Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Salinity stress response of black yeasts isolated from deep-sea sediments of the Gulf of Mexico
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 February 2026

Salinity stress response of black yeasts isolated from deep-sea sediments of the Gulf of Mexico

  • Maria Dolores Camacho-López  ORCID: orcid.org/0000-0002-8447-171X1,
  • Mario Figueroa  ORCID: orcid.org/0000-0001-7004-05912,
  • Alan Hernández-Melgar  ORCID: orcid.org/0009-0003-4184-20012 &
  • …
  • Meritxell Riquelme  ORCID: orcid.org/0000-0002-2580-326X1 

Communications Biology , Article number:  (2026) Cite this article

  • 681 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell growth
  • Cellular microbiology
  • Fungal biology

Abstract

Fungi that live in deep-sea sediments experience extreme environmental conditions, yet little is known about how they adapt their growth and metabolism to these stresses. This study explores the morphogenetic and metabolomic responses of three black yeasts—Salinomyces thailandicus, Neophaeotheca triangularis, and N. salicorniae—isolated from deep-sea sediments of the Gulf of Mexico under varying salinities and exposure to the melanin inhibitor pthalide. Each species displays distinct growth adaptations: S. thailandicus shifts from filamentous to yeast-like forms as salinity increases, N. triangularis exhibits the opposite trend, and N. salicorniae remains dimorphic but grows more slowly at high salinities. Phthalide inhibits hyphal development in all three species. An exploratory metabolic analysis, conducted on pooled samples, indicates that metabolomic profiles change with salinity, with fatty acids dominating across species, suggesting membrane remodeling as an adaptation to osmotic stress. N. triangularis uniquely accumulates amino acids and peptides, a response previously reported mainly in plants. Additional metabolites, including aminocyclitols and compounds associated with extracellular polymeric substances, suggest the involvement of uncharacterized adaptive mechanisms contributing to stress protection. These findings advance our understanding of how black yeasts adapt to osmotic stress and provide a foundation for future studies.

Similar content being viewed by others

Salinity stress enhances protein content and amino acid profile in Gracilaria cornea (Rhodophyta)

Article Open access 02 February 2026

Polyextremotolerant, opportunistic, and melanin-driven resilient black yeast Exophiala dermatitidis in environmental and clinical contexts

Article Open access 22 February 2025

Uncovering the potential MTAs, candidate genes and microRNAs regulatory networks involved in salinity stress tolerance triggered in Iranian Aegilops tauschii

Article Open access 01 February 2026

Data availability

Data sets of eukaryotic nuclear rRNA/ITS gene amplicon sequences were deposited in GenBank (database accession numbers shown in Table 1). LC-MS/MS data can be accessed at MassIVE (accession no. MSV000098170; accessed June 12, 2025), https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=e9bb27d863a44851af057b411b5bd4e5. The parameters for feature-based molecular networking and spectral matching using all data sets, MolDiscovery, and DEREPLICATOR+ results are available in the links found in the Supplementary material.

References

  1. Bik, H. M., Halanych, K. M., Sharma, J. & Thomas, W. K. Dramatic shifts in benthic microbial eukaryote communities following the Deepwater Horizon oil spill. PloS One 7, e38550 (2012).

    Google Scholar 

  2. Herzka, S. Z., Zaragoza Álvarez, R. A., Peters, E. M. & Hernández Cárdenas G. In Atlas de línea base ambiental del golfo de México (tomo III, Segunda Parte), México: Consorcio de Investigación del Golfo de México (ed. Herzka, S. Z.) (México, 2021).

  3. Yáñez-Arancibia, A. & Day, J. W. The Gulf of Mexico: towards an integration of coastal management with large marine ecosystem management. Ocean Coast. Manag. 47, 537–563 (2004).

    Google Scholar 

  4. Vargas-Gastélum, L. et al. Targeted ITS1 sequencing unravels the mycodiversity of deep-sea sediments from the Gulf of Mexico. Environ. Microbiol. 21, 4046–4061 (2019).

    Google Scholar 

  5. Romero-Hernández, L. et al. Extra-heavy crude oil degradation by Alternaria sp. isolated from deep-sea sediments of the Gulf of Mexico. Appl. Sci. 11, 6090 (2021).

    Google Scholar 

  6. Vélez, P., Gasca-Pineda, J. & Riquelme, M. Cultivable fungi from deep-sea oil reserves in the Gulf of Mexico: Genetic signatures in response to hydrocarbons. Mar. Environ. Res. 153, 104816 (2020).

    Google Scholar 

  7. Mitchison-Field, L. M. et al. Unconventional cell division cycles from marine-derived yeasts. Curr. Biol. 29, 3439–3456.e3435 (2019).

    Google Scholar 

  8. Gunde-Cimerman, N., Zalar, P., de Hoog, S. & Plemenitaš, A. Hypersaline waters in salterns–natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 32, 235–240 (2000).

    Google Scholar 

  9. Crous, P. W. et al. Fungal Planet description sheets: 400-468. Persoonia 36, 316–458 (2016).

    Google Scholar 

  10. Selbmann, L. et al. Shed light in the dark lineages of the fungal tree of Life-STRES. Life 10, 362 (2020).

    Google Scholar 

  11. Sterflinger, K. In Biodiversity and Ecophysiology of Yeasts (eds. Péter, G., Rosa, C.) 501–514 (Springer, 2006).

  12. Goshima, G. Growth and division mode plasticity is dependent on cell density in marine-derived black yeasts. Genes Cells 27, 124–137 (2022).

    Google Scholar 

  13. Gunde-Cimerman, N. & Plemenitaš. A. Ecology and molecular adaptations of the halophilic black yeast Hortaea werneckii. In Reviews in Environmental Science and Biotechnology. Life in Extreme Environments. (eds Amils, R., Ellis-Evans, C. & Hinghofer-Szalkay, H.) 177–185 (Springer, Dordrecht, 2006).

  14. Gunde-Cimerman, N., Plemenitas, A. & Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 42, 353–375 (2018).

    Google Scholar 

  15. Kogej, T., Wheeler, M. H., Lanisnik Rizner, T. & Gunde-Cimerman, N. Evidence for 1,8-dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol. Lett. 232, 203–209 (2004).

    Google Scholar 

  16. Kogej, T. et al. Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153, 4261–4273 (2007).

    Google Scholar 

  17. Camacho, E. et al. The structural unit of melanin in the cell wall of the fungal pathogen Cryptococcus neoformans. J. Biol. Chem. 294, 10471–10489 (2019).

    Google Scholar 

  18. Pralea, I. E. et al. From extraction to advanced analytical methods: the challenges of melanin analysis. Int. J. Mol. Sci. 20, 3943 (2019).

    Google Scholar 

  19. Cao, W. et al. Unraveling the structure and function of melanin through synthesis. J. Am. Chem. Soc. 143, 2622–2637 (2021).

    Google Scholar 

  20. Pal, A. K., Gajjar, D. U. & Vasavada, A. R. DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Med. Mycol. 52, 10–18 (2014).

    Google Scholar 

  21. Jiménez-Gómez, I. et al. Surviving in the brine: a multi-omics approach for understanding the physiology of the halophile fungus Aspergillus sydowii at saturated NaCl concentration. Front. Microbiol. 13, 840408 (2022).

    Google Scholar 

  22. Agrawal, S., Chavan, P. & Dufosse, L. Hidden treasure: Halophilic fungi as a repository of bioactive lead compounds. J. Fungi 10, https://doi.org/10.3390/jof10040290 (2024).

  23. Gadanho, M., Almeida, J. M. & Sampaio, J. P. Assessment of yeast diversity in a marine environment in the south of Portugal by microsatellite-primed PCR. Antonie Van. Leeuwenhoek 84, 217–227 (2003).

    Google Scholar 

  24. Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).

    Google Scholar 

  25. White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, 18, 315–322 (Academic Press, 1990).

  26. Kurtzman, C. P. & Robnett, C. J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van. Leeuwenhoek 73, 331–371 (1998).

    Google Scholar 

  27. Kumar, S. et al. MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Mol. Biol. Evol. 41, msae263 (2024).

    Google Scholar 

  28. Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2012).

    Google Scholar 

  29. Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).

    Google Scholar 

  30. Atlas, R. M. The Handbook of Microbiological Media for the Examination of Food (CRC press, 2006).

  31. Kejzar, A., Gobec, S., Plemenitas, A. & Lenassi, M. Melanin is crucial for growth of the black yeast Hortaea werneckii in its natural hypersaline environment. Fungal Biol. 117, 368–379 (2013).

    Google Scholar 

  32. Hickey, P. C., Swift, S. R., Roca, M. G. & Read, N. D. Live-cell imaging of filamentous fungi using vital fluorescent dyes and confocal microscopy. In Methods in Microbiology. Microbial Imaging. (eds Savidge, T. & Charalabos, P.) 34, 63–87 (Academic Press, 2004).

  33. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  34. Gniewosz, M. & Duszkiewicz-Reinhard, W. Comparative studies on pullulan synthesis, melanin synthesis and morphology of white mutant Aureobasidium pullulans B-1 and parent strain A.p.-3. Carbohydr. Polym. 72, 431–438 (2008).

    Google Scholar 

  35. Schmid, R. et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 41, 447–449 (2023).

    Google Scholar 

  36. Nothias, L. F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).

    Google Scholar 

  37. Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).

    Google Scholar 

  38. Hernández-Melgar, A. G., Guerrero, A. & Moreno-Ulloa, A. Chronic exposure to petroleum-derived hydrocarbons alters human skin microbiome and metabolome profiles: a pilot study. J. Proteome Res. 23, 4273–4285 (2024).

    Google Scholar 

  39. Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 15, 1954–1991 (2020).

    Google Scholar 

  40. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis: chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 3, 211–221 (2007).

    Google Scholar 

  41. Cao, L. et al. MolDiscovery: learning mass spectrometry fragmentation of small molecules. Nat. Commun. 12, 3718 (2021).

    Google Scholar 

  42. Dührkop, K., Shen, H., Meusel, M., Rousu, J. & Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI: FingerID. Proc. Natl. Acad. Sci. 112, 12580–12585 (2015).

    Google Scholar 

  43. Mohimani, H. et al. Dereplication of microbial metabolites through database search of mass spectra. Nat. Commun. 9, 4035 (2018).

    Google Scholar 

  44. Dührkop, K. et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 39, 462–471 (2021).

    Google Scholar 

  45. Chung, D., Kim, H. & Choi, H. S. Fungi in salterns. J. Microbiol. 57, 717–724 (2019).

    Google Scholar 

  46. Carr, E. C. et al. Characterization of a novel polyextremotolerant fungus, Exophiala viscosa, with insights into its melanin regulation and ecological niche. G3 Genes Genomes Genet. 13, 1–37 (2023).

    Google Scholar 

  47. Czachura, P., Owczarek-Kościelniak, M. & Piątek, M. Salinomyces polonicus: a moderately halophilic kind of the most extremely halotolerant fungus Hortaea werneckii. Fungal Biol. 125, 459–468 (2021).

    Google Scholar 

  48. Abdollahzadeh, J., Groenewald, J. Z., Coetzee, M. P. A., Wingfield, M. J. & Crous, P. W. Evolution of lifestyles in Capnodiales. Stud. Mycol. 95, 381–414 (2020).

    Google Scholar 

  49. Kogej, T., Gorbushina, A. A. & Gunde-Cimerman, N. Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma. Mycological Res. 110, 713–724 (2006).

    Google Scholar 

  50. Zalar, P. et al. The extremely halotolerant black yeast Hortaea werneckii - a model for intraspecific hybridization in clonal fungi. IMA Fungus 10, 1–27 (2019).

    Google Scholar 

  51. Coleine, C. et al. Peculiar genomic traits in the stress-adapted cryptoendolithic Antarctic fungus Friedmanniomyces endolithicus. Fungal Biol. 124, 458–467 (2020).

    Google Scholar 

  52. Kralj Kuncic, M., Kogej, T., Drobne, D. & Gunde-Cimerman, N. Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl. Environ. Microbiol. 76, 329–337 (2010).

