Abstract
Human working memory is supported by a broadly distributed set of brain networks. Content-specific networks communicate with a domain-general, supramodal network that is recruited regardless of the type of content. Here, we contrasted visual and auditory working memory tasks to examine interactions between the supramodal network and two content-specific networks. Functional connectivity among visual-biased, auditory-biased, and supramodal working memory networks was assayed by collecting task and resting-state fMRI data from 24 human participants (age 18-43; 11 men and 13 women). At rest, as found previously, the supramodal network exhibited stronger functional connectivity with the visual-biased network than with the auditory-biased network. This asymmetry raises questions about how networks communicate to support robust performance across modalities. However, during auditory task performance, dynamic changes increased auditory network connectivity with supramodal and visual-biased frontal regions, while decreasing connectivity from posterior visual areas to supramodal and frontal visual regions. In contrast, the visual task produced weak changes. Across individuals, auditory working memory precision correlated with the strength of auditory network connectivity changes, while no such brain-behavior link was observed for visual working memory. These results demonstrate an asymmetry in working memory network organization and reveal that dynamic reorganization accompanies performance of working memory tasks.

Similar content being viewed by others
Data availability
ROI search spaces (freesurfer label files in fsaverage space) used in these analyses are available at https://github.com/fmri/Sensory_Networks_FC. Data used to generate all figures are available in the supplementary materials. Unprocessed task, resting state, and structural MRI data are publicly available on OpenNeuro at https://doi.org/10.18112/openneuro.ds007231.v1.0.5.
Code availability
Custom Matlab code used to produce this work can be found at https://github.com/fmri/Sensory_Networks_FC.
References
Baddeley, A. D. & Hitch, G. Working memory. in (ed. Bower, G. H.) Psychology of Learning and Motivation, Vol. 8, 47–89 (Academic Press, 1974).
Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000).
Bettencourt, K. C. & Xu, Y. Decoding the content of visual short-term memory under distraction in occipital and parietal areas. Nat. Neurosci. 19, 150–157 (2016).
Christophel, T. B., Hebart, M. N. & Haynes, J.-D. Decoding the contents of visual short-term memory from human visual and parietal cortex. J. Neurosci. 32, 12983–12989 (2012).
Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R. & Haynes, J.-D. The distributed nature of working memory. Trends Cogn. Sci. 21, 111–124 (2017).
Ester, E. F., Sprague, T. C. & Serences, J. T. Parietal and frontal cortex encode stimulus-specific mnemonic representations during visual working memory. Neuron 87, 893–905 (2015).
Harrison, S. A. & Tong, F. Decoding reveals the contents of visual working memory in early visual areas. Nature 458, 632–635 (2009).
Linke, A. C., Vicente-Grabovetsky, A. & Cusack, R. Stimulus-specific suppression preserves information in auditory short-term memory. Proc. Natl. Acad. Sci. USA 108, 12961–12966 (2011).
Serences, J. T., Ester, E. F., Vogel, E. K. & Awh, E. Stimulus-specific delay activity in human primary visual cortex. Psychol. Sci. 20, 207–214 (2009).
Uluç, I., Schmidt, T. T., Wu, Y. & Blankenburg, F. Content-specific codes of parametric auditory working memory in humans. NeuroImage 183, 254–262 (2018).
Assem, M., Glasser, M. F., Van Essen, D. C. & Duncan, J. A domain-general cognitive core defined in multimodally parcellated human cortex. Cereb. Cortex 30, 4361–4380 (2020).
Badre, D. & Nee, D. E. Frontal cortex and the hierarchical control of behavior. Trends Cogn. Sci. 22, 170–188 (2018).
Crittenden, B. M. & Duncan, J. Task difficulty manipulation reveals multiple demand activity but no frontal lobe hierarchy. Cereb. Cortex 24, 532–540 (2014).
D’Esposito, M. & Postle, B. R. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 66, 115–142 (2015).
Assem, M., Shashidhara, S., Glasser, M. F. & Duncan, J. Precise topology of adjacent domain-general and sensory-biased regions in the human brain. Cereb. Cortex 32, 2521–2537 (2022).
Mayer, A. R., Ryman, S. G., Hanlon, F. M., Dodd, A. B. & Ling, J. M. Look hear! The prefrontal cortex is stratified by modality of sensory input during multisensory cognitive control. Cereb. Cortex 27, 2831–2840 (2017).
Michalka, S. W., Kong, L., Rosen, M. L., Shinn-Cunningham, B. G. & Somers, D. C. Short-term memory for space and time flexibly recruit complementary sensory-biased frontal lobe attention networks. Neuron 87, 882–892 (2015).
Noyce, A. L., Cestero, N., Michalka, S. W., Shinn-Cunningham, B. G. & Somers, D. C. Sensory-biased and multiple-demand processing in human lateral frontal cortex. J. Neurosci. 37, 8755–8766 (2017).
Noyce, A. L. et al. Extended frontal networks for visual and auditory working memory. Cereb. Cortex 32, 855–869 (2022).
Tobyne, S. M., Osher, D. E., Michalka, S. W. & Somers, D. C. Sensory-biased attention networks in human lateral frontal cortex revealed by intrinsic functional connectivity. NeuroImage 162, 362–372 (2017).
Tobyne, S. M., Brissenden, J. A., Noyce, A. L. & Somers, D. C. Combined auditory, tactile, and visual fMRI reveals sensory-biased and supramodal working memory regions in the human frontal cortex. J. Neurosci. 45, e0773252025 (2025).
Colavita, F. B. Human sensory dominance. Percept. Psychophys. 16, 409–412 (1974).
Hartcher-O’Brien, J., Gallace, A., Krings, B., Koppen, C. & Spence, C. When vision ‘extinguishes’ touch in neurologically-normal people: extending the Colavita visual dominance effect. Exp. Brain Res. 186, 643–658 (2008).
Hecht, D. & Reiner, M. Sensory dominance in combinations of audio, visual and haptic stimuli. Exp. Brain Res. 193, 307–314 (2009).
Posner, M. I., Nissen, M. J. & Klein, R. M. Visual dominance: an information-processing account of its origins and significance. Psychol. Rev. 83, 157–171 (1976).
Spence, C., Parise, C. & Chen, Y.-C. The Colavita visual dominance effect. in (eds Murray, M. M. & Wallace, M. T.) The Neural Bases of Multisensory Processes (CRC Press/Taylor & Francis, 2012).
Gratton, C. et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron 98, 439–452.e5 (2018).
Fedorenko, E., Duncan, J. & Kanwisher, N. Language-selective and domain-general regions lie side by side within Broca’s area. Curr. Biol. 22, 2059–2062 (2012).
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
Spence, C. Explaining the Colavita visual dominance effect. in Progress in Brain Research, Vol. 176, 245–258 (Elsevier, 2009).
Fang, Y., Li, Y., Xu, X., Tao, H. & Chen, Q. Top-down attention modulates the direction and magnitude of sensory dominance. Exp. Brain Res. 238, 587–600 (2020).
Bo, J., Jennett, S. & Seidler, R. D. Working memory capacity correlates with implicit serial reaction time task performance. Exp. Brain Res. 214, 73–81 (2011).
Alhamdan, A. A., Murphy, M. J., Pickering, H. E. & Crewther, S. G. The contribution of visual and auditory working memory and non-verbal IQ to motor multisensory processing in elementary school children. Brain Sci. 13, 270 (2023).
Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471.e5 (2017).
Kong, R. et al. Individual-specific areal-level parcellations improve functional connectivity prediction of behavior. Cereb. Cortex 31, 4477–4500 (2021).
Fedorenko, E., Hsieh, P.-J., Nieto-Castañón, A., Whitfield-Gabrieli, S. & Kanwisher, N. New method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. 104, 1177–1194 (2010).
Tobyne, S. M. et al. Prediction of individualized task activation in sensory modality-selective frontal cortex with ‘connectome fingerprinting. NeuroImage 183, 173–185 (2018).
Corbetta, M. et al. A common network of functional areas for attention and eye movements. Neuron 21, 761–773 (1998).
Agcaoglu, O., Wilson, T. W., Wang, Y.-P., Stephen, J. & Calhoun, V. D. Resting state connectivity differences in eyes open versus eyes closed conditions. Hum. Brain Mapp. 40, 2488–2498 (2019).
Han, J. et al. Eyes-open and eyes-closed resting state network connectivity differences. Brain Sci. 13, 122 (2023).
Patriat, R. et al. The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. NeuroImage 78, 463–473 (2013).
Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7, 268–277 (2006).
De La Vega, A., Chang, L. J., Banich, M. T., Wager, T. D. & Yarkoni, T. Large-scale meta-analysis of human medial frontal cortex reveals tripartite functional organization. J. Neurosci. 36, 6553–6562 (2016).
Fuster, J. M. Executive frontal functions. Exp. Brain Res. 133, 66–70 (2000).
Ferguson, B. R. & Gao, W.-J. PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front. Neural Circuits 12, 37 (2018).
Friedman, N. P. & Robbins, T. W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 47, 72–89 (2022).
Gao, W.-J., Wang, H.-X., A., M. & Li, Y.-C. The unique properties of the prefrontal cortex and mental illness. in (ed. Mantamadiotis, T.) When Things Go Wrong - Diseases and Disorders of the Human Brain (InTech, 2012).
Goldstein, R. Z. & Volkow, N. D. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 12, 652–669 (2011).
Goto, Y., Yang, C. R. & Otani, S. Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol. Psychiatry 67, 199–207 (2010).
Giorgio, A. et al. Age-related changes in grey and white matter structure throughout adulthood. NeuroImage 51, 943–951 (2010).
Nyberg, L. et al. Longitudinal evidence for diminished frontal cortex function in aging. Proc. Natl. Acad. Sci. USA 107, 22682–22686 (2010).
Peirce, J. W. et al. PsychoPy2: experiments in behavior made easy. Behav Res. 51, 195–203 (2019).
Alvarez, G. A. & Cavanagh, P. The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychol. Sci. 15, 106–111 (2004).
Bays, P. M., Catalao, R. F. G. & Husain, M. The precision of visual working memory is set by allocation of a shared resource. J. Vis. 9, 7 (2009).
Franconeri, S. L., Alvarez, G. A. & Cavanagh, P. Flexible cognitive resources: competitive content maps for attention and memory. Trends Cogn. Sci. 17, 134–141 (2013).
van der Kouwe, A. J. W., Benner, T., Salat, D. H. & Fischl, B. Brain morphometry with multiecho MPRAGE. NeuroImage 40, 559–569 (2008).
Griswold, M. A. et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47, 1202–1210 (2002).
Cauley, S. F., Polimeni, J. R., Bhat, H., Wald, L. L. & Setsompop, K. Interslice leakage artifact reduction technique for simultaneous multislice acquisitions. Magn. Reson. Med. 72, 93–102 (2014).
Feinberg, D. A. et al. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS ONE 5, e15710 (2010).
Moeller, S. et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63, 1144–1153 (2010).
Setsompop, K. et al. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. NeuroImage 63, 569–580 (2012).
Xu, J. et al. Evaluation of slice accelerations using multiband echo planar imaging at 3 T. NeuroImage 83, 991–1001 (2013).
Fischl, B. FreeSurfer. NeuroImage 62, 774–781 (2012).
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).
Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).
Ségonne, F. et al. A hybrid approach to the skull stripping problem in MRI. NeuroImage 22, 1060–1075 (2004).
Sled, J. G., Zijdenbos, A. P. & Evans, A. C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97 (1998).
Fischl, B., Liu, A. & Dale, A. M. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans. Med. Imaging 20, 70–80 (2001).
Segonne, F., Pacheco, J. & Fischl, B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans. Med. Imaging 26, 518–529 (2007).
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. Fsl. NeuroImage 62, 782–790 (2012).
Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004).
Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).
Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J. & Nichols, T. E. Statistical Parametric Mapping: The Analysis of Functional Brain Images (Elsevier, 2011).
Sladky, R. et al. Slice-timing effects and their correction in functional MRI. NeuroImage 58, 588–594 (2011).
Whitfield-Gabrieli, S. & Nieto-Castanon, A. Artifact Detection Tools (ART). https://www.nitrc.org/projects/artifact_detect (2011).
Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84, 320–341 (2014).
Ashburner, J. & Friston, K. Multimodal image coregistration and partitioning—A unified framework. NeuroImage 6, 209–217 (1997).
Studholme, C., Hawkes, D. J. & Hill, D. L. G. Normalized entropy measure for multimodality image alignment. in Medical Imaging 1998: Image Processing, Vol. 3338, 132–143 (SPIE, 1998).
Hagler, D. J., Saygin, A. P. & Sereno, M. I. Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. NeuroImage 33, 1093–1103 (2006).
Ashburner, J. A fast diffeomorphic image registration algorithm. NeuroImage 38, 95–113 (2007).
Ashburner, J. & Friston, K. J. Unified segmentation. NeuroImage 26, 839–851 (2005).
Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37, 90–101 (2007).
Murphy, K. & Fox, M. D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. NeuroImage 154, 169–173 (2017).
Chai, X. J., Castañón, A. N., Öngür, D. & Whitfield-Gabrieli, S. Anticorrelations in resting state networks without global signal regression. NeuroImage 59, 1420–1428 (2012).
Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol. Skr. 5, 1 (1948).
Bar-Joseph, Z., Gifford, D. K. & Jaakkola, T. S. Fast optimal leaf ordering for hierarchical clustering. Bioinformatics 17, S22–S29 (2001).
Nieto-Castanon, A. Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN (Hilbert Press, 2020).
Hartman, J. Emmeans. emmeans - File Exchange - MATLAB Central. https://www.mathworks.com/matlabcentral/fileexchange/71970-emmeans/ (2020).
Hedges, L. V. Effect sizes in cluster-randomized designs. J. Educ. Behav. Stat. 32, 341–370 (2007).
Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).
Smith, S. M. & Nichols, T. E. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44, 83–98 (2009).
Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA 113, 7900–7905 (2016).
Eklund, A., Knutsson, H. & Nichols, T. E. Cluster failure revisited: impact of first level design and physiological noise on cluster false positive rates. Hum. Brain Mapp. 40, 2017–2032 (2019).
Cole, M. W., Ito, T., Cocuzza, C. & Sanchez-Romero, R. The functional relevance of task-state functional connectivity. J. Neurosci. 41, 2684–2702 (2021).
Krienen, F. M., Yeo, B. T. T. & Buckner, R. L. Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130526 (2014).
Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 106, 13040–13045 (2009).
Friston, K. J. et al. Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6, 218–229 (1997).
McLaren, D. G., Ries, M. L., Xu, G. & Johnson, S. C. A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. NeuroImage 61, 1277–1286 (2012).
O’Reilly, J. X., Woolrich, M. W., Behrens, T. E. J., Smith, S. M. & Johansen-Berg, H. Tools of the trade: psychophysiological interactions and functional connectivity. Soc. Cogn. Affect Neurosci. 7, 604–609 (2012).
Cisler, J. M., Bush, K. & Steele, J. S. A comparison of statistical methods for detecting context-modulated functional connectivity in fMRI. NeuroImage 84, 1042–1052 (2014).
Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).
Acknowledgements
This work is funded by National Science Foundation grant BCS-1829394 to D.C.S. This work involved the use of instrumentation supported by the NSF Major Research Instrumentation grant BCS-1625552. Data were analyzed on a high-performance computing cluster supported by the ONR grant N00014-17-1-2304. We thank Dr. David Beeler for assistance with data collection and for helpful discussions, Dr. Abigail Noyce for auditory stimuli, and Dr. Ryan Marshall, Dr. Stephanie McMains, and Shruthi Chakrapani for scanning assistance. We acknowledge the University of Minnesota Center for Magnetic Resonance Research for the use of the multiband-EPI pulse sequences.
Author information
Authors and Affiliations
Contributions
Thomas Possidente: Conceptualization, Formal analysis, Methodology, Software, Validation, Visualization, Writing—original draft, review & editing, Vaibhav Tripathi: Conceptualization, Data curation, Investigation, Methodology, Software, Writing—review & editing, Joseph T. McGuire: Methodology, Writing—review & editing David Somers: Conceptualization, Funding acquisition, Methodology, Supervision, Project administration, Writing—original draft, review & editing.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Biology thanks Scott Brincat, Clive H. Y. Wong and the other anonymous reviewer(s) for their contribution to the peer review of this work. Primary handling editors: Jessica Peter and Benjamin Bessieres.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Possidente, T., Tripathi, V., McGuire, J.T. et al. Interactions between sensory-biased and supramodal working memory networks in the human cerebral cortex. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09688-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42003-026-09688-7


