
communications chemistry Article
A Nature Portfolio journal

https://doi.org/10.1038/s42004-025-01455-9

TransPeakNet for solvent-aware 2D NMR
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Nuclear Magnetic Resonance (NMR) spectroscopy is essential for revealing molecular structure,
electronic environment, and dynamics. Accurate NMR shift prediction allows researchers to validate
structures by comparing predicted and observed shifts. While Machine Learning (ML) has improved
one-dimensional (1D) NMR shift prediction, predicting 2D NMR remains challenging due to limited
annotated data. To address this, we introduce an unsupervised training framework for predicting
cross-peaks in 2D NMR, specifically Heteronuclear Single Quantum Coherence (HSQC). Our
approachpretrains anMLmodel on an annotated 1Ddataset of 1H and 13C shifts, then finetunes it in an
unsupervised manner using unlabeled HSQC data, which simultaneously generates cross-peak
annotations. Our model also adjusts for solvent effects. Evaluation on 479 expert-annotated HSQC
spectra demonstrates our model’s superiority over traditional methods (ChemDraw andMestrenova),
achieving Mean Absolute Errors (MAEs) of 2.05 ppm and 0.165 ppm for 13C shifts and 1H shifts
respectively. Our algorithmic annotations show a 95.21% concordance with experts’ assignments,
underscoring the approach’s potential for structural elucidation in fields like organic chemistry,
pharmaceuticals, and natural products.

Nuclearmagnetic resonance (NMR) spectroscopyhas emerged as a versatile
tool with widespread applications across diverse scientific domains,
including chemistry, environmental science, food science, material science,
and drug discovery by unraveling molecular dynamics and structures1–4.
The primary information of an NMR spectrum arises from the chemical
shift, which is determined by the local environment of a nucleus and
influenced by interactions through chemical bonds and space. This
mechanism yields unique “fingerprints” corresponding to diverse func-
tional groups or molecular motifs, thereby facilitating the streamlined
deduction of atomic connectivity and arrangement.

InterpretingNMRspectra requires following essential guidelines, often
referred to as “rules of thumb”, where specific chemical shifts are associated
with distinctive functional groups5. The determination of molecular struc-
tures from varying chemical shifts on NMR spectra generally requires the
expertise of experienced organic chemists. To facilitate the interpretation of
NMR spectra, significant efforts have been directed towards computational
simulation of NMR spectra6. Early computational approaches, like the
Hierarchically Ordered Spherical Environment (HOSE) codes7, aim to

encapsulate atom neighborhoods in concentric spheres, utilizing a nearest-
neighbor approach to predict NMR shift values. A recent HOSE approach8

yields Mean Absolute Errors (MAEs) of 3.52 ppm for 13C NMR and 0.29
ppm for 1H NMR on the nmrshiftdb29 dataset. Concurrently, significant
efforts have been devoted to the ab initio calculation of NMR properties.10,11

Density Functional Theory (DFT)-based methods were developed for cer-
tain small organic molecules, achievingMAEs of 2.9 ppm for 13CNMR and
0.23 ppm for 1H NMR12. However, the accuracy of these DFT-based
methods relies heavily on the choice of the basis functions, which often
require meticulous case-by-case manual tuning for each molecule. More-
over, the time-intensive nature of DFT calculations limits their applications
to comprehensive and large datasets. Recently, the rise of Graph Neural
Networks (GNN) and their successes in predictingmolecular properties13–17

has prompted initiatives to employ GNNs for predicting peaks in NMR
spectra5,18,19. The applicationofGNNtomolecules is intuitive, as amolecular
structure can be naturally represented as a graph, with each atom as a node
and its chemical bonds as edges. On 1D NMR data, a GNN-based model
achieves MAEs of 1.355 ppm for 13C NMR and 0.224 ppm for 1H NMR on
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the nmrshiftdb2 dataset18. While considerable efforts have been made in
developing predictive models for 1D NMR, the prediction of 2D NMR
remains underexplored.

Heteronuclear Single QuantumCoherence (HSQC) spectroscopy20,
a sophisticated 2D NMR technique, is an important tool for elucidating
atomic connectivity within complex molecules where conventional 1D
NMR may prove insufficient21,22. By correlating the chemical shifts of
hydrogen nuclei with those of heteronuclear nuclei, typically carbon or
nitrogen, via scalar coupling interactions, HSQC facilitates the com-
prehensive mapping of interatomic connections within a molecule. This
mapping yields crucial insights into chemical bonding, molecular con-
formation, and intramolecular interactions. As molecular structures
become more complex, 1D NMR spectra tend to display increasingly
overlapping peaks, making 2DNMR techniques such as HSQC essential
for elucidating local structures. A notable stride in this domain utilizes
the ML approach to establish correlations between DFT-simulated
HSQC spectra and empirical data to identify molecules23. However, the
accurate prediction of HSQC spectra using ML techniques remains
elusive, primarily due to the scarcity of large-scale, high-quality datasets,
as well as the labor-intensive and time-consuming peak annotation
process.While numerous annotated 1D spectra are available for training
MLmodels, combining these results to reliably generate 2DNMR data is
far from straightforward. As an example, a recent study introduced a
method to integrate the state-of-the-art predictions of proton and car-
bon 1D spectra intoHSQC spectra24, achievingMAEs of 0.16 ppm for 1H
and 2.64 ppm for 13C. This study highlights the inherent difficulties in
accurately predicting 2D NMR chemical shifts, as even though the
selected 1D NMR models and methods achieve low error individually,
such success cannot be transferred to HSQC cross-peak prediction.
Moreover, beyond the challenge of prediction, associating each HSQC
peak with its corresponding local molecular structure is an inevitable
task that requires expert domain knowledge and is often time-
consuming. Proper calibration is typically necessary to ensure precise
alignment between 1D and HSQC data before interpreting the HSQC
spectra.

In light of the aforementioned challenges and opportunities in
interpreting HSQC spectra, we propose TransPeakNet: a Transfer
learning-based Peak prediction and assignment with unsupervised
learning, illustrated in Fig. 1. This framework enables end-to-end
training and testing on experimental data. Once trained, the Trans-
PeakNetmodel generates cross-peak predictions directly from a SMILES
representation and the solvent environment used in the experiment.
Additionally, it simultaneously associates each cross-peak signal with its
corresponding carbon-proton pairs. Alongside aGraphNeural Network
(GNN) module capturing structural nuances, the model incorporates a
solvent encoder to effectively account for the impact of solvent envir-
onments on chemical shifts, which is essential for delivering accurate
cross-peak prediction and peak assignment of HSQC spectra. To tackle
the lack of annotated HSQC data, we designed a two-step transfer
learning process. First, the model is pre-trained on a labeled 1D NMR
dataset via Multi-Task pre-Training (MTT), enabling it to learn a wide
range of C–H interactions. Then, we implement an unsupervised
learning strategy that uses the unlabeled HSQC dataset to refine the
model’s ability to accurately discern and label HSQC cross peaks.

Themodel is pre-trained using ~24,000 annotated 1DNMRdataset
from NMRShiftDB29, and finetuned on ~19,000 experimental HSQC
spectra from HMDB25 and CH-NMR-NP26. The model is thoroughly
evaluated and compared to traditional tools like ChemDraw27 and
Mestrenova28 using expert-annotated test datasets. On test dataset, the
model achieves MAEs of 2.05 ppm and 0.165 ppm for 13C shifts and 1H
shifts respectively. We also demonstrate that our model effectively
considers the impact solvent has on chemical shift, when making the
prediction. When compared with the traditional tools, our model shows
promising improvements, especially as the molecular size becomes
larger.

Results
Performance on HSQC cross peak prediction and assignment
Figure 2 summarizes the performance of our model on the tasks of HSQC
cross-peak prediction and peak assignment, using an expert-annotated test
dataset consisting of 500 molecules, with an average molecular weight of
398.98 Da., and an average number of 56.32 atoms. The annotation process
involved three experienced experts with extensive knowledge in organic
chemistry. For each molecule, two experts independently linked the
observed cross-peaks from experiments to C–H bonds. If they agreed, the
annotationwasfinalized. In cases of disagreement, the third expert reviewed
and validated the annotations. Sampleswith poor quality, such as thosewith
insufficient experimental resolution, were excluded from the test dataset for
model evaluation, resulting in 479 high-quality annotations. For chemical
shift prediction, ourmodel achieved anMAEs of 2.05ppm for 13C shifts and
0.16 ppm for 1H shifts. In terms of annotation accuracy, our model accu-
rately annotated all peaks in 456 out of 479molecules (95.21%). An example
of the model prediction and annotation of a small molecule is visualized in
Fig. 2C for simplicity. Additional examples formedium and largemolecules
are included in Supplementary Information Section 1, Supplementary
Figs. 1–4. For those 23 molecules that our algorithmic annotations do not
fully agree with the experts, 81.56% of the peak annotations still align.
Examples of partially correct annotations are visualized in Supplementary
Information Section 2, Supplementary Figs. 5–9. Notably, the peak
assignment algorithm operates without a shift discrepancy threshold,
allowing it to align all ground truth peaks with predictions. Given the low
MAE of the predicted shifts (2.05 ppm for 13C and 0.165 ppm for 1H), the
model provides a solid foundation for accurate assignment. Even in rare
caseswhere a few atoms in amolecule have relatively large prediction errors,
the annotation remains reliable, highlighting its robustness.

To evaluate our model’s ability to capture solvent effects, we tested
different solvent encoders for carbon and hydrogen atoms. Empirical
results indicate that a solvent encoder with a dimension of 32 is most
effective at capturing proton shifts, while adding additional embeddings
for carbon does not yield significant benefits. This partially aligns with
expert expectations, as protons are known to be more sensitive to their
solvent environment due to their high exposure to the surrounding
molecular environment. By contrast, carbon atoms are less directly
influenced by solvent interactions, as they are more deeply embedded
within the molecular structure and shielded by surrounding electron
clouds. Additionally, carbon atoms are not directly involved in hydrogen
bonding, and their largermass and lower sensitivity to externalmagnetic
fields make their shifts less responsive to subtle solvent changes. Fur-
thermore, since the 1DNMR data used for pre-training does not include
solvent information, and some solvent groups (e.g., benzene, acid, etc.)
in the HSQC data are underrepresented, as shown in Fig. 3A, the
influence of solvent on carbon shifts may be too subtle to capture at this
stage. This remains as our ongoing area of investigation for further
insights. To assess the effect of solvents on proton shifts, we reportmodel
performance using the true experimental solvent, a random solvent
condition, and the “unknown” solvent condition, with the comparison
shown in Fig. 3B. The results demonstrate that using the correct solvent
input yields the lowest prediction error, aligning most closely with
experimental observations. This improvement in prediction is particu-
larly significant for the CCl3, DMSO, andmethanol solvent classes, likely
due to their prominent presence in the dataset. The effect of water, on the
other hand, despite constituting only 1.02% of the data, can be effectively
captured by the solvent encoder. This could be explained by water’s
similarity to methanol in its behavior as a hydrogen-bond donor or
acceptor. Both solvents can strongly deshield protons in solutes, causing
their NMR peaks to shift higher. The predictability of these hydrogen-
bonding interactions may enable the model to generalize well, even with
relatively few training examples for water. These findings underscore the
promise of incorporating solvent environments into peak prediction
models and highlight the need for more high-quality data with solvent
information.
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Comparison with traditional tools
In organic chemistry, simulating HSQC spectra is crucial for analyzing
experimental HSQC spectra, as it assists researchers in assigning the
observed cross peaks to the C–H bonds in target molecules. Traditional
approaches, including software solutions such as ChemDraw27, and
Mestrenova28, have long served as the primary resources for this task. We
compared our model with ChemDraw andMestrenova and the results are
shown in Fig. 4, which clearly demonstrate the superiority of ourmodel. It is
labor intensive to align predictions from these traditional tools with ground
truth. Moreover, these tools could yield unstable predictions as molecular
size and complexity increases. Hence, we randomly selected 150 peaks
across different molecular weight categories for comparison. Because the
HSQC prediction is not inherently implemented in ChemDraw, the cross
peaks were constructed and assigned using 1D predictions (13C and 1H
chemical shifts) based on bond connectivity. We also provided two exam-
ples with different molecular sizes to visualize the comparison.

Performance by segmentation
To comprehensively evaluate the robustness and generalizability of our
model,we conducted a segmentation analysis in the test dataset, assessing its
performance across various molecular subcategories. Segmentation is cru-
cial in this context because it allows us to determine whether the model
performs consistently well across diverse molecular characteristics, rather
than excelling in only a specific subset. We selected categories based on
molecular weight and the presence of saccharides. These categories were
chosen because NMR prediction gets increasingly challenging as the
molecule gets larger, while saccharides represent a distinct chemical group
with unique structural features. By examining the model’s performance
within these defined segments, we aim to demonstrate its universal
applicability and robustness across a wide range of molecular types.

Molecular Weight (MW) is a general indicator of a molecule’s com-
plexity, encompassing varied geometries, bonding patterns, and the pre-
sence of isomers. These factors contribute to increased intramolecular

interactions, resulting in spectral complexity such as closely spaced peaks or
overlapping signals. Additionally, the increased number of spin-spin
interactions within larger molecules necessitates more advanced NMR
techniques to achieve sufficient resolution29. Furthermore, solubility issues
can lead to weak signals, further complicating spectral analysis. Conse-
quently, interpreting HSQC spectra for medium and large molecules is
challenging. Therefore, there is a pressing need for a model that can effec-
tively predict and analyze HSQC spectra for these complex molecules.

Figure 5A showcases the stratified performance on this category,where
the test molecules are grouped into three categories: small (MW < 500
daltons), medium (500 <=MW<1000 daltons), and large (1000 daltons <=
MW). On the task of predicting 1H shifts of HSQC cross peaks, the model
performs comparably across all groups, achieving excellent MAE of
0.16–0.19 ppm. On the task of predicting 13C shifts, the model achieves an
MAE of 1.93 ppm for medium-sizedmolecules. Our model demonstrates a
good generalization power on large molecules and achieves an MAE of 2
ppm on predicting 13C shifts for this category, despite the training data
containing only a small proportion of large molecules (~2%).