    Google Scholar 

  53. de Souza Pereira, R. & Geibel, J. Direct observation of oxidative stress on the cell wall of Saccharomyces cerevisiae strains with atomic force microscopy. Mol. Cell. Biochem. 201, 17–24 (1999).

    Google Scholar 

  54. Jacobson, E. S. & Ikeda, R. Effect of melanization upon porosity of the cryptococcal cell wall. Med. Mycol. 43, 327–333 (2005).

    Google Scholar 

  55. Turk, M. et al. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8, 53–61 (2004).

    Google Scholar 

  56. Heidarzadeh, A. Role of amino acids in plant growth, development, and stress responses: A comprehensive review. Discov. Plants 2, 1–31 (2025).

    Google Scholar 

  57. Derkaczew, M., Martyniuk, P., Osowski, A. & Wojtkiewicz, J. Cyclitols: From basic understanding to their association with neurodegeneration. Nutrients 15, 2029 (2023).

    Google Scholar 

  58. Mahmud, T. Progress in aminocyclitol biosynthesis. Curr. Opin. Chem. Biol. 13, 161–170 (2009).

    Google Scholar 

  59. Chrissian, C. et al. Solid-state NMR spectroscopy identifies three classes of lipids in Cryptococcus neoformans melanized cell walls and whole fungal cells. J. Biol. Chem. 295, 15083–15096 (2020).

    Google Scholar 

  60. Koroleva, E. et al. Exploring polyamine metabolism of the yeast-like fungus, Emergomyces africanus. FEMS Yeast Res. 24, foae038 (2024).

    Google Scholar 

  61. Niu, M. et al. Fungal oxylipins direct programmed developmental switches in filamentous fungi. Nat. Commun. 11, 5158 (2020).

    Google Scholar 

  62. Naruzawa, E. S., Malagnac, F. & Bernier, L. Effect of linoleic acid on reproduction and yeast–mycelium dimorphism in the Dutch elm disease pathogens. Botany 94, 31–39 (2016).

    Google Scholar 

  63. Kupfahl, C., Tsikas, D., Niemann, J., Geginat, G. & Hof, H. Production of prostaglandins, isoprostanes and thromboxane by Aspergillus fumigatus: Identification by gas chromatography–tandem mass spectrometry and quantification by enzyme immunoassay. Mol. Immunol. 49, 621–627 (2012).

    Google Scholar 

  64. Noverr, M. C. & Huffnagle, G. B. Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect. Immun. 72, 6206–6210 (2004).

    Google Scholar 

  65. Yurchenko, A. N., Girich, E. V. & Yurchenko, E. A. Metabolites of marine sediment-derived fungi: actual trends of biological activity studies. Mar. Drugs 19, 88 (2021).

    Google Scholar 

  66. Goncalves, M. F. M., Hilario, S., Van de Peer, Y., Esteves, A. C. & Alves, A. Genomic and metabolomic analyses of the marine fungus Emericellopsis cladophorae: Insights into saltwater adaptability mechanisms and its biosynthetic potential. J. Fungi 8, https://doi.org/10.3390/jof8010031 (2021).

  67. Zheng, W., Han, L., He, Z. J. & Kang, J. C. New spirostane from a fungus Neohelicomyces hyalosporus and its bioactivity. Chem. Biodivers. 20, e202300313 (2023).

    Google Scholar 

  68. Chen, M., Fu, X.-M., Kong, C.-J. & Wang, C.-Y. Nucleoside derivatives from the marine-derived fungus Aspergillus versicolor. Nat. Prod. Res. 28, 895–900 (2014).

    Google Scholar 

  69. Huang, R.-M. et al. Marine nucleosides: Structure, bioactivity, synthesis and biosynthesis. Mar. Drugs 12, 5817–5838 (2014).

    Google Scholar 

  70. Liu, F. -a. et al. Xanthones and quinolones derivatives produced by the deep-sea-derived fungus Penicillium sp. SCSIO Ind16F01. Molecules 22, 1999 (2017).

    Google Scholar 

  71. Amin, M., Liang, X., Ma, X., Dong, J.-D. & Qi, S.-H. New pyrone and cyclopentenone derivatives from marine-derived fungus Aspergillus sydowii SCSIO 00305. Nat. Prod. Res. 35, 318–326 (2021).

    Google Scholar 

  72. Zhou, X.-M. et al. Antibacterial α-pyrone derivatives from a mangrove-derived fungus Stemphylium sp. 33231 from the South China Sea. J. Antibiot. 67, 401–403 (2014).

    Google Scholar 

  73. Chen, S. et al. Tersaphilones AE, cytotoxic chlorinated azaphilones from the deep-sea-derived fungus Phomopsis tersa FS441. Tetrahedron 78, 131806 (2021).

    Google Scholar 

  74. Shi, Q. et al. Diterpenoids of marine organisms: isolation, structures, and bioactivities. Mar. Drugs 23, 131 (2025).

    Google Scholar 

  75. Hu, Y. et al. Cytotoxic pyridine alkaloids from a marine-derived fungus Arthrinium arundinis exhibiting apoptosis-inducing activities against small cell lung cancer. Phytochemistry 213, 113765 (2023).

    Google Scholar 

  76. Hao, M.-J. et al. β-Carboline alkaloids from the deep-sea fungus Trichoderma sp. MCCC 3A01244 as a new type of anti-pulmonary fibrosis agent that inhibits TGF-β/smad signaling pathway. Front. Microbiol. 13, 947226 (2022).

    Google Scholar 

  77. Ryan, W. B. et al. Global multi-resolution topography synthesis. Geochem. Geophys. Geosyst. 10, Q03014 (2009).

Download references

Acknowledgements

Research was funded by the National Council of Science and Technology of Mexico—Mexican Ministry of Energy—Hydrocarbon Trust, project 201441. This is a contribution of the Gulf of Mexico Research Consortium (CIGoM). We thank the National Laboratory of Advanced Microscopy (LNMA) at the Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE) for the use of the facilities. The authors thank Lluvia Vargas-Gastélum for her support in isolating the fungi and for creating the map in Fig. 1, Ivonne Martínez-Mendoza for collecting the sediment samples during the XIXIM-7 campaign, Rodrigo Villanueva-Silva for his support with the initial metabolomic analysis, and Samantha V. González-Téllez for contributing to the graphical abstract figures. This work was partially supported by grants from UNAM-DGAPA PAPIIT IN203923 and FQ-PAIP 5000-9145 awarded to M.F. M.D.C.-L. was supported by a fellowship from the National Council of Humanities, Sciences, and Technologies (CONAHCyT, grant no. 315758). We declare the use of ChatGPT only to improve the readability and proofreading of the manuscript.

Author information

Authors and Affiliations

  1. Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada Baja California, Mexico

    Maria Dolores Camacho-López & Meritxell Riquelme

  2. Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico

    Mario Figueroa & Alan Hernández-Melgar

Authors
  1. Maria Dolores Camacho-López
    View author publications

    Search author on:PubMed Google Scholar

  2. Mario Figueroa
    View author publications

    Search author on:PubMed Google Scholar

  3. Alan Hernández-Melgar
    View author publications

    Search author on:PubMed Google Scholar

  4. Meritxell Riquelme
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.D.C.L. contributed to conceptualization, investigation, writing the original draft, methodology, formal analysis, data curation, and editing; M.F. contributed with funding acquisition, writing, review and editing, data curation, and supervision; A.H.M. contributed with data curation, formal analysis, and writing, review and editing; M.R.: contributed to conceptualization, funding acquisition, writing, review and editing, formal analysis, supervision, project administration, and investigation.

Corresponding author

Correspondence to Meritxell Riquelme.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Louisi Souza de Oliveira, Federico Laich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Linn Hoffmann and Tobias Goris.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Material

Description of Additional Supplementary File

Supplementary Data 1

Supplementary Data 2

Supplementary Movie 1

Supplementary Movie 2

Supplementary Movie 3

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho-López, M.D., Figueroa, M., Hernández-Melgar, A. et al. Salinity stress response of black yeasts isolated from deep-sea sediments of the Gulf of Mexico. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09673-0

Download citation

  • Received: 02 July 2025

  • Accepted: 29 January 2026

  • Published: 10 February 2026

  • DOI: https://doi.org/10.1038/s42003-026-09673-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology