Table 2 Summary of the results for optimal feature choice using PLS, RFR, SVR with linear and RBF kernels, and GPR with the RBF kernel.
From: Aqueous pKa prediction for tautomerizable compounds using equilibrium bond lengths
Property/Metric | Marvin | PLS | RFR | SVR [linear] | SVR [RBF] | GPR [RBF] |
---|---|---|---|---|---|---|
Features used | – | C–O, C=C, C–C, C=O | C–O, C–C, C=O | C–O, C=O | C–O, C–C, C=O | C–O, C–C C=O |
Max depth = 6 | C = 1000 | C = 1000 | ℓ = −8.21, −6.150, −12.851 | |||
Hyperparameters | – | LV = 3 | ||||
ε = 0.1 | ||||||
nest = 25 | ε = 0.01 | |||||
γ = 5 | ||||||
MAE (7-fold CV) (train) | – | 0.41 | 0.46 | 0.43 | 0.40 | 0.30 |
RMSEE (7-fold CV) (train) | – | 0.53 | 0.57 | 0.57 | 0.53 | 0.39 |
MAE (test) | 1.21 (4.70) | 0.31 | 0.39 | 0.29 | 0.29 | 0.43 |
RMSEP (test) | 1.63 (6.32) | 0.36 | 0.49 | 0.40 | 0.36 | 0.59 |
s.d. (test) | 1.12 (4.32) | 0.19 | 0.31 | 0.28 | 0.22 | 0.36 |
r2 obs vs pred (test) | 0.61 (0.55) | 0.86 | 0.74 | 0.90 | 0.86 | 0.67 |