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Cryo-electron tomography enables the visualization of macromolecular complexes within native
cellular environments but is limited by incomplete angular sampling and the maximal electron dose
that biological specimens can be exposed to. Here, we developed cryoTIGER (Tilt Interpolation
Generator for Enhanced Reconstruction), a computational workflow leveraging deep learning-based
frame interpolation to generate intermediate tilt images. By interpolating between tilt series
projections, cryoTIGER improves angular sampling, leading to enhanced 3D reconstructions, more
refined particle localization, and improved segmentation of cellular structures. We evaluated our
interpolation workflow on diverse datasets and compared its performance against non-interpolated
data. Our results demonstrate that deep learning-based interpolation improves image quality and
structural recovery. The presented cryoTIGER framework offers a computational alternative to denser
sampling during tilt series acquisition, paving theway for enhanced cryo-ETworkflows and advancing
structural biology research.

Cryo-electron tomography (cryo-ET) has revolutionized our ability to
visualize macromolecular complexes within their native cellular environ-
ments. At the heart of cryo-ET is the tilt series acquisition process, where a
biological specimen is imagedat incremental tilt angles to generate a series of
two-dimensional (2D) projections. These projections are then computa-
tionally reconstructed into a three-dimensional (3D) volume called a
tomogram, providing insights into the structural organization of cellular
components1.

The acquisition setup requires optimizing the interplay of multiple
parameters at once to obtain tilt series with desired qualities. The most
crucial parameters are the total electron dose imposed on the sample, the tilt
range, and the tilt increment. Since biological samples are highly sensitive to
radiation damage, excessive electron dose will degrade the sample, com-
promising the integrity of the structural information2,3. The tilt range
determines the effective thickness of the sample during tilting and, more
importantly, the extent of the missing wedge (i.e., the angular space with
missing signal)4–6.

Finally, the tilt increment, the angular step between successive pro-
jections, directly influences the completeness of angular sampling and thus
the completeness of the 3D reconstruction. The relationship between the
angular sampling and the resolution beyond which the signal content
becomes incomplete is described by the Crowther criterion7. Smaller
increments provide more complete angular sampling, thereby enhancing
the contrast and visibility of smaller features4,8,9. To maintain a reasonable
tilt range, one has to either increase the total electron dose or decrease the
dose per tilt, both of which complicate the subsequent processing by low-
ering the signal-to-noise ratio (SNR) for each image10. Conversely, larger
increments allow for ahigher electrondoseper tilt but lead topoorer angular
sampling and stronger artifacts in the tomograms5,11.

In standard practice, tilt series are typically acquired at increments of
two or three degrees with a tilt range ±60 degrees12. This setup has proven
itself well-suited for obtaining high-resolution structures using the sub-
tomogram averaging (STA) workflow in which multiple instances of the
same complex are localized within tomograms and then aligned and
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averaged together10. The aligning and averaging of randomly oriented
particles effectively extends the angular sampling and thus reduces the
missing wedge in the obtained structure.

A crucial step of STA is reliable particle localization, which remains
challenging, especially for smaller complexes. The most common localiza-
tion methods are template matching13–15, deep-learning (DL) based
approaches16–19, and surface-based localization that is used for pleomorphic
assemblies20–23. While the negative impact of the missing wedge on the
depiction of features that are elongated perpendicularly to the beam
direction has been well described24,25, the extent to which the incomplete
angular sampling between the tilts negatively influences those methods
remains understudied. Consequently, most of the research is focused on
filling the missing wedge26–28 while the incomplete angular sampling
between tilts has not been systematically explored.

When looking at angular sampling from the perspective of computer
vision, one wants to synthesize intermediate images between a pair of input
tilts with a certain motion. In general, it is possible to address this with
traditional methods based on linear or tricubic interpolation29 or more
advancedDL-based image interpolation techniques30.The latter leverage the
power of convolutional neural networks (CNNs)31, recurrent neural net-
works (RNNs)32, and generative adversarial networks (GANs)33 to learn
representations of image content and spatial relationships. DL models are
trained on large datasets, allowing them to capture a wide range of textures
and motions displayed in the field of view. To the best of our knowledge,
none of these interpolation methods have been applied so far to generate
additional images within cryo-ET tilt series.

Here we present cryoTIGER: Tilt Interpolation Generator for
Enhanced Reconstruction for cryo-ET, which computationally reduces the
angular spacing by interpolating between the neighboring imageswithin the
tilt series. We adopted a DL-based frame interpolation algorithm called
FILM34 for the cryo-ET workflow and trained models on multiple datasets,
providing sufficient diversity in acquisition parameters and cellular content.
We evaluated different models and compared them to linear interpolation
aswell as tonon-interpolateddata.The results showed that in comparison to
non-interpolated data, DL-based interpolation yielded better outcomes in
most use cases. Our study underlines the importance of more complete
angular sampling between the tilts and provides a computational solution
that reduces the need to physically acquire datasets with exceedingly dense
angular sampling.

Results
Adaptation to the cryo-ET workflow
To interpolate artificially generated tilt images in between experimentally
acquired tilts, we choose frame interpolation for largemotion (FILM)34. The
FILM network is a UNet-style architecture with 5 encoder-decoder levels
and skip connections, using strided convolutions for downsampling and
bilinear upsampling in the decoder. The network contains ~24.5 million
trainable parameters. The training requires ~1 GB of GPU memory for a
batch size of 4.Memoryusage scales linearlywith input resolution andbatch
size. For more technical details, we refer the reader to the original work.

FILM employs a multi-scale feature extractor35 that shares weights
across the scales and presents a “scale-agnostic” bidirectional motion esti-
mationmodule.This approach relies on thenotion that largemotion atfiner
scales should be similar to smallmotion at coarser scales, thus increasing the
number of pixels available for large motion supervision. Similar to how the
module ensures consistentmotion representation across varying scales, this
principle can be applied to tilted images, where key features must remain
recognizable despite geometric distortions. Bymaintaining adaptability and
efficiency across transformations, themethod alignswellwith the challenges
of our setup, ensuring robust performanceunder varying tilt angles. In order
to accommodate the FILM framework for cryo-ET data, we made multiple
adjustments, as shown in Fig. 1.

Our tilt-series processing pipeline consists of preprocessing, training,
generation, and postprocessing steps. In preprocessing, raw microscope tilt
series images undergo the basic operations of dose filtering, alignment,

normalization, and conversion from grayscale images to colored images
with red, green, and blue (RGB) channels in order tomake themcompatible
with the FILM algorithm. During the training step, we utilized data from
multiple cryo-ETdatasets, seeTable 1. The training data were collectedwith
different pixel sizes and tilt increments to increase the robustness of the
trained DL models. The majority of these tilt images were acquired with a
more commonly used increment of two or three degrees, but we included a
one-degree tilt increment dataset as well, in order to have itemswith smaller
motion in the training dataset.

SupplementaryTable 1providesa list ofmodels thatwe consideredand
trained for this work. When we trained the model on larger tilt increments
only, the performance slightly worsened (see Supplementary Fig. 1). From
now on, we refer to DL (cryo-ET) as the model trained on 317,312 triplets
from 375 tilt series, which is highlighted in Supplementary Fig. 2.

The FILM framework proposed a unified architecture for image
interpolation, which is trainable from regular image triplets alone34. In our
setup, a triplet refers to a set of three consecutive tilt images, where the two
external ones are used to interpolate a tilt image between them, and the
middle tilt image is used as the ground truth image for comparison.
Therefore, in order to train the network with cryo-ET data, we first split tilt
images into triplets. Because the input size of triplets for training using the
FILMalgorithm is 256 × 256, we further divided each tilt into patches of this
size and stored them in a training database.

In the generation step, we tested two models: a DL (Vimeo) model,
trained on samples from the Vimeo-90K dataset36, and a DL (cryo-ET)
model, trained on cryo-ET data to interpolate additional tilts between the
ones acquired physically. During the postprocessing, the luminance com-
ponent representing the overall brightness of an image is extracted (see
Methods “Preprocessing” for details), followed by defocus estimation using
Gctf 37, and tomographic reconstruction using novaCTF38, which performs
correction of contrast transfer function (CTF) in 3D. Note that since we use
aligned tilt series for interpolation, the generated images do not require any
alignment prior to the reconstruction.

In the following subsections, we focus on demonstrating how DL
models outperform naive linear interpolation and no-interpolation sce-
narios. Our emphasis is on showing that DL-based interpolation con-
sistently enhances performance across all evaluated tasks.

Analysis of 2D interpolated tilt images
We first analyzed the generated data in 2Dby comparing their quality to the
available ground truth (GT) images.We usedDictyosteliumdiscoideum tilt
series acquiredwith a one-degree tilt increment (see Table 1) and split them
into evenandodd tilts.Odd tilts, starting from indexone, were used as input
to generate interpolated tilts, while even tilts, starting from index two, served
as GT data. We investigated three different interpolation approaches and
compared them to the GT. The first approach is a linear interpolation, in
which we calculate the pixel-wise average between each pair of adjacent tilt
images. This method serves as a simple baseline without any deep learning
component. We also considered cubic and tricubic interpolation models,
but their performance was worse compared to the linear interpolation
model (see Supplementary Fig. 3). The remaining two approaches utilize the
FILM framework to generate interpolated samples, where we employed
either a DL (Vimeo) model trained on samples from the Vimeo-90K
dataset36 or a DL (cryo-ET) model as described above.

Vimeo-90K comprises 89,800 sequences of seven frames each, sig-
nificantly exceeding the size of the cryo-ET dataset derived from 375 tilt
series. Due to hardware limitations (500 GB RAM), we were unable to scale
the training dataset or model further. While the interpolation framework
itself is not cryo-ET specific, the unique challenge lies in handling tilt-
induced motion, which we address in Methods, section “Preprocessing”

Figure 2 presents a comparison of interpolation methods against
ground truth data. It is important to note that the dose distribution in our
evaluation is to some extent artificial, as discussed in detail later in the text.
We first examined visual accuracy, where all tested methods generated
realistic outputs (panelA). TheDL (cryo-ET)model produced slightlymore
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blurred tilts but with higher contrast compared to the other two methods.
Regarding CTF estimation, the linear interpolated image showed the most
resemblance to the GT, while the DL (Vimeo)model and the DL (cryo-ET)
model exhibit lower fitting accuracy (panel B). The DL (cryo-ET) model
exhibits more artifacts in Fourier space, which is caused by noise present in
themicroscopic images used for the training (see Supplementary Figs. 4–6).
Generally, the defocus values of the images computed by the linear inter-
polation are closer to those of the GT (panel C), with the median defocus
difference being around 50 nm, while for the DL models, the median is
100 nm for DL (Vimeo) and 160 nm for DL (cryo-ET).

For assessing visual similarity quantitatively, we employed three
metrics. Firstly, the peak signal-to- noise ratio (PSNR), which measures the
ratio of maximum signal power to noise power. Secondly, the root mean
square error (RMSE), which calculates the square root of the average
squared differences between predicted and actual values, weighting larger
errors more heavily. Lastly, the structural similarity index (SSIM), which

evaluates perceived image quality by comparing luminance, contrast, and
structural information, with values ranging from−1 (inverse structure) to 1
(identical images). See Methods “2D image comparison metrics” and
Supplementary Information for mathematical definitions of all three
metrics and descriptions of their units. Fig. 2D–F shows comparisons
between GT tilts and interpolated tilts using PSNR, RMSE, and SSIM,
respectively. For PSNR, DL-based models achieve values closer to GT
compared to linear interpolation, which suggests that the generated tilt
series are more similar to the GT tilt images. The RMSE analysis indicates
that the DL (cryo-ET) model exhibits a higher prevalence of outliers com-
pared to the DL (Vimeo) model. However, the SSIM evaluation demon-
strates a slight performance improvement in structural similarity for theDL
(cryo-ET) model in comparison to the DL (Vimeo) model. Although none
of the presented interpolation methods was superior, the results overall
highlight that we can faithfully simulate microscope tilt images using any
of them.

Template matching on tilt-series with interpolated tilts
To evaluate the performance of the proposed approach in generating rea-
listic intermediate tilt images, we integrated generated images into our
reconstruction pipeline (Fig. 1). To quantify the impact of the interpolation
for particle identification, we used high-confidence 3D template matching
(TM)15 as implemented in GAPSTOPTM 14,39. We used a subset of 20 tilt
series from the dataset EMPIAR-1245440 and appliedTM to localize nuclear
ring subunits of the nuclear pore complex (NPC NR).

As a ground truth, we used the manually curated list of particle posi-
tions provided by the authors40. We further used a subset of 24 tilt series
from dataset EMPIAR-1189941 to demonstrate the performance on the 80S
ribosome using the particle positions provided by the authors of the original
study. We computed the F1 score, precision, recall, and the area under the
precision-recall curves (PR-AUC) to assess the performance of TM using
different interpolation types (see Methods “Metrics for evaluating peak
selection” and Supplementary Information for more details and
definitions).

Fig. 1 | The pipeline of cryoTIGER. It consists of preprocessing, training, generation, and postprocessing steps and incorporates a deep learning frame interpolation model
into cryo-ET reconstructions. Individual steps are described in detail in the main text.

Table 1 | Summary of training tilt series

Sample Pixel size Tilt increment # of TS

Dictyostelium discoideum 1.971 1 49

Dictyostelium discoideum 1.971 2 77

Dictyostelium discoideum 1.971 3 159

Human T cells 1.971 2 32

Human embryonic kidney
(HEK Flp-In T-Rex)

1.971 2 10

Human embryonic kidney
(HEK-293)

1.188 2 18

Human skin fibroblasts 2.414 2 30

SUM 375

Breakdownof thepixel size (in Å), tilt increment (in degrees), andnumber of tilt series used to trainDL
(cryo-ET) model. The data were collected independently by five experienced users. Additional
information about other tested models and their configurations is in Supplementary Table 1.
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The evaluation was conducted under two experimental scenarios. In
thefirst scenario,we startedwith a tilt series acquiredwith a tilt increment of
two degrees. We then removed every second tilt, resulting in a reduced tilt
series with a tilt increment of four degrees, which served as a baseline.
Subsequently, we interpolated one tilt between each pair of remaining tilts,
thereby constructing a tilt series with an increment of two degrees. We also
evaluated interpolation of more than one tilt, but the performance typically
decreased with additional interpolated tilts (see Supplementary Fig. 7).

This setup allowed us to compare three distinct conditions: (1) the
baseline tilt series with missing tilts after the removal step, (2) the inter-
polated tilt series where missing tilts were replaced with interpolated sam-
ples to restore the original number of tilts, and (3) theGT tilt series, acquired
directly from the microscope, which contained all the original tilts prior to
the artificial removal step (see Supplementary Fig. 8 for power spectra
depiction for all three cases). By comparing these conditions,we assessed the
extent to which the interpolation improved tomogram properties and
subsequent downstream analyses relative to the baseline without inter-
polation. Additionally, we compared the results to the GT reconstruction.

The results for restoring removed tilts are presented in Fig. 3A for the
80S ribosome and in Fig. 3B for NPC NR. F1 scores and precision-recall
graphs are illustrated on a single representative tomogram, while the PR-

AUC values were extracted for all tomograms from each dataset, offering a
broader and more representative overview of the model performance with
statistical tests.

It is important to note that the removal of tilts introduced a dose
distribution that is, to some degree, artificial. In the case of acquiring data
with a 4-degree tilt increment, one would either keep a lower total dose,
retaining more high-resolution content, or one would use more dose per
image to achieve better contrast. In our case, the total dose is not reduced,
and the retained tilt images have low SNR, therebymaking the interpolation
task more challenging. Nevertheless, we consider this approach to be the
closest approximation to a direct comparison between reconstructions with
and without interpolation data.

In the second testing scenario, additional interpolated tilts were added
to a full experimental dataset (without removed tilts), and the same set of
comparisons was performed. Note that in this case, the non-interpolated
data contains fewer images in the tilt series because we interpolated tilts that
were not acquired. However, this test accounts for a more realistic experi-
mental electron dose. The results are presented in Fig. 3C, D in the same
order as for the first testing scenario.

To better assess the significance of our results, we performed pairwise
group comparisons and used theWilcoxon signed-rank test (two-sided) to

Fig. 2 | Comparison of 2D tilt series images generated using different inter-
polation methods. A Visual differences between features in the GT image and
interpolated images. White arrows indicate structural features with more pro-
nounced differences between approaches. B Corresponding defocus estimation
from the Gctf diagnostic output. The white circle denotes the resolution up to which
the CTF was reliably fitted. C Difference in defocus values (µm), n = 111. D Peak
signal-to-noise ratio (PSNR), where higher values indicate better quality (measured
in decibels), n = 367. ERootmean square error (RMSE), where lower values indicate

better performance, n = 367. F Structural similarity index (SSIM), where higher
values indicate greater visual similarity to the original image, n = 367. Pairwise group
comparisons were assessed using the paired samples t-test. Significance is indicated
as *** for p < 0.001, ** for p < 0.01, * for p < 0.05, and “ns” for non-significant.
Boxplots show medians, interquartile ranges (IQR), and whiskers up to 1.5× IQR;
outliers and all individual values are overlaid as points. Scale bar: 50 nm. Extended
information is in Supplementary Table 3.
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evaluate them (see Fig. 3 and Supplementary Table 4). Linear interpolation
performed theworst in all tested cases.Notably, in the tilt restoration test for
NPCNRand the tilt addition test for 80S ribosome, it significantly degraded
the signal content, evenwhen it was compared to the non-interpolated data.

This is especially surprising considering Fig. 2B, where linear interpolation
had the best CTF fitting.

In the case of the DL (Vimeo) model, differences relative to the non-
interpolated data were less pronounced. Nevertheless, this model

Fig. 3 | Comparison of template matching results for restoring and adding tilt
images using interpolation. A Results for restoring removed tilt images in the 80S
ribosome dataset. F1 scores (left) and precision-recall curves (middle) are shown for a
single representative tomogram. The area under the precision-recall curve (PR-AUC)was
calculated across all tomograms in the dataset (right), n= 24. B Same as (A), but for
tomograms containingNPCNR, n= 20.CResults for adding new interpolated tilt images

in the 80S ribosomes dataset, n= 24.D Same as (C), but for tomograms containing NPC
NR, n= 20. Pairwise group comparisons were assessed using the Wilcoxon signed-rank
test (two-sided). Significance is indicated as *** for p < 0.001, ** for p < 0.01, * for
p < 0.05, and “ns” for non-significant. Boxplots showmedians, interquartile ranges (IQR),
and whiskers up to 1.5× IQR; outliers and all individual values are overlaid as points. The
comparison results for all the pairs are summarized in Supplementary Table 4.
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outperformed the non-interpolated baseline in tilt image restoration for the
80S ribosome dataset. By contrast, the DL (cryo-ET) model consistently
outperformed all other evaluated methods, including the non-interpolated
variant. While the improvements were not statistically significant for the
NPCNR dataset in the overall analysis, a more detailed evaluation revealed
notable benefits. Specifically, when analyzing cross-correlation (CC) values
at the ground truth particle positions (see Supplementary Fig. 9), the DL
(cryo-ET) model showed a significant increase in measured CC values.
Pairwise comparisons of CC values at each ground truth position further
supported these findings (see Supplementary Figs. 10, 11 for NPCNRs and
80S ribosomes, respectively), where the improvements achieved by DL
(cryo-ET) interpolation model were more pronounced and statistically
significant.

To complement the PR-AUC plots presented in Fig. 3, we provide a
detailed pairwise comparison of AUC values across all methods. These
results are shown in Supplementary Fig. 12 for 80S ribosome tilt restoration,
Supplementary Fig. 13 for NPC NR tilt restoration, Supplementary Fig. 14
for 80S ribosome tilt addition, and Supplementary Fig. 15 for NPC NR tilt
addition.

These comprehensive comparisons further reinforce the consistent
advantage of the DL models, especially the DL (cryo-ET) model, which
outperformed the non-interpolated baseline across all evaluated conditions.
The results highlight the robustness and effectiveness of our approach for
enhancing particle localization in cryo-ET data.

Improving the 3D structure of nucleosomes using cryoTIGER
Encouraged by these results, we next applied DL interpolation models to
enhance the localization of nucleosomes. Note that the full analysis of
nucleosomes is the main focus of a separate study42, and here we present
only improvements introduced by our framework. Nucleosomes have a
molecular weight of approximately 250 kDa, which, together with the
crowded environment present in the nucleus and the lack of visual
validation of their position, makes them an especially challenging target
to identify in tomographic data. We analyzed a dataset of 14 tomograms
acquired from the nuclear periphery of T cells with a tilt step of two
degrees. We employed our framework to interpolate additional tilt
images in between the experimental ones, resulting in a tilt series with a
tilt step of one degree using the DL (Vimeo) model. The use of the
interpolated tilt series led to improved contrast in tomograms in com-
parison to those created from non-interpolated tilt series. As a result,
individual features became more visible, as can be seen in Fig. 4A,
showing 2D slices from the reconstructed tomograms. The presented
tomograms were reconstructed using novaCTF38 with no additional
postprocessing. The improved contrast is also confirmed by Standard
Deviation Contrast (non-interpolated data 0.0109 and interpolated data
0.0217) which quantifies how much the pixel values deviate from the
average intensity across the entire image and by Gradient-Based Contrast
(0.0034 and 0.0061, respectively) that measures the intensity variation by
looking at how pixel values change between neighboring pixels (see
Methods “Contrast-based metrics for visual quality” for more details).

After running 3D template matching in GAPSTOPTM 14 on these
tomograms, more distinct cross-correlation peaks with generally higher
values were obtained. This can be observed in Fig. 4B, showing 2D slices
from the TM outcome. Looking closer to the CC peaks reveals not only
lower CC values for the non-interpolated data but also a smaller cluster of
distinct CC values around the peak, as can be seen in the insets of Fig. 4B.
The quantification of the CC values across the whole dataset is depicted in
Fig. 4C. Since there was noGT for nucleosome positions, it was necessary to
validate that the TM positions with the highest CC scores correspond to
actual nucleosome locations in the tomograms. The authors42 validated the
nucleosomes’ positions by manually creating a binary mask to separate the
nucleus from the non-nucleosome-containing cytoplasm. Subsequently,
only the nuclear peaks that were thresholded by the 99th percentile of the
cytoplasmic peaks were considered. The baseline for both the non-
interpolated and interpolated versions was established in this manner42.

Overall, in the 14 tomograms, we detected ∼18k nucleosome particle
positions in the non-interpolated condition, while the interpolated variant
identified∼33k positions. We want to emphasize that we used interpolated
data to detect positions, but the actual particles for STAwere extracted from
the tomograms without interpolation. Interpolated data could potentially
contain additional high-resolution details that were not experimentally
verified. Therefore, we use them to improve the reconstruction pipeline, but
in order to determine the 3D structure, only experimentally acquired data
are utilized.

The average distance between the matches in non-interpolated and
interpolated peak positions confirmed that the latter are closer to the
positions obtained after STA refinement and hencemore precise in terms of
their localization (Fig. 4D). We computed the precision-recall curves for
both tested conditions (Fig. 4E), where we observed an increase in PR-AUC
value from 0.4148 for non-interpolated data to 0.4769 for interpolated data.
A higher PR-AUC indicates that the model is better at correctly identifying
positive instances without producing a large number of false positives.

When ∼33k nucleosome particle positions from the interpolated
variant were used in the STA, it led to marginal improvement in resolution
(from 8.4 to 8.3 Å, see Supplementary Fig. 16). However, the map obtained
from the interpolated-based particle list has more pronounced structural
details as shown in Fig. 4F. The enhanced details are especially visible on the
DNAlinker arms.This use case shows the great potential of interpolation for
reliable localization of small features in crowded cellular environments (an
increase in foundedpositions by87.33%supported by 14.97% improvement
in PR-AUC).

Refined deep-learning particle picking
The aforementioned use cases primarily focus on downstream analyses
using the templatematchingpipeline.Here,wedemonstrate the cryoTIGER
application with DeePiCt17, an open-source deep-learning framework
designed for supervised segmentation and macromolecular complex loca-
lization.DeePiCtmodels, trainedon experimental cryo-ETdata, are broadly
applicable across species and datasets.

To evaluate the impact of interpolation on downstream particle loca-
lization, we utilized the Colab notebook provided by the authors of
DeePiCt17, which allows inference using 3D convolutional neural network
models. Specifically, we used the pretrained model available in the
Colab notebook, optimized for ribosome localization, and applied it to a set
of 24 tomograms. Predictions were performed both on the original (non-
interpolated) data and on data processed using three different interpolation
methods: linear interpolation, the DL (Vimeo) model, and the DL (cryo-
ET) model.

As illustrated in Fig. 5A, which presents representative 2D slices from
the resulting 3D probability maps, interpolation led to an increased density
of high probability peaks compared to the non-interpolated baseline.
Among the methods tested, the DL (cryo-ET) model produced the highest
probability values, suggesting improved localization performance. The
enhanced contrast in the probability maps indicates that the proposed
interpolation approach preserves structural features more effectively,
thereby facilitating more accurate ribosome detection by DeePiCt.

To validate the predicted particle positions, we compared them against
a manually curated ground truth list, as described in the section “Template
matching on tilt-series with interpolated tilts”. Evaluation was conducted
using the F1 score andprecision-recall curves, as shown in Fig. 5B,C.Across
all interpolation strategies, interpolated data consistently yielded higher
F1 scores and improved precision-recall characteristics compared to the
non-interpolated baseline.

To further support our findings, we computed summary statistics
including the maximum F1 score and the area under the precision-recall
curve, both of which provide robust, threshold-independent assessments of
model performance. As shown in Fig. 5D, E, the use of interpolated tilt
images substantially improves localization accuracy across both evaluated
deep learning-based methods. The comparison results for all the pairs are
summarized in Supplementary Table 5.
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In Fig. 5F, we present a pairwise comparison of PR-AUC values
between the non-interpolated data and theDL (cryo-ET)model. The results
show improvements in 18 out of 24 tomograms, where data points lie above
the identity line (red), indicating superior performance of the interpolated
variant. Only six tomograms show slightly better results with non-
interpolated data; however, the deviations from the identity line in these
cases are minimal, suggesting marginal differences.

A complete set of pairwise PR-AUC comparisons for ribosome
particle picking using DeePiCt is provided in Supplementary Fig. 17,
further demonstrating the consistent advantage of the interpolation
approach.

Enhanced membrane segmentation
We also evaluated the impact of the interpolation on DL-based, fully
automated membrane segmentation as implemented in MemBrain v243. A
core module of MemBrain v2 employs a 3D-UNet architecture optimized
for cryo-ET membrane segmentation, where the provided models were
trained on diverse cryo-ET data, resulting in robust and widely-used soft-
ware for membrane segmentation44–46.

To source publicly available annotated data in standardized formats,
we utilized the cryo-ET Data Portal47. In the portal, we identified four tilt
series (128_2, 129_2, 133, 141_3) from the dataset CZCDP-10004, con-
taining all necessary reconstruction files as well as a hybrid segmentation
mask to validate the suggested DL interpolation strategy. The hybrid
annotation method combines tomogram denoising, 3D-UNet-based
membrane segmentation, and manual postprocessing. We deliberately
selected this hybrid approach to more accurately compare the performance
of fully automated MemBrain v2 on non-interpolated and interpolated
datasets.

We ran MemBrain v2 on the four tomograms reconstructed without
interpolation, with linear interpolation, andwith interpolation based onDL
models. We assessed the quality of segmentation using the Jaccard Index,
the Dice Coefficient, and the Hausdorff Distance (see details on metrics for
evaluating segmentation in Supplementary Information for formulas and
more details).

Across all three metrics, we observed a consistent improvement in
the outputs of MemBrain v2 when using the DL interpolation workflow
(see Fig. 6). After adding interpolated frames generated by DL models,

Fig. 4 | Enhanced particle picking and 3D structure determination. A 2D slice
from the tomogram reconstructed without interpolated tilt images (left) and with
images interpolated using the DL (Vimeo) model (right), where the contrast for
improved after adding interpolated tilts. B The same slice after the template
matching for the tomogram in panel (A) (slightly rescaled due to the intensity scale
bar at the right), shows markedly improved cross-correlation peaks for the inter-
polated data (right). C Histogram of CC scores from selected peaks, illustrating an
increase in both absolute values and frequency for the interpolated data.D Average

distance of CC peaks to the refined positions found during STA, showing improved
localization precision for the interpolated data. The mean distance is measured in
voxels with a voxel size of 3.942. E Precision-recall curves, with a higher PR-AUC
value for the interpolated data (0.4769) compared to non-interpolated data (0.4148).
F 3D structures calculated based on non-interpolated (left) and interpolated posi-
tions, colored by local resolution (color bar in Å). Although the structure based on
interpolated positions has a similar resolution, it reveals more detailed structural
features. Scale bar: 20 nm.
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Fig. 5 | Particle picking of ribosomeswithDeePiCt. A 2D slice from the probability
map generated by DeePiCt using non-interpolated data (left) and interpolated data
with theDL (cryo-ET)model (right). The probability scale is identical for bothmaps.
Without interpolation, few peaks are visible, but after adding interpolated frames,
many more positions are revealed. B F1 score for a representative tomogram,
showing improved DeePiCt performance with interpolation compared to the
manual ground truth. C Precision-recall curve comparison for the same tomogram,
demonstrating enhanced DeePiCt performance with interpolation. D Maximum
F1 scores across 24 tested tomograms (n = 24); all the pairs are summarized in

Supplementary Table 5. E Area under the precision-recall curve for 24 tested
tomograms (n = 24); all the pairs are summarized in Supplementary Table 5.
F Pairwise comparison of PR-AUC values between the non-interpolated data and
the DL (cryo-ET) model, n = 24. Statistical comparisons were assessed using the
Wilcoxon signed-rank test (two-sided). Significance is indicated as *** for p < 0.001,
** for p < 0.01, * for p < 0.05, and “ns” for non-significant. Boxplots show medians,
interquartile ranges (IQR), and whiskers up to 1.5× IQR; outliers and all individual
values are overlaid as points. Scale bar: 40 nm.
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some false positive segmentation artifacts were removed (indicated in red
in panel B), and the automated segmentation more closely matched the
ground truth hybrid annotation, with fewer false negatives (indicated in
green in panel B). These results strongly demonstrate the potential of
interpolation to enhance fully automated membrane segmentation.

Additionally, we observed a clear increase in the Dice Coefficient
(panel C) and Jaccard Index (panel D), along with a decrease in Hausdorff
distance (panel E), further confirming the improvement in segmentation
accuracy due to more precise reconstruction enabled by the inclusion of
interpolated frames.

Enhanced microtubule segmentation
Lastly, we evaluated the impact of interpolation on fully automated
microtubule (MT) segmentation using DeePiCt. This extends the frame-
work to encompass both membrane segmentation with MemBrain v2 and
microtubule segmentation with DeePiCt, which has also been used for
ribosome particle picking. These applications highlight the conceptual and
methodological parallels between particle picking and segmentation in
cryo-ET analysis.

Details on the generation of ground truth (GT) data for microtubule
segmentation are provided in Methods, section “Ground truth data for

Fig. 6 | Enhancedmembrane segmentation usingMemBrain v2. ARepresentative
tomogram slice from a tilt series downloaded from the cryo-ET Data Portal47 and
reconstructed using our pipeline (left). The same slice with the hybrid ground truth
segmentation (manually curated) is depicted in white (middle). The tomogram slice
overlaid with the GT segmentation (right). B Comparison of the non- interpolated
version with interpolation using the DL (Vimeo) model and the DL (cryo-ET)
model. Green regions represent areas in the GT but not detected by MemBrain v2

(false negatives), red regions were detected by MemBrain v2 but are not in the GT
(false positives), and blue regions were detected by both MemBrain v2 and the GT
(true positives). C Overlap-based dice similarity coefficient for four tested tomo-
grams, ranging from 0 (no overlap) to 1 (full overlap). D Overlap-based Jaccard
Index for the same tomograms, also ranging from 0 to 1. E Hausdorff distance
measuring how far the tested segmentation outlines are from the GT segmentation.
Scale bar: 60 nm.
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microtubule segmentation”. For evaluation, we segmented tomograms
under all tested conditionsusingDeePiCt,which includes adedicatedmodel
forMTsegmentation.The results are summarized inFig. 7. PanelAdisplays
a representative 2Dslice fromone tomogram, alongside a corresponding 2D
slice and a 2Dprojectionof theGT segmentation from the full 3Dvolume.A
comparison is shown between the non-interpolated version (cyan), inter-
polation using theDL (Vimeo)model (red), and interpolation using theDL
(cryo-ET) model (green). The deep learning-based models produced more
complete segmentations, especially near microtubule ends, which are often
truncated in the non-interpolated condition.

As with membrane segmentation, we assessed segmentation quality
using the Jaccard Index, Dice Coefficient, and Hausdorff Distance (see

Supplementary Information for metric definitions and formulas). We
observed a similar trend: an increase in Dice Coefficient (panel C) and
Jaccard Index (panel D), along with a decrease in Hausdorff Distance
(panel E), indicating improved segmentation accuracy due to
interpolation.

Discussion
Toaddress the challenge of angular spacing in tomographic reconstructions,
our study introduces a specific application of an existing frame interpolation
framework, tailored to the cryo-ET pipeline. By interpolating images
between acquired tilts, our approach effectively increases angular sampling,
enhancing the signal content in the reconstructions. To ensure robustness,

Fig. 7 | Enhanced microtubule segmentation using DeePiCt. A Representative
tomogram slice with arrows indicating the positions of microtubules (left). The
corresponding ground truth segmentation is depicted in white (middle), alongside a
2D projection of the GT segmented 3D volume for visualization (right).
BComparison of the non-interpolated version (in cyan)with interpolation using the

DL (Vimeo)model (in red) and theDL (cryo-ET)model (in green).COverlap-based
dice similarity coefficient for three tested tomograms, ranging from 0 (no overlap) to
1 (full overlap). D Overlap-based Jaccard Index for the same tomograms, also
ranging from0 to 1.EHausdorff distancemeasuring how far the tested segmentation
outlines are from the GT segmentation. Scale bar: 60 nm.
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we developed a custom model through extensive training on diverse data-
sets, varying in both cellular content and acquisition setup. Validation
experiments demonstrated that DL-based interpolation generates images
that enhance tomogramreconstruction andoutperformconventional linear
interpolation.

The impact of interpolated images on tomogram properties was
comprehensively evaluated using template matching, DL-based particle
localization and segmentation with DeePiCt, and DL-based segmentation
using MemBrain v2 across diverse datasets and targets. The results for DL-
based interpolation consistently outperformed those obtained from linear
interpolation, with notable improvements observed in all cases. This was
surprising given the generally good performance of linear interpolation in
2D. One possible explanation is that DL-based approaches better preserve
structural content (see Fig. 2F) by considering contextual information from
the surrounding area, whereas linear interpolation operates on a pixel-by-
pixel basis, making it less suitable for noisy or imperfectly aligned data. This
could also explain why, in some cases, we observed that linear interpolation
actually worsened the results of downstream processing. We hypothesize
that these cases correspond to tilt serieswith poorer alignment quality, likely
due to higher noise levels.

For the comparison of the DL-based models, while the DL (cryo-ET)
model often excelled, there were instances where the DL (Vimeo) model
performed better or similarly well. Given the diametrically different images
used for the training, such resultsmight seemcounterintuitive, as onewould
assume that training using domain-specific data should improve the model
and its performance. However, the extent of improvement in DL methods
depends heavily on both the size and quality of the training datasets. Ide-
ally, one would acquire datasets specifically for training purposes, for
example, such as tilt serieswith 1° angular incrementswhilemaintaining the
same dose per tilt image as in standard 2° acquisitions. However, such a
setup would double the number of tilt images and require halving the
angular range (e.g., to ±30°) to keep the total dose constant. Thiswould limit
the utility of those datasets exclusively to training.

Furthermore, the number of tilt series required to sufficiently train a
deepmodel would likely exceed the dataset sizes typical of cryo-ETprojects.
For this reason, we relied on existing datasets, some with 1° angular incre-
ments but lowerdose, andotherswith 2° increments andhigherdose (where
training pairs are spaced 4° apart).We believe that the limited availability of
ideal training data, combined with lower computational and memory
requirements, is the primary reason why the model trained on cryo-ET
images showed only modest improvement. On the other hand, this also
highlights the robustness of the DL (Vimeo) model: retraining on domain-
specific data risks overfitting, whereas the strong performance of the DL
(Vimeo) model out of the box suggests good generalization across diverse
datasets and imaging conditions.

The most notable advancements were achieved in challenging targets,
such as the nucleosome dataset, where our interpolation framework more
than doubled the number of reliably localized particles in comparison to the
non-interpolated data. Additionally, the automated membrane segmenta-
tion results showed greater agreement with manual annotations, high-
lighting the potential for reduced manual curation. This has far-reaching
implications as accurate segmentation ofmembranes and the localization of
associated proteins are essential for advancing cryo-ET studies that link
membrane architecture and molecular organization to cellular function.
Furthermore, if the automated segmentation is reliable enough, it could
replace manual annotations of surfaces needed for surface-based particle
localization of pleomorphic assemblies for subtomogram averaging.

The interpolation workflow may influence cryo-ET data acquisition
parameters. It enables the use of larger tilt increments with increased elec-
trondose per imagewithout compromising the achievable content. This can
improve the performance of downstream processing due to increased SNR.
Moreover, for samples that are unusually sensitive to electron dose, an
adjusted tilt-acquisition scheme can be combined with tilt interpolation, so
data can still be acquired with a reasonable tilt range and sufficient electron
dose per image.

Although our study demonstrates the potential of interpolation
approaches, it is not without limitations. While interpolated tilts can
reduce small gaps in angular sampling, they do not resolve structural
data loss associated with missing data across a larger angular space.
Attempts to generate more than one interpolated image between two
experimental tilt images using the current architecture occasionally
resulted in artifacts, particularly when the interpolated tilt images
deviated from realistic structural representations (see Supplementary
Fig. 1). This highlights the need for careful optimization and evaluation
of interpolation outputs to avoid introducing misleading features into
reconstructions.

Future work should explore alternative neural network architectures
beyond the FILM algorithm to further optimize performance and address
existing limitations. For instance, networks designed specifically for extra-
polation may hold promise for mitigating the effects of the missing wedge.
However, this poses a significant challenge, as it requires the development of
approaches that can generalize well without overfitting, especially in the
absence of ground-truth data for validation. The integration of extrapola-
tion networks or hybrid models capable of interpolating and extrapolating
tilt series data could potentially open new ways for addressing this long-
standing issue in cryo-ET.

In conclusion, our study underlines the importance of filling in the
angular space between the tilt images and provides a unique computational
solution for this problem. Intuitively, one can draw a parallel between
interpolation and downsampling. In cryo-ET, tomogram analysis is often
performed on binned data, not only because of the large size of tomograms,
whichmakes tasks such as segmentation or particle picking less feasible, but
primarily because binning increases the density of low-resolution signal
content. This improves contrast, but at the cost of losing high-resolution
information, which can be problematic for tasks that rely on both. For
example,particle pickingof small complexes (suchasnucleosomes) requires
enhanced contrast while still preserving the ability to distinguish fine
structural features. Interpolation increases the low-resolution signal content
by densifying the angular sampling, while preserving the original high-
resolution data.

The DL-based interpolation approach has shown promising results,
enhancing tomogram properties relevant for both particle and feature
localization. To facilitate further research and community adoption, we
provide our approach as an open framework, cryoTIGER, complete with
trained models, laying a solid foundation for the continued exploration of
interpolation techniques. By addressing current limitations and pursuing
innovative methods, we anticipate further advancements in the tilt-
interpolation methods that will continue to enhance cryo-ET reconstruc-
tions and facilitate their analyses, thereby advancing structural biology
studies.

Methods
Preprocessing
The input in ourpreprocessingpipeline is dose-filtered and aligned tilt series
(for the detailed workflow from the raw tilt series to the aligned ones, we
refer the reader, for example, to the studies on 80S ribosome41 and NPC
NR40). To accommodate memory constraints, the input tilt series is binned
by a factor of 2.

Linear interpolation is performed by computing a pixel-wise average
between each pair of adjacent tilt images. For completeness, we also con-
sidered the effect of tilting, where the pitch angle is determined as in ref. 1.
For tilt steps below 3°, the pitch between two neighboring images is below 1,
making linear interpolation between corresponding pixels valid. For tilt
steps of 4°, the pitch is ~1.2. In this case, one could consider computing
linear interpolation between pixels with an offset of 1 or using cubic
interpolation, which takes neighboring pixels into account. However, the
results shown in Supplementary Fig. 3 suggest that linear interpolation
without an offset was superior even for 4° tilt increments. This is most likely
due to the downsampling of the data, which combines values from neigh-
boring pixels, thereby diminishing the effects of the pitch. In our study, we
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only evaluated data with tilt increments below 4°, so this pitch was not
considered for linear interpolation.

In the deep learning-based interpolation process, the network requires
input data with three color channels. Therefore, the grayscale data were
normalized to the 0–255 range, copied into all three channels, and saved in
the PNG format.

After executing the interpolation process, the output is generated in the
RGB format. Converting this output into a grayscale image using the
luminance channel involves combining the three color channels into a single
intensity channel that represents the perceived brightness of each pixel. The
formula for converting an RGB value to grayscale using the luminance
channel is:

Y ¼ 0:299 � Rþ 0:587 � Gþ 0:114 � B

Finally, the image stack is reconstructed using the NumPy library and
written out using cryoCAT48.

2D image comparison metrics
We assessed image similarity using PSNR, RMSE, and SSIM (formulas and
more details are in the Supplementary Information). PSNR and RMSE
quantify pixel-wise differences, with higher PSNR and lower RMSE indi-
cating better similarity. SSIMmeasures structural similarity, accounting for
luminance, contrast, and texture; values closer to1 indicatehigher similarity.

Metrics for evaluating peak selection
To evaluate particle selection, we computed precision, recall, F1 score, and
PR-AUC (formulas and more details are in the Supplementary Informa-
tion). A tolerance distance was applied to match detected peaks to baseline
positions. Higher values of F1 and PR-AUC reflect better detection
performance.

Contrast-based metrics for visual quality
Standard deviation contrast is a measure used to quantify the contrast of an
image by evaluating the variation in pixel intensities. It reflects how much
the pixel values deviate from the mean intensity. A higher standard devia-
tion indicates greater contrast, while a lower value suggests lower contrast.

The standard deviation contrast is calculated as the standard deviation
of the pixel intensities, given by:

StandardDeviationContrast ¼ σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where I(i,j) is the pixel intensity at position (i,j) andμ is themean intensityof
the image, defined as:
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where m and n are the height and width of the image, respectively.
A higher standard deviation of pixel intensities indicates higher con-

trast in the image,whereas a lower standarddeviation suggests the imagehas
less contrast.

Gradient-based contrast is a measure used to quantify the contrast of
an image based on the spatial variations in intensity between neighboring
pixels. This metric highlights areas with sharp intensity changes, such as
edges, and is useful for evaluating the sharpness and detail of an image. It is
calculated by summing the gradient magnitudes of the image in the hor-
izontal (x) and vertical (y) directions. The formula is given by:

Gradient� BasedContrast ¼ 1
m � n

X

m

i¼1

X

n

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∂I i; j
� �

∂x

� �2

þ ∂I i; j
� �

∂y

� �2
s

where ð∂I i;jð Þ
∂x Þ is the partial derivative of the image with respect to the hor-

izontal direction x, ð∂I i;jð Þ
∂y Þ is the partial derivative of the image with respect

to the vertical direction y, and m, n are the height and width of the image,
respectively.

The partial derivatives are often approximated using convolution fil-
ters, such as the Sobel filter29, to calculate the gradient in each direction. A
higher gradient contrast value indicates a higher degree of contrast in the
image, with sharper transitions between pixel intensities.

Experimental data
Parameter setups for TM. In our TM configuration, we used the
NPC NR template (EMD-51628)40 with a low-pass filter of 23 pixels
(corresponding to 30 Å) and angular sampling of 10 degrees on
4× binned data. For detecting ribosomes, we used an 80S ribosome
template (EMD-15807)41 with a low-pass filter of 30 pixels (corre-
sponding to 23 Å) and angular sampling of 10 degrees on 4×
binned data.

Nucleosome template matching and subtomogram averaging. The
nucleosome structures shown in Fig. 4were obtained from14 tomograms
of resting T cells. The dataset is the main focus of a separate study42, and
we therefore refer the reader to the original work for details on the data
acquisition parameters and processing. Here we briefly summarize
information relevant to our study. The tilt series were acquired with a tilt
step of 2° and angular range ±60°, resulting in 61 images and a total
electron dose of 135 e− per Å. The pixel size of unbinned data
were 1.971 Å.

To compare the performance of the cryoTIGER workflow for TM of
nucleosomes, we used GAPSTOPTM 14 on novaCTF38 reconstructed tomo-
grams that contained either non-interpolated data or data interpolatedwith
the DL (Vimeo)model. The TMwas performed on data downsampled by a
factor of 2, i.e., pixel size of 3.942 Å.

The nucleosome template was the same for both cases, a lower-
resolution in situ nucleosome structure generated from the aforemen-
tioned 14 tomograms42. The peaks were extracted with the same
thresholding approach42 and further cleaned by excluding clashing
particles with a nucleosome shape mask around each peak in cryoCAT48.

The 17,916 (without interpolation) and 33,560 particles (with cryo-
TIGERworkflow)determined through templatematchingwere extractedas
unbinned subtomograms in Warp49 (for both cases from non-interpolated
data) and subjected to subtomogram averaging and alignment in Relion
3.150. The particle set was then imported into M51 to performmulti-particle
refinement of the tilt series and the final structure. This resulted in a
chromatosome structure (containing the core nucleosome with H1 and
DNA linkers) resolved to 8.4 Å (with no interpolation) and 8.3 Å (with
cryoTIGER workflow) where the latter structure contained more details
(Fig. 4G, H).

Note that the chromatosome structure based on the particle
list obtained from the interpolated data was further refined and classi-
fied, reaching the local resolution of 6.4 Å (7.3 Å overall)42. Corre-
sponding Fourier shell correlation (FSC) curves are in Supplementary
Fig. 16. This procedure was not reproduced with the particle list
based on non-interpolated data due to extensive computational and
time costs.

Ground truth data for microtubule segmentation. The ground truth
segmentation was generated based on positions obtained from TM on
three non-interpolated tomograms at 4x binning from the human T cells
dataset used also in section “Improving the 3D structure of nucleosomes
using cryoTIGER” (see Table 1 and Supplementary Table 2 for more
details). The template was generated from EMD-635152 with a low-pass
filter of 25px (27 Å). The peaks with a minimum z-score of 9 and a
minimum distance of 30 voxels were extracted and manually cleaned for
false positives.
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Time complexity and memory limitations
For input tilt series consisting of 61 tilts with the resolution of 2048 × 2048,
the interpolation network runs for ~5min on a machine with an AMD
EPYC7543P 32-Core Processor and twoNVIDIAA100 80 GBGPU cards.
In terms ofmemory limitations, we could not fit the full unbinned data into
memory. Therefore, we ran all DL interpolation tests on data binned by a
factor of 2, which corresponds to the aforementioned resolution.

Statistics and reproducibility
Data were presented as boxplots showing the median, interquartile range
(IQR), and whiskers extending to 1.5× IQR. Outliers and all individual data
points are overlaid as dots. Statistical comparisons were performed using
either the two-sidedWilcoxon signed-rank test or the paired samples t-test,
as specified in each figure, together with the sample size. Statistical sig-
nificance is indicated as follows: ***p < 0.001, **p < 0.01, *p < 0.05, and
“ns” for not significant.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The datasets used to train models are part of ongoing research and are
therefore not publicly available. The primary data from the ribosome and
NPC NR evaluation are publicly available on EMPIAR (EMPIAR-11899
and EMPIAR-12454, respectively). The tomograms used for DL-based
segmentationare available at theCZIdataportal—thedataset ID isCZCDP-
10004, and tilt series 128_2, 129_2, 133, and 141_3were used for evaluation.
The primary data from the nucleosome studywill be publicly available once
the study is peer-reviewed and published. The data points underlying the
graphs are provided as supplementary files: Supplementary Data 1 (Fig. 2),
Supplementary Data 2 (Fig. 3), Supplementary Data 3 (Fig. 4), Supple-
mentary Data 4 (Fig. 5), and Supplementary Data 5 (Figs. 6, 7).

Code availability
The framework cryoTIGER is publicly available on GitHub https://github.
com/turonova/cryoTIGER/ in the formof a JupyterNotebook (underGPL-
3.0 license). All trainedmodels, as well as aminimal example on how to run
the interpolation on tilt series, are provided there aswell. The repository also
includes config.gin file which includes all hyperparameters used in
this study.
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