Saccharides, or carbohydrates, play critical roles in various biological
processes involved in energy source and storage, cell signaling, cell adhesion,
cell recognition, structural integrity of cells and tissues, as well as cognitive
functions and metabolic regulation30–33. Despite their importance, eluci-
dating the structures of saccharides is challenging due to their inherent
structural complexity and diversity. This complexity arises from the diverse
arrangements of monosaccharide units, varied anomeric configurations,
and variable glycosidic linkages. Additionally, carbohydrates often lack the
crystallinity required for high-resolution X-ray diffraction, unlike the well-
defined crystalline structures of small molecules or proteins. Consequently,
NMR spectroscopy, particularly through techniques such as HSQC, has
emerged as an indispensable tool in unraveling the detailed structures of
carbohydrates34,35. Forecasting HSQC cross peaks and aligning them with
experimental data can assist in comprehending saccharide connectivity and
stereochemistry, thus aiding in structural determination.

Fig. 1 | Illustration of the model design and training strategy of TransPeakNet.
A The model takes a molecular structure and derives its atomic representations from a
GNN. The solvent information is encoded into a latent representation via the Solvent
encoder. The representation of each atom is concatenated with the solvent

representation, which is then used to predict the cross shifts of carbon and proton.
BModel pertaining on the annotated 1D NMR dataset using MTT. C The pre-trained
model is refined through an unsupervised process using the unlabeled HSQC dataset.
The final output of the model has both the HSQC cross-peaks and atom alignment.
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Our model demonstrates excellent performance in predicting HSQC
cross peaks for saccharides molecules, yielding MAEs of 1.78 for 13C shifts
and 0.16 for 1H shifts (see Fig. 5(B)). This level of accuracy is consistent with
the overall model performance, which demonstrates themodel’s robustness
in handling complex saccharide structures. Figure 6 shows the performance
of our model on a few exemplar saccharides. These saccharides feature
multiple ring structures and numerous stereogenic centers, contributing to
the intricate nature of their HSQC spectra. Despite these inherent com-
plexities, our model exhibits high accuracy in predicting the HSQC cross
peaks for these molecules. This robust performance underscores our
model’s capacity to navigate the complexities associated with saccharides,
thereby emphasizing its versatility and effectiveness across various appli-
cations in the field.

Effects of pre-training and fine-tuning
After pre-trained viaMTT on the 1DNMR dataset, the model achieved the
validation performance with MAEs of 0.210 ppm for 1H NMR prediction
and 2.228 ppm for 13C NMR prediction. This success can be attributed to
MTT which allows the model to effectively learn atomic latent features as
well as local structural information by simultaneously performing 1H and
13C NMR shift predictions. This helps us surpass the problem with limited
annotated HSQC data. However, when directly deploying the pre-trained
model on HSQC test dataset, the model MAEs increase to 1.397 ppm and
2.822 ppm for 1H and 13C shifts, respectively. These relatively large MAEs
are expected as the data distribution of the HSQC dataset (76.34% small
molecules and 90.33%non-saccharides) differs significantly from that of the
1DNMRdataset (98.80% smallmolecules and 99.95%non-saccharides). In
addition, theHSQCcross peaks involve interactions beyond simple pairings
of 1D 13C and 1H shifts, requiring a deeper understanding of interactions
between atoms. Finally, the frequent absence of solvent labels in the 1D
NMR dataset prevents the model from learning solvent effects.

Nevertheless, the pre-training via MTT offers a robust foundation for
fine-tuning the model via unsupervised transfer learning. With each itera-
tion, we observed a reduction in model errors. The performance improve-
ment is more pronounced during the initial iterations and gradually
diminishes. By the fifth iteration, the improvement became marginal,
indicating the convergence of fine-tuning. Finally, the fine-tuned model
achieves MAEs of 0.165 ppm and 2.05 ppm for 1H and 13C shifts,

respectively. Throughout the transfer learning process, the model was
trained to gain a more profound understanding of solvent effects and
complex C–H interactions due to intricate molecular structures.

Discussion
In this study, we introduce a framework to develop machine learning
techniques for predicting C–H cross peaks in HSQC spectra, The fra-
mework enables us to tackle two major challenges in this avenue. The
first challenge is the scarcity of annotated HSQC data for training
machine learning models. The second challenge is that collecting large
volumes of annotated HSQC data is labor-intensive and requires highly
trained personnel. In implementing our framework, we developed a
model combining a GNNwith a solvent encoder. The GNN is trained to
generate atomic embeddings that encapsulate both the local and global
chemical environments of each atom, which is crucial for accurate
chemical shift predictions. The atomic embeddings are combined with
the solvent embedding produced by the solvent encode, which allows
our model to learn the influence of solvent on chemical shifts. The
combined embeddings are mapped by the Multi-Layer Perceptron
(MLP) modules to HSQC chemical shifts. Our framework employs a
two-stage transductive strategy to train the model while addressing the
aforementioned challenges. In the first stage, we use a large amount of
annotated 1DNMR data to pre-train the model viaMulti-Task learning.
This enables the model to adeptly grasp the intricate relationship
between atomic interactions and NMR signals, laying a robust founda-
tion for the subsequent stage. Next, the model is refined on a set of
unlabeled HSQC spectra via Iterative Unsupervised Learning, enhan-
cing themodel’s capability in predicting and interpretingHSQC spectra.
Our final model achieves MAEs of 0.165 ppm and 2.05 ppm for 1H and
13C shifts respectively, while accurately assigning cross peaks. It
demonstrates a consistent performance across various molecular weight
and saccharide categories, significantly outperforming the traditional
methods, and shows convincing generalization capabilities to less
represented samples from the training dataset. In the future, we plan to
refine our model by developing 3D-GNN models that are able to con-
sider 3D structural information such as spatial orientation and con-
formational flexibility. This enhancement should enable us to handle
other 2D NMR spectra, such as Correlation Spectroscopy and Nuclear

Fig. 2 | Model prediction and alignment accuracy.
A MAEs of C--H shift prediction on test dataset.
B Peak assignment accuracy by comparing
algorithm-generated annotations with expert
annotations. Out of the 479molecules in the test set,
456 molecules have all peaks annotated correctly.
For the remaining 23molecules, 81.56% of the peaks
agree with expert annotations. C An example of
using our model to accurately predict cross peaks
and align them with experimental signals. The
molecule is shown at the top-left, where each C--H
bond is labeled with a numerical identifier. Notably,
the symmetric pairs of bonds (labeled as “2”, “3”, and
“4”) are each expected to generate a single HSQC
cross peak due to their structural equivalence. The
HSQC cross-peaks predicted by our model (in
orange) and their alignments to the experimental
observations (in blue) are plotted in the right. The
alignments are indicated by the dash circles.
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Overhauser Effect Spectroscopy, thus broadening its applicability and
making a more substantial contribution to the field of chemical analysis.

Methods
In this section, we explain the components of our model and the training
strategy in detail.

Data
Thepre-trainingdataset used in theMTTprocess is a 1DNMRdataset from
NMRShiftDB29, which contains ~24,000 annotatedNMR spectra collected
from 22,663 distinct molecules. The datasets used in the unsupervised
transfer learning process consist of a training dataset containing ~19,000
experimental HSQC spectra and a validation dataset containing ~5000
HSQC spectra, collected from HMDB25 and CH-NMR-NP26. All data was
accessed in September 2023, with no evidence of potential bias. To prevent
data leakage in the validationdataset, duplicated spectra andmoleculeswere
removed. RDKit package in Python is used to perform sanity check for all
SMILES strings to generate valid molecular topology graph. To quantita-
tively evaluate our model, we built a test dataset by randomly selecting 500
spectra and manually annotating them to establish the ground truth (see
Section “Performance onHSQC cross peak prediction and assignment” for
the annotation process). Additionally, to compare our model with two
conventional tools (ChenDrawandMestrenova) in chemistry,we randomly
selected several molecules from this test dataset, consisting ~150 cross-
peaks. Since it is labor-intensive to derive HSQC shifts from molecular
formulas using these established tools, stratified sampling was used to select
these samples, ensuring the coverage of different molecular weight groups
(0–499 Dalton, 500–999 Dalton, and 1000+ Dalton). The comparison
results are presented in Section “Comparison with traditional tools”.

2D NMR prediction model
As illustrated in Fig. 1A, our model contains a GNN component for
encoding molecular features and a solvent encoder component for
embedding solvent information. The GNN component learns atomic
embeddings that capture both the local and global chemical environments
of each atom, which are essential for understanding the observed NMR
chemical shifts. The learnt atomrepresentations are expandedby the solvent
embedding, and then are mapped to 13C and 1H cross peaks by a MLP
component.

GNN. Amolecule can be represented by a graphG= (V, E), whereV is the
node set representing atoms and E is the edge set representing chemical
bonds. Three features are provided for each node: atomic type, chirality,
and hybridization. Also, two features are considered for each edge: bond
type and bond direction. Bond types include Single, Double, Triple, and
Aromatic, each reflecting a distinct configuration of electron sharing
between atoms. Bond direction includes None, EndUpRight, and

EndDownRight, primarily representing stereochemistry in double
bonds. Each atom’s feature vector is embedded into a representation
vector by a learnable encoder. Similarly, each edge’s feature vector is
embedded into a representation vector of the same length by another
learnable encoder. Then, a GNN model36–40 utilizes the message passing
mechanism to iteratively refine the representation of each node based on
information from its neighbors and connected edges. This mechanism
allows the learnt node representation to effectively capture structural
context, reflecting the foundational principles of atomic interactions. Our
implementation of themessage passingmechanism is illustrated in Fig. 7.
It iterates for a predefined number of layers L, facilitating the propagation
of information throughout the graph. Consequently, each node can
gradually accumulate information from a wider neighborhood across
successive layers. This allow the final representation of each node to
capture both local and global structural information. Our model features
5 GNN layers, with an atomic embedding dimension of 512.

Solvent encoder. Since the solvent has a profound impact on NMR
chemical shifts, we incorporated a trainable solvent encoder component
into our model to accurately capture this influence. We identified the
following 9 principal solvent groups based on their prevalence in our
dataset and domain-specific understandings of their distinct impacts on
NMR shifts. These groups include trichloromethane, dimethyl sulfoxide,
acetone, acids, benzene, methanol, pyridine, water, and an additional
category to encompass any unspecified solvents fromour dataset (termed
“unknown”). The solvent encoder transforms each discrete solvent group
i into a unique, dense feature vector Sdi , where d is the embedding
dimension. These learnable vectors are optimized alongside other model
parameters during training, resulting in representations that accurately
reflect the impact of each solvent class. Given the different sensitivities of
carbon (C) and hydrogen (H) nuclei to solvent environments, different
embedding dimensions d can be chosen to tailor the solvent effect
modeling for each nuclei type. A larger embedding dimension d allows
the embedding to more effectively capturing the nuanced influence of
solvents on NMR shifts. In our implementation, the solvent embedding
dimension for hydrogen (H) is set to 32.

Atomic NMR shift prediction. Finally, the embedding of each atom hðLÞv
and the solvent embedding Sdi for each solvent class i are concatenated to
produce a holistic representation of the atom within the context of its
molecular structure and the given solvent. This combined representation
is subsequently processed by a MLP network to predict the NMR shifts
for the atom:

yv ¼ MLP ðhðLÞv � Sdi Þ ð1Þ

Fig. 3 | Solvent analysis and impact on predictions.
AThe distribution of 9 solvent classes in the training
dataset. B Solvent effect on proton shift prediction.
When using the correct solvent information, the
model provides the most accurate shift prediction.
In most cases, specifying the solvent as “unknown”
yields better performance, than using a wrong sol-
vent as input. The acid solvent environment is
marked as “N/A” in the table because it was not
captured in the test dataset due to its low presence in
the dataset.
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where yv is the predicted chemical shift of atom v, hðLÞv is the atom level
embedding produced by GNN, Sd is the solvent embedding, and ⊕ is the
concatenation operation. By integrating solvent embedding and atomic
embedding, the model effectively combines intrinsic molecular properties
and solvent effects, enhancing its ability to predict atomic NMR shifts
accurately.

Two separateMLPmodules are used for predicting 13C and 1H shift in
the cross peak predictions, respectively. Each C atom can bond up to 4 H
atoms. When bonded to one, three, or four H atoms, a C atom typically
shows only one cross peak in an experimental spectrum.However, whenaC
atom is connected to two H atoms, up to two cross peaks may be observed,
depending on the chiral center. Consequently, a C atom can exhibit at most
two 13C and 1H cross peaks. In light of this observation, oneMLPmodule is
dedicated to predicting the 13C shifts and another MLP module for the
corresponding 1H shifts. For cross peak predictions, the 13C shifts are

predicted using the embeddings of C atoms. The corresponding 1H shift
predictions for each C atom incorporate aggregates of embeddings from all
bondedH atoms, resulting in two predictions that are typically very similar
when only one cross peak is theoretically possible. This design enhances the
model’s accuracy in predicting 1H shifts by leveraging the C atom-centered
aggregation of the H atom context. By integrating the contextual dynamics
around each C atom, the model provides a more detailed and accurate
mapping of hydrogen environments, crucial for pinpointing precise cross
peaks in complex HSQC spectra. In our implementation, we used 2 MLP
layers, with the hidden dimensions to be 128 and 64 respectively. The
dropout mechanism, which randomly deactivates a subset of neurons
during the forward pass, is employed during training to prevent overfitting.
By reducing the model’s dependence on specific neurons, dropout
encourages themodel to learnmore robust andgeneralizedpatterns.During
inference, dropout is typically disabled to ensure deterministic predictions.

Fig. 4 | Performance comparisonbetweenTranPeakNet and traditionalmethods.
A Performance comparison between our proposed model and established tradi-
tional tools on randomly sampled molecules from the test dataset. Our model
performs better across all molecular weight categories. The advantage of our
approach is increasingly evident as molecular size increases. The overall result uses
equal weight for the molecular weight categories. B Comparing our model, Chem-
Draw, andMestrenova on two typical examples. A small molecule (a) with weight of

~250 Dalton and a larger molecule (b) with weight of ~500 Dalton. The observed
experimental signals and the predicted signals are colored in blue and orange,
respectively. The prediction error (MAEs) is shown in the bottom right corner of
each plot. Our model performs better than ChemDraw and Mestrenova, and par-
ticularly excels in handling large molecules with complex conformations.
C Description of the data used across molecular weight classes.
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However, when enabled during inference, dropout can be leveraged to
estimate uncertainty by calculating the standard deviation across multiple
predictions18. An example of this uncertainty estimation is provided in
Supplementary Information, Section 4, Supplementary Table 1.

Training strategy
The cross peaks are notably sparse in an HSQC spectrum, where typical
resolutions for 13C and 1H shifts are 0.1 and 0.01 ppm, respectively. A typical
HSQC spectrum can include 20,000 readings, covering 13C shifts from 0 to
200 ppm and 1H shifts from 0 to 10 ppm. However, almost all of these
readings are zeros, with only a small fraction representing the potential cross
peaks of C–Hbonds, crucial formolecular structure analysis.Moreover, the
scarcity of annotated HSQC data, particularly the labor-intensive annota-
tions that link cross peaks to C–Hbonds,makesmodel training difficult. To
deal with this issue, we deployed MTT to pre-train the model using an
extensive annotated 1D NMR dataset (Fig. 1B). This step acclimates the
model with a broad range of molecular structures and their chemical shifts,
and enables it to capture the intricate interplaybetweenmolecular structures
and their NMR characteristics. Subsequently, we utilize an unsupervised

strategy to refine the model iteratively on the HSQC dataset (Fig. 1C).
Through iterative cycles of prediction, annotation, and re-training, the
model progressively enhances its understanding of the complex relation-
ships and patterns within the HSQC spectra, thus improving its predictive
accuracy and providing precise cross peak alignments. By combining the
MTT and unsupervised transfer learning, we extend our annotation cap-
abilities from 1D to 2D data, thereby enhancing the model’s predictive
power and utility as a robust tool for NMR spectra analysis.

Pre-training on 1D NMR data. In the pre-training phase, we utilized
approximately 24,000 annotated 1D NMR data points. Among these,
around 22,000 samples exclusively feature 13C shifts, approximately
400 samples solely exhibit 1H shifts, while roughly 1600 samples contain
both 1H and 13C shifts. To train the model effectively for predicting both
1H and 13C shifts, we adapt the MTT approach, which enables simulta-
neous training on multiple related tasks. When the input data contains
13C shifts, the model predicts only carbon shifts and assesses the errors
between the predicted and actual values. Conversely, when the data
sample contains 1H shifts, the hydrogen shift prediction module is

Fig. 6 | Exemplary demonstration of ourmodel’s performance on saccharides.The observed experimental signals and the predicted signals are colored in blue and orange,
respectively. The prediction error (MAEs) is shown in the bottom right corner within each plot.

Fig. 5 | Model performance comparison on different segmented categories. A The performance of TransPeakNet remains stable as molecular weight increases,
demonstrating its robustness. B Saccharides is often a category of interests, in which our model performance is satisfactory.
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activated. In both scenarios, the embeddings of 13C and 1H atoms in the
GNN module are updated simultaneously, benefiting from the message
passing mechanism. Therefore, the learnt representations implicitly
contain a basic understanding of C–H relationships, essential for the
interpretation of HSQC data. However, the relative scarcity of 1H shift
data, due to the difficulties in accurately obtaining and extracting peaks
1H from experimental data, complicates the training process as focusing
extensively on one type of shift could compromise the model’s ability to
accurately predict the other. To handle this problem in theMTT training,
we performed over-sampling on a subset of data that contain both 1H and
13C shifts, and those containing only 1H shifts. Consequently, the learned
representations develop a fundamental understanding of C–H relation-
ships, crucial for interpreting HSQC data effectively. This integration of
learned atomic relationships streamlines the transition to HSQC cross
peak predictions, thereby enhancing the model’s accuracy and efficiency
in analyzing HSQC spectra.

Unsupervised fine-tuning on HSQC data. The model pre-trained on
the 1D NMR dataset has limited ability to predict HSQC cross-peaks
from molecular structures due to the differences in data pre-processing
and data distribution. First, in the 1DNMRdata fromNMRShiftDB2, the
chemical shifts of non-singlet peaks are averaged as ground truth. For
example, whether the group is methine (-CH), methylene (-CH2), or
methyl (-CH3), the proton shifts may be averaged into a single value. In
contrast, HSQC data captures C-H bonds and typically displays two
cross-peaks for prochiral methylene groups due to the different envir-
onments of the two hydrogens. Additionally, the proton chemical shifts
of HSQC or HMQC cross peaks represent 13C-bound protons, whereas
the signals in the 1H mainly represent 12C-bound protons, potentially
leading to subtle differences in chemical shift values41. Second, the
molecule distributions in our 1D NMR data and HSQC data exhibit
significant differences (see Supplementary Information, Section 3, Sup-
plementary Fig. 10, for data distribution plots). The HSQC dataset
comprises 76.34% smallmolecules and 90.33% non-saccharides, whereas
the 1D NMR dataset contains 98.80% small molecules and 99.95% non-
saccharides. Lastly, solvent information is not available in 1D NMR
dataset, and is recorded as “unknown” in the modeling framework,
whereas most molecules in the HSQC dataset are associated with known
solvent environments. This makes the fine-tuning step essential for the
success of our solvent-aware framework. However, the HSQC dataset is
not annotated. In response, we implement an unsupervised training
strategy (Fig. 1C), which iterates between (a) aligning cross peak pre-
diction from themodel with the experiment observations to annotate the
HSQCdata and (b) using the newly acquired annotations to fine-tune the
NMR prediction model, until convergence.

Pseudo-annotation of HSQC. At the end of each round in the unsu-
pervised learning process, the model’s predicted signals are aligned with
the experimental observations to create pseudo-labels. In straightforward

cases where the number of C–H bonds in a molecular graph matches the
observed HSQC cross peaks, the Hungarian algorithm42,43 is used. This
classic optimization technique solves assignment problems by mini-
mizing the cost ofmatching a set of predictions to a set of observations. In
the context of NMR analysis, the “cost” is defined as the discrepancy
between the predicted chemical shifts and the actual shifts observed
experimentally. By systematically reducing these differences, the Hun-
garian algorithm achieves an optimal one-to-one correspondence
between predicted shift pairs and experimental signals, even in complex
scenarios with potential signal overlap.

However, in most cases, the number of C–H bonds within a molecule
exceeds the number of signals recorded, making peak alignment more
difficult. This mismatch in numbers arises from several factors: firstly,
rotational equivalence can reduce the number of signals, with a single peak
representing all three C–Hbonds for methyl groups; secondly, symmetrical
molecular structures can result in a single detectable signal for multiple
symmetric C–H bonds, as seen in benzene molecule where only one peak
represents all six C–H bonds; lastly, in highly complex molecules, over-
lapping signals obscure some peaks, reducing the detectability of individual
C–H bonds from experiments.

To overcome this issue, we utilize the graduated assignment
algorithm16,44, which facilitates matching between graphs of different
node counts, making it particularly suitable for this scenario. In this
algorithm, ourmodel’s predictedC–Hshifts ðCi;HiÞNi¼0 and the observed
C–H signals ðCj;HjÞMj¼0 of eachmolecule are conceptualized as points on
a 2D plane, whereN andM are numbers of predicted and observed C–H
shifts respectively. These points are then treated as vertices in two fully
connected graphs, G1 for predicted shifts and G2 for observed signals.
The similarity between nodes is defined as the inverse of differences
between predicted chemical shifts (node in G1) and observed shifts
(node in G2). Specifically, for each predicted shift, we compute its dif-
ference with every observed shift, where a smaller difference indicates a
higher similarity. The derive the assignment matrix A where each ele-
mentAuv∈ {0, 1} indicates whether node u inG1 matches with node v in
G2, the algorithm first finds the soft matching matrix that relaxes the
binary constraintAuv ∈ {0, 1} to a continuous range [0, 1], then converts
it into hard assignment in a greedy way, enabling one-to-many
matching.

Data availability
HSQCdata used formodel performance testing is available here(viaGoogle
Drive), and the training and validation datasets will be available upon
request.

Code availability
The code is available inGithub: https://github.com/siriusxiao62/2dNMR.git
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Fig. 7 | Illustration of message passing and node representation updates in a
GNN layer. A For a given center atom in a molecular graph, the local environment
contains the neighborhood atom that is directly bonded to the center atom. B For a
center node (v), initial random representations are assigned to this node, its
neighboring nodes (u1, u2, u3), and their connecting bonds (eu1 ;v , eu2 ;v , eu3 ;v).

CMessage Passing and node update. Representations of all neighboring nodes and
edges are aggregated and integrated to form a message to the center node. The
representation of the center node is then updated to incorporate this message and
information from its previous state.
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