Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Interactions between sensory-biased and supramodal working memory networks in the human cerebral cortex
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 February 2026

Interactions between sensory-biased and supramodal working memory networks in the human cerebral cortex

  • Thomas Possidente  ORCID: orcid.org/0000-0002-6857-62471 na1,
  • Vaibhav Tripathi1,2 na1,
  • Joseph T. McGuire  ORCID: orcid.org/0000-0001-6259-08091 &
  • …
  • David C. Somers  ORCID: orcid.org/0000-0002-4169-58951 

Communications Biology , Article number:  (2026) Cite this article

  • 992 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cognitive control
  • Working memory

Abstract

Human working memory is supported by a broadly distributed set of brain networks. Content-specific networks communicate with a domain-general, supramodal network that is recruited regardless of the type of content. Here, we contrasted visual and auditory working memory tasks to examine interactions between the supramodal network and two content-specific networks. Functional connectivity among visual-biased, auditory-biased, and supramodal working memory networks was assayed by collecting task and resting-state fMRI data from 24 human participants (age 18-43; 11 men and 13 women). At rest, as found previously, the supramodal network exhibited stronger functional connectivity with the visual-biased network than with the auditory-biased network. This asymmetry raises questions about how networks communicate to support robust performance across modalities. However, during auditory task performance, dynamic changes increased auditory network connectivity with supramodal and visual-biased frontal regions, while decreasing connectivity from posterior visual areas to supramodal and frontal visual regions. In contrast, the visual task produced weak changes. Across individuals, auditory working memory precision correlated with the strength of auditory network connectivity changes, while no such brain-behavior link was observed for visual working memory. These results demonstrate an asymmetry in working memory network organization and reveal that dynamic reorganization accompanies performance of working memory tasks.

Similar content being viewed by others

Network-wide aberrancies in neuronal activity during working memory in a large cohort of patients with mood disorders: associations with cognitive impairment and functional disability

Article Open access 17 June 2025

A functional parcellation of the whole brain in high-functioning individuals with autism spectrum disorder reveals atypical patterns of network organization

Article Open access 30 September 2024

Alterations in static and dynamic functional network connectivity in subcortical vascular cognitive impairment

Article Open access 01 July 2025

Data availability

ROI search spaces (freesurfer label files in fsaverage space) used in these analyses are available at https://github.com/fmri/Sensory_Networks_FC. Data used to generate all figures are available in the supplementary materials. Unprocessed task, resting state, and structural MRI data are publicly available on OpenNeuro at https://doi.org/10.18112/openneuro.ds007231.v1.0.5.

Code availability

Custom Matlab code used to produce this work can be found at https://github.com/fmri/Sensory_Networks_FC.

References

  1. Baddeley, A. D. & Hitch, G. Working memory. in (ed. Bower, G. H.) Psychology of Learning and Motivation, Vol. 8, 47–89 (Academic Press, 1974).

  2. Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).

    Google Scholar 

  3. Bettencourt, K. C. & Xu, Y. Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nat. Neurosci. 19, 150–157 (2016).

    Google Scholar 

  4. Christophel, T. B., Hebart, M. N. & Haynes, J.-D. Decoding the contents of visual short-term memory from human visual and parietal cortex. J. Neurosci. 32, 12983–12989 (2012).

    Google Scholar 

  5. Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R. & Haynes, J.-D. The distributed nature of working memory. Trends Cogn. Sci. 21, 111–124 (2017).

    Google Scholar 

  6. Ester, E. F., Sprague, T. C. & Serences, J. T. Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron 87, 893–905 (2015).

    Google Scholar 

  7. Harrison, S. A. & Tong, F. Decoding reveals the contents of visual working memory in early visual areas. Nature 458, 632–635 (2009).

    Google Scholar 

  8. Linke, A. C., Vicente-Grabovetsky, A. & Cusack, R. Stimulus-specific suppression preserves information in auditory short-term memory. Proc. Natl. Acad. Sci. USA 108, 12961–12966 (2011).

    Google Scholar 

  9. Serences, J. T., Ester, E. F., Vogel, E. K. & Awh, E. Stimulus-specific delay activity in human primary visual cortex. Psychol. Sci. 20, 207–214 (2009).

    Google Scholar 

  10. Uluç, I., Schmidt, T. T., Wu, Y. & Blankenburg, F. Content-specific codes of parametric auditory working memory in humans. NeuroImage 183, 254–262 (2018).

    Google Scholar 

  11. Assem, M., Glasser, M. F., Van Essen, D. C. & Duncan, J. A domain-general cognitive core defined in multimodally parcellated human cortex. Cereb. Cortex 30, 4361–4380 (2020).

    Google Scholar 

  12. Badre, D. & Nee, D. E. Frontal cortex and the hierarchical control of behavior. Trends Cogn. Sci. 22, 170–188 (2018).

    Google Scholar 

  13. Crittenden, B. M. & Duncan, J. Task difficulty manipulation reveals multiple demand activity but no frontal lobe hierarchy. Cereb. Cortex 24, 532–540 (2014).

    Google Scholar 

  14. D’Esposito, M. & Postle, B. R. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 66, 115–142 (2015).

    Google Scholar 

  15. Assem, M., Shashidhara, S., Glasser, M. F. & Duncan, J. Precise topology of adjacent domain-general and sensory-biased regions in the human brain. Cereb. Cortex 32, 2521–2537 (2022).

    Google Scholar 

  16. Mayer, A. R., Ryman, S. G., Hanlon, F. M., Dodd, A. B. & Ling, J. M. Look hear! The prefrontal cortex is stratified by modality of sensory input during multisensory cognitive control. Cereb. Cortex 27, 2831–2840 (2017).

    Google Scholar 

  17. Michalka, S. W., Kong, L., Rosen, M. L., Shinn-Cunningham, B. G. & Somers, D. C. Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks. Neuron 87, 882–892 (2015).

    Google Scholar 

  18. Noyce, A. L., Cestero, N., Michalka, S. W., Shinn-Cunningham, B. G. & Somers, D. C. Sensory-biased and multiple-demand processing in human lateral frontal cortex. J. Neurosci. 37, 8755–8766 (2017).

    Google Scholar 

  19. Noyce, A. L. et al. Extended frontal networks for visual and auditory working memory. Cereb. Cortex 32, 855–869 (2022).

    Google Scholar 

  20. Tobyne, S. M., Osher, D. E., Michalka, S. W. & Somers, D. C. Sensory-biased attention networks in human lateral frontal cortex revealed by intrinsic functional connectivity. NeuroImage 162, 362–372 (2017).

    Google Scholar 

  21. Tobyne, S. M., Brissenden, J. A., Noyce, A. L. & Somers, D. C. Combined auditory, tactile, and visual fMRI reveals sensory-biased and supramodal working memory regions in the human frontal cortex. J. Neurosci. 45, e0773252025 (2025).

    Google Scholar 

  22. Colavita, F. B. Human sensory dominance. Percept. Psychophys. 16, 409–412 (1974).

    Google Scholar 

  23. Hartcher-O’Brien, J., Gallace, A., Krings, B., Koppen, C. & Spence, C. When vision ‘extinguishes’ touch in neurologically-normal people: extending the Colavita visual dominance effect. Exp. Brain Res. 186, 643–658 (2008).

    Google Scholar 

  24. Hecht, D. & Reiner, M. Sensory dominance in combinations of audio, visual and haptic stimuli. Exp. Brain Res. 193, 307–314 (2009).

    Google Scholar 

  25. Posner, M. I., Nissen, M. J. & Klein, R. M. Visual dominance: an information-processing account of its origins and significance. Psychol. Rev. 83, 157–171 (1976).

    Google Scholar 

  26. Spence, C., Parise, C. & Chen, Y.-C. The Colavita visual dominance effect. in (eds Murray, M. M. & Wallace, M. T.) The Neural Bases of Multisensory Processes (CRC Press/Taylor & Francis, 2012).

  27. Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98, 439–452.e5 (2018).

    Google Scholar 

  28. Fedorenko, E., Duncan, J. & Kanwisher, N. Language-selective and domain-general regions lie side by side within Broca’s area. Curr. Biol. 22, 2059–2062 (2012).

    Google Scholar 

  29. Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).

    Google Scholar 

  30. Spence, C. Explaining the Colavita visual dominance effect. in Progress in Brain Research, Vol. 176, 245–258 (Elsevier, 2009).

  31. Fang, Y., Li, Y., Xu, X., Tao, H. & Chen, Q. Top-down attention modulates the direction and magnitude of sensory dominance. Exp. Brain Res. 238, 587–600 (2020).

    Google Scholar 

  32. Bo, J., Jennett, S. & Seidler, R. D. Working memory capacity correlates with implicit serial reaction time task performance. Exp. Brain Res. 214, 73–81 (2011).

    Google Scholar 

  33. Alhamdan, A. A., Murphy, M. J., Pickering, H. E. & Crewther, S. G. The contribution of visual and auditory working memory and non-verbal IQ to motor multisensory processing in elementary school children. Brain Sci. 13, 270 (2023).

    Google Scholar 

  34. Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471.e5 (2017).

    Google Scholar 

  35. Kong, R. et al. Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cereb. Cortex 31, 4477–4500 (2021).

    Google Scholar 

  36. Fedorenko, E., Hsieh, P.-J., Nieto-Castañón, A., Whitfield-Gabrieli, S. & Kanwisher, N. New method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. 104, 1177–1194 (2010).

    Google Scholar 

  37. Tobyne, S. M. et al. Prediction of individualized task activation in sensory modality-selective frontal cortex with ‘connectome fingerprinting. NeuroImage 183, 173–185 (2018).

    Google Scholar 

  38. Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron 21, 761–773 (1998).

    Google Scholar 

  39. Agcaoglu, O., Wilson, T. W., Wang, Y.-P., Stephen, J. & Calhoun, V. D. Resting state connectivity differences in eyes open versus eyes closed conditions. Hum. Brain Mapp. 40, 2488–2498 (2019).

    Google Scholar 

  40. Han, J. et al. Eyes-open and eyes-closed resting state network connectivity differences. Brain Sci. 13, 122 (2023).

    Google Scholar 

  41. Patriat, R. et al. The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. NeuroImage 78, 463–473 (2013).

    Google Scholar 

  42. Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7, 268–277 (2006).

    Google Scholar 

  43. De La Vega, A., Chang, L. J., Banich, M. T., Wager, T. D. & Yarkoni, T. Large-scale meta-analysis of human medial frontal cortex reveals tripartite functional organization. J. Neurosci. 36, 6553–6562 (2016).

    Google Scholar 

  44. Fuster, J. M. Executive frontal functions. Exp. Brain Res. 133, 66–70 (2000).

    Google Scholar 

  45. Ferguson, B. R. & Gao, W.-J. PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front. Neural Circuits 12, 37 (2018).

    Google Scholar 

  46. Friedman, N. P. & Robbins, T. W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 47, 72–89 (2022).

    Google Scholar 

  47. Gao, W.-J., Wang, H.-X., A., M. & Li, Y.-C. The unique properties of the prefrontal cortex and mental illness. in (ed. Mantamadiotis, T.) When Things Go Wrong - Diseases and Disorders of the Human Brain (InTech, 2012).

  48. Goldstein, R. Z. & Volkow, N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12, 652–669 (2011).

    Google Scholar 

  49. Goto, Y., Yang, C. R. & Otani, S. Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol. Psychiatry 67, 199–207 (2010).

    Google Scholar 

  50. Giorgio, A. et al. Age-related changes in grey and white matter structure throughout adulthood. NeuroImage 51, 943–951 (2010).

    Google Scholar 

  51. Nyberg, L. et al. Longitudinal evidence for diminished frontal cortex function in aging. Proc. Natl. Acad. Sci. USA 107, 22682–22686 (2010).

    Google Scholar 

  52. Peirce, J. W. et al. PsychoPy2: experiments in behavior made easy. Behav Res. 51, 195–203 (2019).

  53. Alvarez, G. A. & Cavanagh, P. The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychol. Sci. 15, 106–111 (2004).

    Google Scholar 

  54. Bays, P. M., Catalao, R. F. G. & Husain, M. The precision of visual working memory is set by allocation of a shared resource. J. Vis. 9, 7 (2009).

    Google Scholar 

  55. Franconeri, S. L., Alvarez, G. A. & Cavanagh, P. Flexible cognitive resources: competitive content maps for attention and memory. Trends Cogn. Sci. 17, 134–141 (2013).

    Google Scholar 

  56. van der Kouwe, A. J. W., Benner, T., Salat, D. H. & Fischl, B. Brain morphometry with multiecho MPRAGE. NeuroImage 40, 559–569 (2008).

    Google Scholar 

  57. Griswold, M. A. et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47, 1202–1210 (2002).

    Google Scholar 

  58. Cauley, S. F., Polimeni, J. R., Bhat, H., Wald, L. L. & Setsompop, K. Interslice leakage artifact reduction technique for simultaneous multislice acquisitions. Magn. Reson. Med. 72, 93–102 (2014).

    Google Scholar 

  59. Feinberg, D. A. et al. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS ONE 5, e15710 (2010).

    Google Scholar 

  60. Moeller, S. et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63, 1144–1153 (2010).

    Google Scholar 

  61. Setsompop, K. et al. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. NeuroImage 63, 569–580 (2012).

    Google Scholar 

  62. Xu, J. et al. Evaluation of slice accelerations using multiband echo planar imaging at 3 T. NeuroImage 83, 991–1001 (2013).

    Google Scholar 

  63. Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).

    Google Scholar 

  64. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).

    Google Scholar 

  65. Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).

    Google Scholar 

  66. Ségonne, F. et al. A hybrid approach to the skull stripping problem in MRI. NeuroImage 22, 1060–1075 (2004).

    Google Scholar 

  67. Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998).

    Google Scholar 

  68. Fischl, B., Liu, A. & Dale, A. M. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans. Med. Imaging 20, 70–80 (2001).

    Google Scholar 

  69. Segonne, F., Pacheco, J. & Fischl, B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans. Med. Imaging 26, 518–529 (2007).

    Google Scholar 

  70. Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. Fsl. NeuroImage 62, 782–790 (2012).

    Google Scholar 

  71. Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004).

    Google Scholar 

  72. Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).

    Google Scholar 

  73. Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J. & Nichols, T. E. Statistical Parametric Mapping: The Analysis of Functional Brain Images (Elsevier, 2011).

  74. Sladky, R. et al. Slice-timing effects and their correction in functional MRI. NeuroImage 58, 588–594 (2011).

    Google Scholar 

  75. Whitfield-Gabrieli, S. & Nieto-Castanon, A. Artifact Detection Tools (ART). https://www.nitrc.org/projects/artifact_detect (2011).

  76. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84, 320–341 (2014).

    Google Scholar 

  77. Ashburner, J. & Friston, K. Multimodal image coregistration and partitioning—A unified framework. NeuroImage 6, 209–217 (1997).

    Google Scholar 

  78. Studholme, C., Hawkes, D. J. & Hill, D. L. G. Normalized entropy measure for multimodality image alignment. in Medical Imaging 1998: Image Processing, Vol. 3338, 132–143 (SPIE, 1998).

  79. Hagler, D. J., Saygin, A. P. & Sereno, M. I. Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. NeuroImage 33, 1093–1103 (2006).

    Google Scholar 

  80. Ashburner, J. A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–113 (2007).

    Google Scholar 

  81. Ashburner, J. & Friston, K. J. Unified segmentation. NeuroImage 26, 839–851 (2005).

    Google Scholar 

  82. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37, 90–101 (2007).

    Google Scholar 

  83. Murphy, K. & Fox, M. D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. NeuroImage 154, 169–173 (2017).

    Google Scholar 

  84. Chai, X. J., Castañón, A. N., Öngür, D. & Whitfield-Gabrieli, S. Anticorrelations in resting state networks without global signal regression. NeuroImage 59, 1420–1428 (2012).

    Google Scholar 

  85. Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol. Skr. 5, 1 (1948).

    Google Scholar 

  86. Bar-Joseph, Z., Gifford, D. K. & Jaakkola, T. S. Fast optimal leaf ordering for hierarchical clustering. Bioinformatics 17, S22–S29 (2001).

    Google Scholar 

  87. Nieto-Castanon, A. Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN (Hilbert Press, 2020).

  88. Hartman, J. Emmeans. emmeans - File Exchange - MATLAB Central. https://www.mathworks.com/matlabcentral/fileexchange/71970-emmeans/ (2020).

