Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Deep-time preservation of amino acids in mammalian fossil tooth enamel
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 18 February 2026

Deep-time preservation of amino acids in mammalian fossil tooth enamel

  • Lucrezia Gatti  ORCID: orcid.org/0000-0001-8307-28241,2,
  • Federico Lugli  ORCID: orcid.org/0000-0002-5642-22163,4,
  • Florian Rubach  ORCID: orcid.org/0000-0002-6144-27991,
  • Jennifer Leichliter  ORCID: orcid.org/0000-0001-9373-86345,
  • Giorgia Sciutto2,
  • Silvia Prati  ORCID: orcid.org/0000-0002-9974-731X2,6,
  • Thomas Tütken  ORCID: orcid.org/0000-0002-2590-86007 &
  • …
  • Alfredo Martínez-García  ORCID: orcid.org/0000-0002-7206-50791 

Communications Biology , Article number:  (2026) Cite this article

  • 930 Accesses

  • 16 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Palaeontology
  • Peptides

Abstract

Tooth enamel, primarily composed of bioapatite, is a promising archive of endogenous organic matter for studying ancient fauna. Despite its low organic content (~1%), protein residues have been identified in teeth up to 24 million years old. This study investigates the preservation of total hydrolysable amino acids (THAAs) in fossil enamel dating back as far as 48 million years. Modern and fossil enamel from large herbivorous mammals (Equidae, Rhinocerotidae, Proboscidea) across various taphonomic settings and Cenozoic periods reveal that AAs persist at least to the Eocene. The “intra-crystalline” organic fraction stabilizes after an initial rapid decline within the first 0.10 million years. Preservation appears independent of taphonomic context, and the relative abundance of amino acids is similarly variable in both modern and fossil samples. These findings demonstrate that enamel is a diagenetically robust substrate for long-term organic preservation, with significant potential for phylogenetic and ecological reconstructions in the fossil record.

Similar content being viewed by others

Tooth enamel nitrogen isotope composition records trophic position: a tool for reconstructing food webs

Article Open access 07 April 2023

Eighteen million years of diverse enamel proteomes from the East African Rift

Article Open access 09 July 2025

Hierarchically mimicking outer tooth enamel for restorative mechanical compatibility

Article Open access 23 November 2024

Data availability

The data and results that support the findings of this study are available within the Supplementary Information and Supplementary Data files.

References

  1. Cappellini, E. et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature 574, 103–107 (2019).

    Google Scholar 

  2. Welker, F. et al. Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature 522, 81–84 (2015).

    Google Scholar 

  3. Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569, 409–412 (2019).

    Google Scholar 

  4. Demarchi, B. Amino Acids and Proteins in Fossil Biominerals. An Introduction for Archaeologists and Palaeontologists (Wiley & Sons, 2020).

  5. Penkman, K. E. H. et al. Dating the Paleolithic: trapped charge methods and amino acid geochronology. Proc. Natl. Acad. Sci. USA 119, 1–10 (2022).

    Google Scholar 

  6. Demarchi, B. et al. Intra-crystalline protein diagenesis (IcPD) in Patella vulgata. Part I: Isolation and testing of the closed system. Quat. Geochronol. 16, 144–157 (2013).

    Google Scholar 

  7. Hendy, J. Ancient protein analysis in archaeology. Sci. Adv. 7, 1–12 (2021).

    Google Scholar 

  8. Martínez-García, A. et al. Laboratory assessment of the impact of chemical oxidation, mineral dissolution, and heating on the nitrogen isotopic composition of fossil-bound organic matter. Geochem. Geophys. Geosys. 23, e2022GC010396 (2022).

    Google Scholar 

  9. Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).

    Google Scholar 

  10. Jung, J. et al. Coral photosymbiosis on Mid-Devonian reefs. Nature 636, 647–653 (2024).

    Google Scholar 

  11. Leichliter, J., Lüdecke, T., Foreman, A., Bacon, A. & Sigman, D. Nitrogen isotopic composition of tooth enamel organic matter records trophic position in modern and fossil ecosystems. Comm. Biol. 6, 373 (2023).

  12. Scher, M. et al. Nitrogen isotopic composition of enamel-bound organic matter preserves trophic information in Mesozoic terrestrial communities. In GSA Connects 2023 Meeting in Pittsburgh, Pennsylvania 81–82 (Geological Society of America, 2023).

  13. Comans, C. M. et al. Enameloid-bound d15N reveals large trophic separation among Late Cretaceous sharks in the northern Gulf of Mexico. Geobiology 22, e12585 (2024).

  14. Kast, E. R. et al. Cenozoic megatooth sharks occupied extremely high trophic positions. Sci. Adv. 8, 7–17 (2022).

    Google Scholar 

  15. Lüdecke, T. et al. Australopithecus at Sterkfontein did not consume substantial mammalian meat. Science 387, 309–314 (2025).

    Google Scholar 

  16. Weber, K. et al. Diagenetic stability of non-traditional stable isotope systems (Ca, Sr, Mg, Zn) in teeth – an in-vitro alteration experiment of biogenic apatite in isotopically enriched tracer solution. Chem. Geol. 572, 120196 (2021).

    Google Scholar 

  17. Brooks, A. A. S. et al. Dating Pleistocene archeological sites by protein diagenesis in ostrich eggshell. Science 248, 60–64 (1990).

    Google Scholar 

  18. Demarchi, B. et al. Protein sequences bound to mineral surfaces persist into deep time. Elife 5, e17092 (2016).

  19. Demarchi, B. et al. Amino acid racemization dating of marine shells: a mound of possibilities. Quat. Int. 239, 114–124 (2011).

    Google Scholar 

  20. Demarchi, B. et al. Survival of mineral-bound peptides into the Miocene. Elife 11, e82849 (2022).

  21. Sakalauskaite, J. et al. The degradation of intracrystalline mollusc shell proteins: a proteomics study of Spondylus gaederopus. Biochim. Biophys. Acta Proteins Proteom. 1869, 140718 (2021).

    Google Scholar 

  22. Penkman, K. E. H., Kaufman, D. S., Maddy, D. & Collins, M. J. Closed-system behaviour of the intra-crystalline fraction of amino acids in mollusc shells. Quat. Geochronol. 3, 2–25 (2008).

    Google Scholar 

  23. Wheeler, L. J., Penkman, K. E. H. & Sejrup, H. P. Assessing the intra-crystalline approach to amino acid geochronology of Neogloboquadrina pachyderma (sinistral). Quat. Geochronol. 61, 101131 (2021).

    Google Scholar 

  24. Bada, J. L., Shou, M. Y., Man, E. H. & Schroeder, R. A. Decomposition of hydroxy amino acids in foraminiferal tests; kinetics, mechanism and geochronological implications. Earth Planet. Sci. Lett. 41, 67–76 (1978).

    Google Scholar 

  25. Walton, D. Degradation of intracrystalline proteins and amino acids in fossil brachiopods. Org. Geochem. 28, 389–410 (1998).

    Google Scholar 

  26. Jones, J. D. & Vallentyne, J. R. Biogeochemistry of organic matter-I: Polypeptides and amino acids in fossils and sediments in relation to geothermometry. Geochim. Cosmochim. Acta 21, 1–34 (1960).

    Google Scholar 

  27. Hendy, E. J. et al. Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications. Geochim. Cosmochim. Acta 86, 338–353 (2012).

    Google Scholar 

  28. Dickinson, M. R., Lister, A. M. & Penkman, K. E. H. A new method for enamel amino acid racemization dating: a closed system approach. Quat. Geochronol. 50, 29–46 (2019).

    Google Scholar 

  29. Cappellini, E. et al. Early Pleistocene enamel proteome sequences from Dmanisi resolve Stephanorhinus phylogeny performed analyses and data interpretation. Bienvenido Martínez Navarro 574, 103–107 (2020).

    Google Scholar 

  30. Abelson, P. H. Paleobiochemistry. Sci. Am. 195, 83–96 (1956).

    Google Scholar 

  31. Lacruz, R. S., Habelitz, S., Wright, J. T. & Paine, M. L. Dental enamel formation and implications for oral health and disease. Physiol. Rev. 97, 939–993 (2017).

    Google Scholar 

  32. Beniash, E. et al. The hidden structure of human enamel. Nat. Commun. 10, 1–13 (2019).

    Google Scholar 

  33. Blumenthal, S. A., Cerling, T. E., Smiley, T. M., Badgley, C. E. & Plummer, T. W. Isotopic records of climate seasonality in equid teeth. Geochim. Cosmochim. Acta 260, 329–348 (2019).

    Google Scholar 

  34. Białas, N. et al. Teeth of past and present elephants: microstructure and composition of enamel in fossilized proboscidean molars and implications for diagenesis. Geochem. Geophys. Geosys. 22, e2020GC009557 (2021).

    Google Scholar 

  35. Green, D. R. et al. Eighteen million years of diverse enamel proteomes from the East African Rift. Nature 643, 712–718 (2025).

    Google Scholar 

  36. Paterson, R. S. et al. A 20 + Ma old enamel proteome from Canada ’ s High Arctic reveals diversification of Rhinocerotidae in the middle Eocene-Oligocene. bioRxiv 6, https://www.biorxiv.org/content/10.1101/2024.06.07.597871v1 (2024).

  37. Bada, J. L., Wang, X. S. & Hamilton, H. Preservation of key biomolecules in the fossil record: current knowledge and future challenges. Philos. Trans. R. Soc. B Biol. Sci. 354, 77–87 (1999).

    Google Scholar 

  38. Vallentyne, J. R. Biogeochemistry of organic matter-II Thermal reaction kinetics and transformation products of amino compounds. Geochim. Cosmochim. Acta 28, 157–188 (1964).

    Google Scholar 

  39. Demarchi, B. et al. An integrated approach to the taxonomic identification of prehistoric shell ornaments. PLoS One 9, e 99839 (2014).

    Google Scholar 

  40. Ortiz, J. E., Gutiérrez-Zugasti, I., Sánchez-Palencia, Y., Torres, T. & González-Morales, M. Protein diagenesis in archaeological shells of Littorina littorea (Linnaeus, 1758) and the suitability of this material for amino acid racemisation dating. Quat. Geochronol. 54, 101017 (2019).

    Google Scholar 

  41. Andrews, J. T., Miller, G. H., Davies, D. C. & Davies, K. Generic identification of fragmentary Quaternary molluscs by amino acid chromatography A tool for Quaternary and palaeontological research. Geol. J. 20, 1–20 (1985).

  42. Kaufman, D. S., Miller, G. H. & Andrews, J. Amino acid composition as a taxonomic tool for molluscan fossils: an example from Pliocene-Pleistocene Arctic marine deposits. Geochim. Cosmochim. Acta 56, 2445–2453 (1996).

    Google Scholar 

  43. Degens, B. E. T. & Love, S. Comparative studies of amino-acids in shell structures of Gyraulus trochiformis, Stahl, from the Tertiary of Steinheim, Germany. Nature 205, 876–878 (1965).

    Google Scholar 

  44. Welker, F. et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature 576, 262–265 (2020).

    Google Scholar 

  45. Collins, M. J. et al. The survival of organic matter in bone: a review. Archaeometry 44, 383–394 (2002).

    Google Scholar 

  46. Hillson, S. Teeth, 388 (Cambridge Univ. Press, 2005).

  47. Ferretti, M. P. Structure and evolution of mammoth molar enamel. Acta Palaeontol. Pol. 48, 383–396 (2003).

    Google Scholar 

  48. Cring, F. D. Enamel prism patterns in proboscidean molar teeth. Elephant 2, 72–79 (1986).

    Google Scholar 

  49. Tabuce, R., Delmer, C. & Gheerbrant, E. Evolution of the tooth enamel microstructure in the earliest proboscideans (Mammalia). Zool. J. Linn. Soc. 149, 611–628 (2007).

    Google Scholar 

  50. Dirks, W., Bromage, T. G. & Agenbroad, L. D. The duration and rate of molar plate formation in Palaeoloxodon cypriotes and Mammuthus columbi from dental histology. Quat. Int. 255, 79–85 (2012).

    Google Scholar 

  51. Berkovitz, B. & Shellis, P. The Teeth of Mammalian Vertebrates (Academic Press, 2018).

  52. Kaboth-Bahr, S. et al. Improved chronostratigraphy for the Messel Formation (Hesse, Germany) provides insight into early to middle Eocene climate variability. Newslett. Stratigr. 57, 153–170 (2024).

  53. Smith, K. T., Schaal, S. F. K. & Habersetzer, J. Messel: an ancient greenhouse ecosystem. Geoconserv. Res. 4, 1–355 (2018).

  54. Tütken, T. Isotope compositions (C, O, Sr, Nd) of vertebrate fossils from the Middle Eocene oil shale of Messel, Germany: implications for their taphonomy and palaeoenvironment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 416, 92–109 (2014).

    Google Scholar 

  55. Hoppe, K. A., Stover, S. M., Pascoe, J. R. & Amundson, R. Tooth enamel biomineralization in extant horses: implications for isotopic microsampling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 206, 355–365 (2004).

    Google Scholar 

  56. Uno, K. T. et al. Forward and inverse methods for extracting climate and diet information from stable isotope profiles in proboscidean molars. Quat. Int. 557, 92–109 (2020).

    Google Scholar 

  57. Bada, J. L. Amino acid cosmogeochemistry. Philos. Trans. R. Soc. Lond. B 333, 349–358 (1991).

    Google Scholar 

  58. Saitta, E. T. et al. Non-avian dinosaur eggshell calcite can contain ancient, endogenous amino acids. Geochim. Cosmochim. Acta 365, 1–20 (2023).

    Google Scholar 

  59. Sato, N., Quitain, A. T., Kang, K., Daimon, H. & Fujie, K. Reaction kinetics of amino acid decomposition in high-temperature and high-pressure water. Ind. Eng. Chem. Res. 43, 3217–3222 (2004).

    Google Scholar 

  60. Gehler, A., Tütken, T. & Pack, A. Oxygen and carbon isotope variations in a modern rodent community - implications for palaeoenvironmental reconstructions. PLoS One 7, 16–27 (2012).

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Max Planck Society. We thank the project PE5 CHANGES: Cultural Heritage Active Innovation for Sustainable Society. PE 0000020 CHANGES, - CUP B53C22003780006, PNRR Missione 4 Componente 2 Investimento 1.3, NextGenerationEU for contribution. We thank the following museums for providing access to modern or fossil tooth enamel samples: Staatliches Museum für Naturkunde Stuttgart Museum am Löwentor, Naturhistorisches Museum Basel, Bayerische Staatssammlung für Paläontologie und Geologie München, Geowissenschaftliches Museum Universität Göttingen, Naturhistorisches Museum Mainz, Naturalis Leiden, Paläontologisches Institut und Museum Universität Zürich, JURASSICA Museum Porrentruy, Naturhistoriska riksmuseet Stockholm, Archäozoologische Sammlung Universität Tübingen, Zoologische Schausammlung Universität Tübingen, Naturhistorisches Museum of Bern, Staatliches Museum für Naturkunde of Karlsruhe, Hessisches Landesmuseum of Darmstadt, Senckenberg Naturmuseum of Frankfurt, Archäologisches Forschungszentrum und Museum für menschliche Verhaltensevolution Monrepos. TT acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program grant agreement no. 681450. The authors thank Mareike Schmitt, and Barbara Hinnenberg for their technical support during the sample analysis. The authors thank Prof. Matthew Collins for his precious suggestions and contribution to this work.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Climate Geochemistry Department, Max Planck Institute for Chemistry, Mainz, Germany

    Lucrezia Gatti, Florian Rubach & Alfredo Martínez-García

  2. Department of Chemistry, “G. Ciamician”, Alma-Mater Studiorum-University of Bologna-Ravenna Campus Via Guaccimanni, Ravenna, Italy

    Lucrezia Gatti, Giorgia Sciutto & Silvia Prati

  3. Department of Chemical and Geological Science, University of Modena and Reggio Emilia, Modena, Italy

    Federico Lugli

  4. Institut für Geowissenschaften, Goethe-Universität Frankfurt Altenhöferallee 1, Frankfurt am Main, Germany

    Federico Lugli

  5. Emmy Noether Group for Hominin Meat Consumption, Max Planck Institute for Chemistry, Mainz, Germany

    Jennifer Leichliter

  6. Department of Chemistry, “Giacomo Ciamician” Alma Mater Studiorum-University of Bologna, Bologna, Italy

    Silvia Prati

  7. Applied and Analytical Paleontology, Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany

    Thomas Tütken

Authors
  1. Lucrezia Gatti
    View author publications

    Search author on:PubMed Google Scholar

  2. Federico Lugli
    View author publications

    Search author on:PubMed Google Scholar

  3. Florian Rubach
    View author publications

    Search author on:PubMed Google Scholar

  4. Jennifer Leichliter
    View author publications

    Search author on:PubMed Google Scholar

  5. Giorgia Sciutto
    View author publications

    Search author on:PubMed Google Scholar

  6. Silvia Prati
    View author publications

    Search author on:PubMed Google Scholar

  7. Thomas Tütken
    View author publications

    Search author on:PubMed Google Scholar

  8. Alfredo Martínez-García
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.G.: performed research, data evaluation, original draft preparation; F.L.: data evaluation, writing – review and editing; F.R.: performed research, writing – review and editing; J.L.: performed research, writing – review and editing; G.S.: writing – review and editing; S.P.: resources, supervision, writing – review and editing, T.T.: designed research, sampled teeth, resources, writing – review and editing; A.M.G.: designed research, supervision, writing – review and editing.

Corresponding authors

Correspondence to Lucrezia Gatti, Federico Lugli or Alfredo Martínez-García.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Marc R. Dickinson and Timothy Cleland for their contribution to the peer review of this work. Primary Handling Editors: Michele Repetto and George Inglis.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data1-8

Reporting summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatti, L., Lugli, F., Rubach, F. et al. Deep-time preservation of amino acids in mammalian fossil tooth enamel. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09716-6

Download citation

  • Received: 29 July 2025

  • Accepted: 04 February 2026

  • Published: 18 February 2026

  • DOI: https://doi.org/10.1038/s42003-026-09716-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing