maps. Distance-AF
moved the displaced domain successfully to the correct region in the map
resulting in substantially improved alignment with the cryo-EM density.
The data of Fig. 5 are provided in Supplementary Data 6.

The first example (Fig. 5a) is the human pyruvate carboxylase protein
in apo state (PDB: 7WTA, chain A), which consists of two distinct domains
connected by a long loop of 82 residues. TheAF2model folded the loop in a
way that the small domainwasplaced close to the larger domain, resulting in
a high RMSD of 8.32 Å. With six constraints, Distance-AF positioned the
small domain almost correctly, with only a minor rotational shift (RMSD:
2.64 Å). Under three constraints achieved nearly the same accuracy,
although with a slightly larger rotational shift of the small domain (RMSD:
3.14 Å). The next example (Fig. 5b) is elongation factor 2 from thermophilic
eukaryotic 80S ribosome protein (PDB: 7OLD, chain: C), which consists of
two similarly sized domains of 359 and 455 residues. Upon superimposing
the AF2model with the native structure, we observed that one domain was
translated and rotated away from its correct orientation. Using six and three
constraints, Distance-AF significantly improved the model, reducing the
RMSD from 11.12 Å to 3.30 Å and 4.81 Å, respectively. Figure 5c shows
models of the subunit RecB fromDNAbinding protein of RecBCD enzyme
(PDB: 8B1R, chain: B). The smaller domain of nuclease activity connected
by a long 35 residue loopwasnot in the right orientation, but thatwas almost
corrected by the constraints. The final example (Fig. 5d) is intermediate
capsid viral protein of rotavirus (PDB: 1QHD, chainA). In theAF2model, a
β-sandwich domain, shown as the lower half in the figure, flipped outside of
the map. With six distance constraints, the domain was corrected in the
right direction, achieving an RMSD of 3.25 Å. Using three constraints
resulted in a slightly larger rotational shift, increasing theRMSDslightly, but
the domain’s position was still essentially correct.

Overall, these examples demonstrate that Distance-AF can improve
the fit of AF models by incorporating a small number of distance con-
straints, which can be derived from examining the maps or other sources.

Application to local structural modification
GPCRs represent one of the largest protein families in the human genome
and constitute amajor class of drug targets, accounting for 36% of all FDA-
approved drug targets56. GPCRs undergo conformational changes to
transmit signals across the cell membrane, and accurately modeling their

multiple conformational states is crucial for drug development and for
understanding their functional mechanisms57,58. Here, we demonstrate that
Distance-AF canmodel functional conformations ofGPCRs starting froma
different functional state by applying local conformational changes between
them.We selected two pairs of active and inactive states of GPCR from the
GPCRdb59 database (Fig. 6). These pairswere selected because the structures
of both active and inactive states are available, and the structures of the two
states have an RMSD over 2 Å measured on the seven transmembrane
helices. In this experiment,Distance-AF is aimed to adjust oneor twohelices
exhibiting the greatest deviation from the target structure. The overall
RMSD is then calculated across all seven helices to evaluate the perfor-
mance. The data are provided in Supplementary Data 7. In Fig. 6a, we
demonstrate the transition from the active state (PDB ID: 6OYA, chain ID:
R) to the inactive state (PDB ID: 3C9L, chain ID: A) of bovine rhodopsin
protein using Distance-AF. With Distance-AF, the sixth helix that is the
main difference between the conformations of the two states (highlighted in
the dashed box), was pulled toward the inactive form (green). As shown, the
resulting helix conformation (magenta) agreed better to the inactive form
than the active form (cyan). The RMSD computed on the seven helices
(helix RMSD) improved from 3.30 Å to 3.03 Å byDistance-AF. The second
example (Fig. 6b) is the opposite case, from inactive (PDB ID: 7BVQ, chain
ID:A) to active state of the beta-adrenergic receptor protein (PDB ID: 7BTS,
chain ID: A) where the fifth and sixth helices in the inactive conformation
(cyan)were pulled toward the active position (green). In this case, the pulled
helicesmoved toward the active conformation (magenta), certainly reduced
the helix RMSD from 2.55 Å to 2.07 Å but did not have a perfect overlap to
the target.

Additionally, two examples are shown in Fig. 6c, d where an
incorrect helix in an AF2 model was pulled toward the correct position.
In Fig. 6c, the AF2 model for the active state of rhodopsin protein
(6OYA-R) had a transmembrane helix deviated (cyan) from the correct
position (green). Distance-AF moved the helix to the conformation
(magenta) that has almost perfect overlap with the target. In the last
example (Fig. 6d), Distance-AF moved two helices (cyan) towards the
right conformation (green), making the helices almost the right con-
formation as the target (green) from 3.34 Å to 2.89 Å, but the deviation
comes from the loop and the helix conformations are substantially
improved. In all the cases, Distance-AF made natural modification to the
target helix orientation, not violating protein-like overall conformations.
The improvement of helix RMSD values of the helical regions was not
large, decreasing from 3.34 Å to 2.89 Å; however, the deviation originates
primarily from the loop regions, while the helical conformations show
substantial improvement. In all cases, Distance-AF introduced natural
modifications to the target helix orientation without disrupting the
overall protein-like conformations. Moreover, the movement of
Distance-AF is so effective and successful on no more than two helices
that has generalized RMSD improvement on seven helices.

Application to generating protein ensembles
In this application, we generated protein conformational ensembles using
Distance-AF, unlike previous sections where we generated single con-
formations with Distance-AF. We selected two proteins from the Protein
Ensemble Database60, whose structures were determined byNMR and have
over 20 conformations in their PDB entries, where conformation changes of
the models happened across their two structural domains. The first protein
is skeletal muscle troponin C (PDB ID: 1TNW) and the second one is the
HIV-1 capsid protein (PDB ID: 2M8P). For each of these two proteins, we
defined two domains and derived six distance constraints between residues
across the two domains. To generate diverse ensembles, we introduced
different distance constraints to a generated AF2 model at various iterative
stages with random ordering. Distances used are provided in Supplemen-
tary Data 8. We generated seven conformations for each protein. The data
shown in Fig. 7 are provided in Supplementary Data 9 and 10.

Figure 7a visualizes the ensemble structures of troponin C (left) and
HIV-1 capsid protein (right). The conformation ensemble in magenta are
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the NMR-derived structures, which shows in seven different clusters with
RMSD diverse from each other over 5 Å, while the ensemble in a different
color for each chain was generated by Distance-AF. For troponin C,
Distance-AF successfully captured the conformational variability of the
protein by predicting the bottom domain into five clusters, which align
closely with the broad range of native states observed in the native

conformations. Similarly, for the HIV-1 capsid protein, seven different
clusters are displayed from native conformations with pairwise RMSD
difference above 5 Å, the conformations generated by Distance-AF corre-
spond to approximately four diverse clusters that reflect theNMRensemble.

In Fig. 7b, we computed GDT-TS score40 of pairs of domains to
demonstrate that the predicted ensembles by Distance-AF maintain high
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structural integrity and folding pattern while diverse in different con-
formations. GDT-TS is an average of the weighted fraction of residues in
two structures that are within 1, 2, 4, 8 Å when the structures are
superimposed. It ranges from 0 to 1 with 1 indicating a perfect match of
the two structures compared. As shown, domains from the NMR
ensembles as well as those generated by Distance-AF have all 0.65 or
higher GDT-TS, indicating that the domain structures are kept almost
the same.

Figure 7c shows the standard deviation of dihedral angles (left: phi,
right: psi) computed across multiple conformations along the residue
positions of troponin C. The blue dashed lines represent the native
structures, while the orange lines correspond to the ensembles generated
by Distance-AF. The residues in the linker region, which connects two
domains, are highlighted between two vertical red dotted lines. A large
standard deviation of angles was observed at the linker region in both
NMR ensemble and structures generated by Distance-AF. There are
other standard deviation peaks, but they correspond to long loop regions
that connect helices, which do not have stable structure. Figure 7d is for
HIV-1 capsid protein. For the NMR ensemble, a single peak of the
standard deviation was observed at the linker region. This peak is also
observed for the ensemble by Distance-AF. There were some other
smaller peaks, which turned out to correspond to the residues that were
involved in the distance constraints.

The results in Fig. 7b, c and 7d show that Distance-AF is able to
generate diverse conformational ensembleswhile preserving the quality and
compactness of intra-domain structures.

Discussion
We developed Distance-AF, a deep learning method that leverages the AF2
framework while integrating distance constraints to ensure the predicted
structures alignwith the provided distance information.WhileAF generally
makes reasonable predictions, practical scenarios often reveal cases where
domainor local structureorientations in themodeldonot alignwith specific
experimental data or biological knowledge. This mismatch does not
necessarily indicate an error in AF’s prediction; rather, the target protein
may naturally exhibit flexibility in a linker region, and AF may have accu-
rately predicted a plausible structure with a particular domain orientation
that coincidentally conflicts with experimental data. However, correcting
domainorientation in suchmodels is challenging, asAFdoesnot allowusers
to specify distance constraints during its prediction process.

In Distance-AF, user-provided distance constraints are incorporated
into the loss function, which is iteratively optimized to achieve con-
formations that align with the specified distances. Compared to existing
methods35,36 that retrain the neural network to handle distance con-
straints, this approach is the key innovation, which offers several sig-
nificant advantages: Distance-AF is independent of a specific training set.
Therefore, the development did not need substantial computational
resources that would be required for full training of the network.
Additionally, it facilitates an intuitive, conformational adjustment from
the initial structure model to the refined model that satisfies the desired
distance constraints. Distance-AF showed substantial improvement of
the modeling accuracy in terms of RMSD and TM-score over the AF2,
Rosetta, and AlphaLink.

Fig. 5 | Examples of structure fitting for cryo-EM maps with Distance-AF For
each example in a row, the left panel shows the native structure in PDB (green)
superimposed with a AF2 model (cyan). The map is shown in gray. Middle, the
Distance-AFmodel using six distance constraints (magenta) superimposed with the
native (green). Right, the Distance-AF model using three distance constraints
(orange) superimposed with the native (green). a The structure of human pyruvate
carboxylase in apo state (PDB:7WTA, chain: A) derived from a cryo-EM map
(EMD-32773) of a 3.9 Å resolution. RMSD: AF2 model, 8.32 Å; Distance-AF model
with six constraints, D-AF(6), 2.64 Å; Distance-AFmodel with three constraints, D-

AF(3), 3.14 Å. b A cryo-EM structure of elongation factor 2 from thermophilic
eukaryotic 80S ribosome protein (PDB: 7OLD, chain: C); EMD-12977 at a 3.0 Å
resolution. RMSD: AF2 model, 11.12 Å; D-AF(6), 3.30 Å; D-AF(3), 4.81 Å. c The
structure of subunit RecB from DNA binding protein of RecBCD enzyme (PDB:
8B1R, chain: B) froma cryo-EMmapof 3.2 Å resolution (EMD-15803). RMSD:AF2,
10.4 Å; D-AF(6), at 3.46 Å; D-AF(3), 4.78 Å. d The structure of intermediate capsid
viral protein 6 (VP6) of rotavirus (PDB:1QHD, chain: A) from a map EMD-1461
with resolution of 3.8 Å. RMSD: AF2, 8.02 Å; D-AF(6), 3.25 Å; D-AF(3), 6.76 Å.

Fig. 6 | Local conformational change to GPCRs.
a Rhodopsin protein active (PDB: 6OYA, chain: R),
inactive form (PDB: 3C9L, chain: A). In the par-
entheses, the average Ca distances of the 6th helix
that are pulled by Distance-AF from the active form
helix (cyan) to inactive form (green) toward the
target inactive form are shown. Distance constraints
applied are provided in Supplementary Data 7.
b Beta-adrenergic receptor protein, active (PDB:
7BTS, chain: A), inactive (PDB: 7BVQ, chain: A).
Distance-AF pulled the 5th and 6th helices of the
inactive form (cyan) toward the active position
(green). The structure in magenta is the resulting
model by Distance-AF. c Rhodopsin, active form
(6OYA-R). From the AF2model that has an average
Ca distances of 2.06 Å (cyan) at the 6th helix, it was
pulled towards the correct active form (green). The
structure in magenta is the result of applying
Distance-AF. d Beta-adrenergic receptor protein,
PDB ID: 7BTSA). The 5th helix in the AF2 model
(cyan) was pulled toward the target crystal structure
(green), which yielded the conformation in
magenta.
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Applications of Distance-AF include refining predicted structural
models using provided distance constraints, fitting structures to cryo-EM
maps, modeling different functional states, and generating structural
ensembles. The distance information used by Distance-AF does not need
to come from experimental data; hypothetical distances can also be
provided. This allows users to visualize how applying specific constraints
may alter the overall structure and to assess whether the proposed dis-
tances are structurally feasible. Notably, Distance-AF ensures that the
overall structure is modified naturally while satisfying the specified

distances, as AF2 inherently understands the principles of natural protein
conformations.

Distance-AF works best when specified distance constraints are
between two structured domains and linear move of domains are
required to reach the target conformation. The modeling results are in
principle affected by the accuracy of the provided distance constraints,
but as shown in Fig. 2b, the results were reasonably robust to pertur-
bations of the distances. In the current implementation, provided dis-
tance constraints are considered as a whole by the sum of the distance

Fig. 7 | Performance of Distance-AF on NMR protein ensembles. a Left, con-
formational ensemble of troponin C (PDB ID: 1TNW), seven representatives of
clusters from 20 conformations in the PDB entry are shown. The clusters were
generated with an RMSD cutoff of 5.0 Å. right, conformational ensemble of HIV-1
capsid protein (PDB ID: 2M8P). seven representatives form 100 conformations are
shown. b GDT-TS distributions of two domains of the proteins are shown. Blue,
GDT-TS of all pairs of conformations in the PDB entry; orange, domain pairs of
conformations generated by Distance-AF. The domains of the two proteins are
manually determined. 1TNW, domain 1: residue 1 to 91; domain 2: 96 to 162. 2M8P,
domain 1: 1 to 145; domain 2: 160 to 220. c The standard deviation of main-chain
dihedral angles (phi, psi angles) along amino acid numbers of the native (dashed

blue) and the generated conformations by Distance-AF (orange) on target 1TNW,
the unit is in degree. Left: standard deviation curves on phi angles, right: standard
deviation curves on psi angles. The regions specified by red dotted lines are the linker
regions. d The standard deviation of main-chain dihedral angles (phi, psi angles)
along amino acid numbers of the native (dashed blue) and the generated con-
formations by Distance-AF (orange) on target 2M8P, the unit is in degree. Left:
standard deviation curves on phi angles, right: standard deviation curves on psi
angles. The regions specified by red dotted lines are the linker regions. For c and
d, the distance constraints were sampled from the N-terminal and the C-terminal
domains outside of these linker regions.
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difference in a current structure (Eq. 1). Instead, we plan to give a weight
to each distance to allow prioritizing some of the distances over others,
depending on the importance or confidence. Modeling is challenging if
pulling domains cause severe atom clashes or substantial rotation is
needed for achieving the target conformation. Also, satisfying distance
constraints between multiple many domains could be challenging,
although we have not tested it yet.

We plan to extend Distance-AF to support protein multimers and
incorporate additional types of constraints, such as main-chain and
side-chain angles, atomic distances within binding pockets to accom-
modate ligand interactions, and the generation of ensembles for dis-
ordered proteins that maintain core structures and key residue
distances.

Methods
Structure modeling with constraints as an overfitting problem
Distance-AF is built on AlphaFold2 (AF2) and uses the same network
weights as AF2. Unlike conventional supervised learning methods, it is not
pretrained on a separate training dataset. Instead, Distance-AF introduces
distance constraints (Eq. 1), which is implemented as an intra-domain
FAPE loss, as described in this section. This distance constraint loss is
incorporated alongside the standard loss termsused inAF2 (see Eq. 2) and is
minimized iteratively during the modeling process (Fig. 1). In this frame-
work, the target structure is effectively “overfit” to the loss function that
includes the distance constraints.

Intra-domain FAPE loss
Supplementary Fig. 1 shows the pseudo code for computing the intra-
domain FAPE loss. This is the Lfape in Eq. 2. The computation requires 3
types of information. (1) domain1, domain2:residue index of each
domain, specified as input; (2)~xpred ,~xinitial : predicted and initial frames;
(3) Tpred , Tinitial : Rigid transformation from frames to coordinates. First,
the predicted and initial frames are aligned and converted to coordi-
nates in a common origin, referred to as local coordinates (steps 1–3).
Next, the frame-aligned point error for every pair is calculated (step 4).
Finally, based on the definition of domain-wise residues, errors on
residue pairs across separate domains are masked to zero, while those
related to residues within the same domain are retained and averaged
(steps 5–7).

Settings of computation
The network depth of structuremodule is set to 8. The learning rate is 0.001
using the Adam optimizer with β1 ¼ 0:9 and β2 ¼ 0:99, controlling the
exponential decay rate for the moving average of the first-order moment
(mean) and second-order moment (variance) of the gradients. L2 regular-
ization is implemented by built-in weight decay in Adam optimizer, and we
use drop-out rate = 0.1 in structure module. By default, we use up to 30,000
iterations to accommodate large targets that usually require more iterations
to converge.

The computation time for Distance-AF is largely dependent on the
length of the protein sequence and the number of iterations. For a target
sequence of up to 500 amino acids with up to 30,000 iterations, Distance-
AF can complete the process within less than an hour to a few hours. We
have optimized the Distance-AF framework to efficiently utilize GPU
memory during the loss backward stage. With a GPU having 24GB of
memory, it is possible to run any target sequence of up to 1500 residues.
In Supplementary Table 1, we provided the times needed and GPU
memory of example cases with different protein lengths in comparison
with AF2 and Rosetta.

Running Distance-AF
Distance-AF optimizes an AF2 model to satisfy user-provided distance
constraints. Users are expected to obtain such distance information from
experiments, such as crosslinking, NMR, or by fitting the current structure
model to an EMmap, from literature, or from some ideas by the users based

on their expert knowledge of the protein theywant tomodel. Distance-AF is
a tool to make the structure with the provided distance constraints, which
can be visualized and examined by the users to confirm or design biological
hypotheses.

Distance-AF codes and example files are available at https://github.
com/kiharalab/Distance-AF. Example files are provided in the folder,
Example/1IXCA/. Distance constraints are provided in a text file (in the
example file, it is dist_constraint.txt). In the file, for each line residue
pairs and the distance between them are provided. The Usage
section of the GitHub top page provides step to step guide: As Distance-
AF improves over structure models of AF2, first users need to run AF2
and obtain the embedding file. Then, run distance-AF in a
command line:

python3 Distance_AF.py [--target_file=TARGET_FILE] [--emd_fi-
le=EMD_FILE] [--dist_info=DIST_INFO] [--window_info=WINDOW_
INFO] [--initial_pdb=INITIAL_PDB]

with these options and other parameters, where --target_file is to
provide the path to the directory of the files, --emd_file is to specify the
embedding file from AF2, --dist_info is to provide the distance constraint
file, --window_info provides the domain information, and --initial_pdb is
the starting structure file whichwill be optimized byDistance-AF. Formore
details, please see the GitHub repository.

Running existing methods
We compared Distance-AF to vanilla AF210, Rosetta42,43, and AlphaLink35.
The predicted structures by AF2 were downloaded from the AF2 Database
on 03/15/2023.

We ran Rosetta 3.13, downloaded from the official website of
RosettaCommons42,43. Considering that Rosetta uses a Monte Carlo
approach, we ran Rosetta 10 times for each target and choose the structure
with the lowest Rosetta energy score. We used 0.1 as the weight parameter
fordistanceconstraints, because0.1 gave themost accurate resultson several
targets amongfive values, 0.01, 0.1, 1.0 (default), 5.0, and 10.0we tested. The
command and options we used to run Rosetta is as follows:

/apps/rosetta/w2021.38/main/source/bin/relax.sta
tic.linuxgccrelease -s initial.pdb -constraints:
cst_file dist_constraint.cst -out:nstruct 10 -out:
path:all output_dir -constraints:cst_weight 0.1
-score:weights ref2015_cst -relax:script /apps/
rosetta/w2021.38/main/source/src/apps/public/
relax_w_allatom_cst/always_constrained_relax_
script

To run AlphaLink we followed the instruction at https://github.com/
lhatsk/AlphaLink. Considering that some of the distance constraints
exceeded 10 Å, we employed the AlphaLink model that accepts longer
constraints named as finetuning_model_5_ptm_distogram.pt. The
restraint CSV file was prepared using the exactly the same distance con-
straints applied to Distance-AF. The command used to run AlphaLink was
as follows:

python predict_with_crosslinks.py 1IXCA.fasta
restraint_distributions.csv --distograms --use_pre
computed_alignments 1IXCA/msas/ --checkpoint_path
AlphaLink_model/finetuning_model_5_ptm_distogram.
pt --uniref90_database_path uniref90.fasta
--mgnify_database_path mgy_clusters.fa --pdb70_
database_path pdb70/pdb70 --uniclust30_database_
path uniclust30_2018_08/uniclust30_2018_08
--jackhmmer_binary_path $CONDA_PREFIX/bin/jackhm
mer --hhblits_binary_path $CONDA_PREFIX/bin/
hhblits --hhsearch_binary_path $CONDA_PREFIX/bin/
hhsearch --kalign_binary_path $CONDA_PREFIX/bin/
kalign
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Statistics and reproducibility
We used Python version 3.8.0 to compute Pearson correlation with p-
value < 0.01. The datawe used in thiswork is from2public databases, RCSB
and AlphaFold database, with details elaborated in Results section. Source
data underlying all figures are provided in Supplementary Data files and
Supplementary Information.Our open source code can be run to reproduce
all results in this work.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The detailed information about dataset of PDB entries and distance con-
straints utilized in this study are provided in Supplementary Data files 1, 5,
7 and 8. The ground-truth structures can be downloaded from the Research
Collaboratory for Structural Bioinformatics (RCSB) PDB (https://www.
rcsb.org/). The single-chain AF2-predicted structures are from the Alpha-
Fold Database (https://alphafold.ebi.ac.uk/).

Code availability
The code ofDistance-AFprogram is available via Zenodo at https://doi.org/
10.5281/zenodo.1689148761 and also at https://github.com/kiharalab/
Distance-AF. The development of Distance-AF is partly based on the
OpenFold62 code.
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