  89. Hedges, L. V. Effect sizes in cluster-randomized designs. J. Educ. Behav. Stat. 32, 341–370 (2007).

    Google Scholar 

  90. Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).

    Google Scholar 

  91. Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44, 83–98 (2009).

    Google Scholar 

  92. Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA 113, 7900–7905 (2016).

    Google Scholar 

  93. Eklund, A., Knutsson, H. & Nichols, T. E. Cluster failure revisited: impact of first level design and physiological noise on cluster false positive rates. Hum. Brain Mapp. 40, 2017–2032 (2019).

    Google Scholar 

  94. Cole, M. W., Ito, T., Cocuzza, C. & Sanchez-Romero, R. The functional relevance of task-state functional connectivity. J. Neurosci. 41, 2684–2702 (2021).

    Google Scholar 

  95. Krienen, F. M., Yeo, B. T. T. & Buckner, R. L. Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130526 (2014).

    Google Scholar 

  96. Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 106, 13040–13045 (2009).

    Google Scholar 

  97. Friston, K. J. et al. Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6, 218–229 (1997).

    Google Scholar 

  98. McLaren, D. G., Ries, M. L., Xu, G. & Johnson, S. C. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. NeuroImage 61, 1277–1286 (2012).

    Google Scholar 

  99. O’Reilly, J. X., Woolrich, M. W., Behrens, T. E. J., Smith, S. M. & Johansen-Berg, H. Tools of the trade: psychophysiological interactions and functional connectivity. Soc. Cogn. Affect Neurosci. 7, 604–609 (2012).

    Google Scholar 

  100. Cisler, J. M., Bush, K. & Steele, J. S. A comparison of statistical methods for detecting context-modulated functional connectivity in fMRI. NeuroImage 84, 1042–1052 (2014).

    Google Scholar 

  101. Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).

    Google Scholar 

Download references

Acknowledgements

This work is funded by National Science Foundation grant BCS-1829394 to D.C.S. This work involved the use of instrumentation supported by the NSF Major Research Instrumentation grant BCS-1625552. Data were analyzed on a high-performance computing cluster supported by the ONR grant N00014-17-1-2304. We thank Dr. David Beeler for assistance with data collection and for helpful discussions, Dr. Abigail Noyce for auditory stimuli, and Dr. Ryan Marshall, Dr. Stephanie McMains, and Shruthi Chakrapani for scanning assistance. We acknowledge the University of Minnesota Center for Magnetic Resonance Research for the use of the multiband-EPI pulse sequences.

Author information

Author notes
  1. These authors contributed equally: Thomas Possidente, Vaibhav Tripathi.

Authors and Affiliations

  1. Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA

    Thomas Possidente, Vaibhav Tripathi, Joseph T. McGuire & David C. Somers

  2. Department of Cognitive and Brain Sciences, Indian Institute of Technology, Gandhinagar, India

    Vaibhav Tripathi

Authors
  1. Thomas Possidente
    View author publications

    Search author on:PubMed Google Scholar

  2. Vaibhav Tripathi
    View author publications

    Search author on:PubMed Google Scholar

  3. Joseph T. McGuire
    View author publications

    Search author on:PubMed Google Scholar

  4. David C. Somers
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Thomas Possidente: Conceptualization, Formal analysis, Methodology, Software, Validation, Visualization, Writing—original draft, review & editing, Vaibhav Tripathi: Conceptualization, Data curation, Investigation, Methodology, Software, Writing—review & editing, Joseph T. McGuire: Methodology, Writing—review & editing David Somers: Conceptualization, Funding acquisition, Methodology, Supervision, Project administration, Writing—original draft, review & editing.

Corresponding author

Correspondence to David C. Somers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Scott Brincat, Clive H. Y. Wong and the other anonymous reviewer(s) for their contribution to the peer review of this work. Primary handling editors: Jessica Peter and Benjamin Bessieres.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplemental Data

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Possidente, T., Tripathi, V., McGuire, J.T. et al. Interactions between sensory-biased and supramodal working memory networks in the human cerebral cortex. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09688-7

Download citation

  • Received: 05 August 2025

  • Accepted: 30 January 2026

  • Published: 09 February 2026

  • DOI: https://doi.org/10.1038/s42003-026-09688-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing