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Current landscape of plasma proteomics
from technical innovations to biological
insights and biomarker discovery
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Plasma is a rich source of biomolecules, including proteins, that reflect both health anddisease.Due to
their key roles in biological processes, proteins hold significant potential as biomarkers, fueling the rise
of plasma proteome profiling in recent years. However, comprehensive comparisons of the
performance of different plasma proteomics platforms are limited. Our study addresses this gap by
conducting a direct comparison of eight platforms, representing both affinity-based and diversemass
spectrometry approaches, and covering over 13,000 proteins. By applying these platforms to the
same cohort, we systematically assess their performance, identifying key differences and
complementary strengths. Our findings offer valuable insights for researchers, highlighting trade-offs
in coverage and their implications for biomarker discovery and clinical applications. This study serves
as an essential resource, offering both technical evaluation and biological insights to support the
development of novel diagnostics and therapeutics through plasma proteomics.

Plasma is a key component of blood, containing adiverse array ofmolecules,
including proteins, nucleic acids (DNA and RNA), lipids, small molecule
metabolites, and electrolytes. Many of these molecules are essential for
maintaining various physiological processes within the body1. Changes in
their concentrations can signal or drive underlying health issues, making
plasma a valuable resource for discovering biomarkers or therapeutic targets
for diseases. One of themain benefits of using plasma for this purpose is the
relative ease of collection. Plasma samples are inexpensive to collect and
minimally invasive toobtain, and theprocedure iswell-tolerated bypatients,
making it ideal for routine use in clinical settings. This simplicity enables
longitudinal collection, which provides richer data for biomarker discovery,
target identification, and insights into system biology and disease
progression.

While plasma is a promising source for clinical diagnostics and bio-
marker discovery, plasma proteins are particularly significant due to their
essential roles in biological processes and diseasemechanisms2,3. Given their
direct involvement in cellular functions and potential for therapeutic tar-
geting, proteins often emerge as key indicators of health and disease states4.
Moreover, analyzing plasma protein abundance alongside genetic and
phenotypic information can create a comprehensive picture that enhances
our understanding of health status and improves disease management.

However, utilizing the plasma proteome as a source of biomarkers
presents several challenges3,5–7. The plasma proteome spans a wide dynamic
range, with some biomarkers present at very low concentrations, compli-
cating their detection and precise quantification. Additionally, data

interpretation requires careful consideration of confounding factors such as
age8,9, sex9, BMI9,10, and fasting status, in addition to technical aspects6,11 such
as storage duration12–14, temperature, and blood collection factors such as
time of the day, the use of different anticoagulants15, and blood processing
protocols13,14. Studies have also indicated that while individual proteome
profiles tend to remain stable over time, there is significant variability
between individuals7. These challenges emphasize the need for robust and
complementarymethodologies, alongwitha thoroughunderstandingof the
data, to effectively leverage the plasma proteome for biomarker and ther-
apeutics development.

Currently, the two primary approaches used to analyze the plasma
proteome are affinity-based techniques andmass spectrometry (MS)-based
methods. Affinity-based platforms, such as SomaScan, Olink Explore and
NULISA use binding probes—aptamers or antibodies—to detect proteins.
In contrast, MS methods typically derive protein-level information by
measuring proteolytic peptides of proteins through a bottom-up approach.
To address the dynamic range challenge, MS workflows may include high-
abundance protein depletion16, peptide pre-fractionation17, protein
precipitation16,18, ionmobility-based separation16, or protein enrichment via
beads19 or nanoparticles20.

Each method measures distinct characteristics of plasma proteins and
has its own unique advantages and disadvantages. SomaLogic and Olink
utilize large panels of targeted assays developed for pre-selected proteins.
These techniques allow for high-throughput measurements and multi-
plexingof analytes, enabling the analysis of thousandsof proteins fromsmall
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sample volumes. However, the specificity of affinity-based assays is variable
as it depends onmany factors, suchas theuniqueness of the binding epitope,
the affinity of the probe, and the composition of the sample (i.e., thematrix),
among others. SomaLogic assays rely on the unique engagement of a single
high-affinity aptamer binder for each target protein.Although aspects of the
interaction, such as affinity and low dissociation rate, are exploited for
specificity, this can introducebias basedon thematrix inwhich theprotein is
measured. Publicly available information on the binding reagents used in
SomaScan assays (SOMAmers) and their availability for pull-down assays
can help improve our understanding of the specificity of each aptamer21.
Olink’s proximity extension assaysmitigate the specificity issue by requiring
two different antibodies to bind to the target protein in close proximity22.
The more recently introduced NULISA technology, while not in the same
league in terms of proteome coverage as SomaScan or Olink assays, has
higher sensitivity and lower limit of detection23. In contrast, MS-based
proteomics is less matrix-sensitive and can be performed via both untar-
geted or targeted approaches. MS-based assays typically measure multiple
peptides of one protein and are capable of identifying post-translational
modifications (PTMs) and isoforms of proteins, offering unique specificity
in protein identification24. However, its limited depth makes it challenging
touse forplasma,whichhas awideprotein concentration range spanning10
orders of magnitude. Despite this limitation, advancements in mass spec-
trometry have improved proteome coverage and throughput, allowing for
the identification and quantification of a broader range of proteins,
including clinically relevant ones present in lower abundance25.
Nanoparticle-based enrichment approaches, such as the Seer Proteograph™
XT introduced recently, use surface-modified magnetic nanoparticles to
enrich proteins based on physicochemical properties, significantly
increasing soluble proteome coverage20,26. Other effective enrichment or
depletion strategies include perCA depletion18, ENRICH/ENRICHplus kits

from PreOmics, and Biognosys’s P2 Plasma Enrichment method. These
innovations have collectively enabled the detection of previously elusive
low-abundance plasma proteins.

This study offers a comprehensive comparison of state-of-the-art
plasma proteome analysis techniques by applying each technology to the
same cohort of plasma samples. This allowed for a detailed comparison of
the platforms, contrasting their advantages and disadvantages. We exam-
ined multiple versions of affinity-based platforms (SomaScan 11K,
SomaScan 7K, Olink Explore 3072, Olink Explore HT, and NULISA)
alongside discovery MS workflows, including the nanoparticle-based Seer
Proteograph™ platform and the high-abundance protein depletion-based
Biognosys TrueDiscovery™ platform, both utilizing Data-Independent
Acquisition (DIA) to generate deep, unbiased MS data. Additionally, we
incorporated a targeted MS workflow, SureQuant™ Internal Standard
TriggeredParallelReactionMonitoring, as a “gold standard”MSplatformof
high reliability and absolute quantification due to the use of internal stan-
dards andoptimized detection. To thebest of our knowledge, this represents
the largest number of plasma proteomic technologies compared using a
single cohort. By juxtaposing these methods, we aim to provide a detailed
technical evaluation and biological insight that will serve as a valuable
resource for researchers in plasma proteomics. Understanding the unique
characteristics of each platformwill assist investigators in selecting themost
appropriatemethod for their researchobjectives andguide futurebiomarker
discovery efforts.

Results and discussion
Cohort and platforms
In our analysis, we obtained plasma protein profiles from a cohort of 78
individuals,maintaininganequal sex ratioof 1:1 (male to female), consisting
of 40 aged (55–65 years old) and 38 young (18–22 years old) individuals. A
detailed summary of cohort demographics is listed in Table 1. Plasma
samples were collected via plasmapheresis and analyzed using eight pro-
teomic platforms, as shown in Fig. 1. For clarity, we refer to Olink Explore
3072 and Olink Explore HT as Olink 3K andOlink 5K, respectively, for the
remainder of this discussion. Similarly,MS-based workflows are designated
as MS-Nanoparticle (Seer Proteograph™ XT), MS-HAP Depletion (Biog-
nosys TrueDiscovery™ platform using high-abundance protein depletion),
and MS-IS Targeted (Thermo Scientific SureQuant™ Internal Standard
Triggered - Parallel Reaction Monitoring using Biognosys PQ500™ Refer-
ence Peptides). NULISA refers to the combination of the platform’s
inflammation and CNS panels (Alamar Bio’s NULISAseq™ Inflammation
Panel 250 and NULISAseq™ CNS Disease Panel 120). SomaScan 11K
includes 10,776 human protein assays targeting 9852 unique proteins cor-
responding to 9645 distinct UniProt IDs. SomaScan 7K includes 7288
human protein assays targeting 6467 unique proteins, corresponding to
6401 distinct UniProt IDs. Olink 5K and 3K assays target 5416 and 2925
unique human proteins, respectively. NULISA’s combined inflammation
and CNS panels include 377 assays in total, targeting 325 unique proteins
represented by 319 unique UniProt IDs. In our study, the number of pro-
teins identified byMS-based platformswere 5943 inMS-Nanoparticle, 3575
in MS-HAP Depletion and 551 inMS-IS Targeted. Each quantified 68,527,
42,581, and 766 peptides, respectively. A complete list of the proteins
identified in this study, including UniProt IDs, can be found in Supple-
mentary Data 1.

In the rest of our paper, we refer to SomaScan and Olink, along with
MS-Nanoparticle and MS-HAP Depletion, as “discovery” platforms since
they cover large numbers of proteins despite SomaScan and Olink being
targeted approaches. In addition, for simplicity in our protein coverage
comparisons, we used UniProt IDs instead of protein names to represent
unique proteins.

Technical assessments
Across all eight platforms, we identified a total of 13,011 unique plasma
proteins, as represented by unique UniProt IDs, in our healthy plasma
samples. As illustrated in Fig. 2a, the SomaScan 11K and SomaScan 7K

Table 1 | Summary statistics of study cohort

Aged Young P-val

N 40 38

Age 58.85 ± 2.9 20.34 ± 1.38 2.43E-14***

Sex 1

Male 20 19

Female 20 19

Race 1

African
American

10 9

Caucasian 30 29

Smoking
Status

7.20E−02

Smoker 13 21

Non
Smoker

27 17

Physiological

Hematocrit 0.42 ± 0.03 0.43 ± 0.04 6.77E−01

TotalProtein 6.73 ± 0.58 6.70 ± 0.51 9.40E−01

Height (cm) 170.31 ± 10.78 171.78 ± 11.23 5.98E−01

Weight (kg) 87.73 ± 22.62 81.26 ± 28.7 7.19E−02

BMI 30.36 ± 7.8 27.46 ± 8.4 6.96E−02

Systolic BP 131.6 ± 18.35 124.95 ± 17.3 1.08E−01

Diastolic BP 78.38 ± 8.55 72.32 ± 8.42 2.86E−03***

BPM 78.25 ± 9.99 79.89 ± 13.19 3.24E−01

Numbers indicateMean ± Standarddeviation for continuousvariablesorN for categorical variables.
The Wilcoxon Rank Sum test was performed for categorical variables. Chi-Squared test was
performed for continuous variables. P-value significance is indicated at *P < 0.05, **P < 0.01,
and ***P < 0.005.
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platforms provided the most comprehensive proteomic coverage, detecting
9645 and 6401 proteins, respectively. MS-Nanoparticle followed by 5943
unique proteins. Each platform contributed a set of exclusive proteins that
were not identified by the others. The two SomaLogic platforms contributed
the largest number of exclusive proteins, 3600 proteins, followed by the two
Olink panels combined with 1227 exclusive protein targets. Across all eight
platforms, there was an overlap of only 36 proteins. Excluding NULISA,
which has so far focused on inflammation and CNS proteins, the seven
remaining platformswith broader protein lists share 259 proteins for which
we have absolute quantitation values. This overlap includesMS-IS Targeted
data, which was used as a reference to evaluate the other platforms.
Excluding MS-IS Targeted and NULISA, the remaining six discovery
platforms detected 961 shared proteins. To assess the variability in quan-
tification across platforms, technical replicates were utilized. As shown in
Fig. 2b, SomaScan exhibited the highest precision among all platforms, with
the lowest technical coefficients of variation (CV). The median CVs for
SomaScan 11K and 7Kwere 5.3% and 5.8%, respectively, indicating that the
addition of over 3000 assays to the latest version of SomaScan has not
compromised the platform’s excellent precision. In contrast, themedianCV
for Olink 5K was more than twice that of Olink 3K, at 26.8% and 11.4%,
respectively. There have beenmany technical assessments of SomaScan and
Olink assays in literature in the past few years25,27–30. Our CV results are
consistent with these reports and observations. Median CV of NULISA
platform is 6.6% for its combination of inflammation andCNSmarkers. For
the MS-based platforms, the technical CVs of discovery-based approaches
werehigher than those for SomaScan11K, SomaScan7KandOlink3K,with
median CVs of 26.4% for MS-Nanoparticle and 29.8% for MS-HAP
Depletion. In contrast to discovery MS platforms, MS-IS Targeted had a
median CV of 8.3%, due to the optimized targeted analysis of the proteins
and the use of internal controls for each analyte. This same trend was also
observedwhenwe restricted the results to analytes thatwere observed across
all platforms (Supplementary Fig. 1a). Themedian CVs of Olink 5K and 3K
were again higher than those of SomaScan 11K and 7K. The MS-based

platforms continued to show higher CVs than affinity platforms, except for
MS-IS Targeted that had comparable precision to the affinity platforms
(SupplementaryData 1). Filtering to analytes forwhich at least two-thirds of
measurements were above the platform-specific estimated Limit of Detec-
tion (eLOD) for affinity-based assays, or to those detected in at least two-
thirds of the samples forMS-based platforms, resulted in subtle CV changes
for some platforms but more pronounced changes for others (Supple-
mentary Fig. 1b). The most notable change occurred for Olink 5 K, where
limiting data to measurements that were above eLOD for healthy plasma
improved the CV from 26.8% to 12.4%. It is important to note that this was
also accompanied by a 40% reduction in the number of analytes used to
calculate the CVs after filtering (Supplementary Data 2).

As expected, the median total CV values across all samples, incor-
porating both biological and technical variability, were higher than the
corresponding technical CVs for all platforms. The gap between technical
and biological CVvariedwidely among the different proteomic approaches.
For the two SomaScan platforms, Olink 3K, NULISA and MS-IS Targeted,
technical variability was small compared to combined technical plus bio-
logical variability, while for the twoMSdiscovery approaches andOlink 5K,
the technical variability accounted for a much larger portion of the total
observed variability.

For the affinity probe-based platforms, SomaScan and Olink, we
carried out a simple linearity assessment by diluting pooled plasma
samples 3 and 9 times and checking for the linearity of the measured
protein signals. Pearson correlation coefficient (r) was calculated for the
dilution data and used to characterize the linearity of each protein assay
(Supplementary Fig. 2). Our results showed that 97% of all SomaScan
assays (both 7K and 11K) detected normal plasma protein levels in their
linear range (r > 0.9), while the samemeasure was found to be 42% for the
assays of the Olink 5 K platform. Limiting the analysis to assays in which
all 3 dilutions yielded values above eLOD, we found that high proportion
of the Olink assays also showed linear behavior (85% of assays
with r > 0.9).

Fig. 1 | Overview of study cohort and proteomic platforms. Plasma samples
collected via plasmapheresis from aged (n = 40) and young (n = 38) subjects were
analyzed using eight proteomic platforms: SomaScan 11K, SomaScan 7K, Olink 5K
(Olink Explore HT), Olink 3K (Olink Explore 3072), MS-HAP Depletion (high-

abundance protein depletion), MS-Nanoparticle (Seer Proteograph™ XT), MS-IS
Targeted (SureQuant™ Internal Standard Triggered - Parallel Reaction Monitoring)
andNULISA (NULISAseq™ Inflammation Panel 250 andNULISAseq™CNSDisease
Panel 120).
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Fig. 2 | Cross-platform comparison of protein quantification and detection
metrics. aUpSet plot showing set size and intersection of identified proteins by each
platform. 259 shared proteins are quantifiable across all platforms, excluding
NULISA. Inclusion of NULISA reduces the number of quantifiable proteins to 36.
b Technical and total CVs shown for each analyte on each platform. Technical CVs
were calculated using set of technical replicates. Total CVs were calculated using all

78 subjects. c Percentage of analytes that were detected in each number of samples.
Each dataset was filtered based on 2/3rds data completeness from each age group.
d The detected proteins present in the HPA dataset were binned according to the
estimated concentrations from the HPA dataset. The percentage make-up of pro-
teins belonging to these bins are plotted. e The number of FDA approved protein
biomarkers identified by each platform.
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To assess data completeness across different platforms, we examined
the number of missing values for each and plotted the distribution of data
completeness in Fig. 2c. ForMSdata,missing values were defined as either a
recorded value of 0 or failure to be detected, and for affinity platforms,
missing values were those falling below the platform-specific estimated
Limit of Detection (eLOD). Our analysis revealed that SomaLogic had the
highest data completeness, with SomaScan 11K and 7K showing 96.2% and
95.8% completeness, respectively, across all 78 samples. The Olink 3K
platform followed with 60.3% completeness, and MS-HAP Depletion had
53.6% completeness. Notably, the latest version of Olink platform, 5K, had
significantly lowerdata completeness at 35.9%, compared to theprevious3K
version at 60.3%. This finding is consistent with the recent literature on
comparison between affinity platforms30.

We visualized the abundance of proteins identified in each platformby
plotting their distribution based on estimated concentrations of 4,392
plasma proteins from the Human Proteome Atlas (HPA, https://v21.
proteinatlas.org/humanproteome/blood+protein). It is important to note
that the HPA dataset is limited in the number of proteins, and this com-
parison does not consider a large number of proteins detected by only
affinity-based platforms for which there is no absolute concentration esti-
mate in the HPA dataset. As shown in Fig. 2d, all platforms, with the
exceptionofMS-ISTargeted, identified analytes across awide concentration
range (105–10-2ng/mL) with a strikingly similar concentration distribution
for the proteins overlapping between each platform and the HPA. A
breakdown of secretome-specific proteins based on the HPA dataset is
presented in Supplementary Fig. 3.Deeper proteomecoverage togetherwith
the increased number of proteins detected by recent MS methodologies,
suggest that technological advancements in mass spectrometry, such as
depletion or enrichment methods, have significantly expanded the MS
coverage of the plasma proteome, especially in the low abundance range. In
this sense,we found theMS-Nanoparticle platform identifiedmore proteins
thanMS-HAP Depletion as it detected almost twice as many proteins with
very similar concentration distribution. However, nanoparticle enrichment
resulted in a significantly higher platelet contamination than using neat
plasma (same plasma samples as enriched plasma, prepared side by side for
comparison). For the same plasma samples, the platelet contamination
index, defined as the sumof intensities of platelet signature proteins divided
by the sum of intensities of non-signature proteins31 averaged at 0.0059
(with a standard deviation of 0.0016) for the neat plasma, significantly
(p-val < 2.2e−16) higher at average 0.0240 (with a standard deviation of
0.0011) for nanoparticle-enriched plasma.

To assess the clinical utility of each platform, we examined their cov-
erage of known protein biomarkers in human plasma approved by the U.S.
Food andDrug Administration (FDA)32. This is illustrated in Fig. 2e, which
shows the distribution of circulating biomarkers across platforms using a
previously published list33. SomaScan platforms demonstrated the highest
coverage of these biomarkers. Specifically, 11K and 7K covered 88% and
76% of FDA-approved biomarkers, respectively. This was followed by the
discovery MS methods (73%) and Olink (57%). Although MS-IS Targeted
had the lowest coverage at 43%, this still represented substantial detection of
the 217 FDA-approvedmarkers, considering the relatively small number of
total proteins identified using this platform.

Correlations between shared proteins among platforms
With the increase in the depth of proteomics platforms, the overlap of
proteins among all increase, and correlation between overlapping proteins
can be indicative of the platform’s similarities and contrasts in the identi-
fication and quantitation of proteins. Figure 3a illustrates the number of
overlapping proteins between different platforms. The largest overlap
between inter-proteomic technologies is 3978 proteins between SomaScan
11K and MS-Nanoparticle, followed by 3720 proteins between SomaS-
can11K and Olink 5K.

To further investigate these intersections, we analyzed the correlation
of protein intensities across the various platforms. Spearman correlation
values for unique protein assays shared between pairs of platforms are

plotted in Fig. 3b and available in Supplementary Data 3. As expected, two
versions of each affinity platform correlated highly with each other,
SomaScan 11K and 7K (0.79), followed by Olink 5K and 3K (0.74). When
comparing Olink 5K and 3K with other platforms, 5K showed poorer
correlation than 3K, while SomaScan 11K and 7K had roughly the same
median correlation with other platforms. A similarly high correlation was
found between shared proteins of NULISA and the Olink platforms (0.75
forOlink 5Kand 0.79 forOlink 3K),which canpartly be due to the technical
similarities of the two methodologies but also provides mutual specificity
validation of the shared assays, considering that they likely use different
antibody pairs. Among theMS technologies,MS-IS Targeted demonstrated
the strongest correlations with other platforms due to the high specificity of
targeted MS with the internal standard approach (Spearman correlation of
0.35, 0.46, 0.46, 0.49, 0.50, 0.56 and 0.62 with MS-Nanoparticle, MS-HAP
Depletion,NULISA, SomaScan 7K, SomaScan 11K,Olink 5KandOlink 3K,
respectively). Notably, MS-IS Targeted showed a correlation of 0.62 with
Olink 3K, which was the highest correlation between any of the affinity-
based andMS-based technologies compared in this study. High correlation
with MS-IS Targeted, as a reference for assessing other platforms, indicates
higher specificity of the measurements in Olink 3K, which has also been
reported in literature via cis-pQTL validations of affinity assays34. Addi-
tionally, all correlations exhibited a bimodal pattern, which was more
pronounced in some overlaps than in others. This suggests the presence of
two groups of proteins with distinct distributions of high and low correla-
tions. Pairwise correlations between each two platforms are presented in
Supplementary Figs. 4 and 5.

To better understand the reasons behind the bimodal distribution of
platforms’ pairwise correlations, we focused on the 259 proteins shared by
seven platforms. We excluded NULISA from this analysis to have a sub-
stantial number of overlapped proteins for robust analysis. The lack of
correlation between platforms can be related to several factors, most likely
differences in identification specificity and quantification precision. We
examined the relationship between the technical CVs of these proteins
within each platform and their correlationwith all other platforms. Proteins
were categorized into two groups based on their CV values: less than 20%,
and higher than 20%. Figure 3c displays the distribution of Spearman
correlationvalues for eachCVcategory.This plot revealed that proteinswith
CVs less than 20% tend to have higher correlations with other platforms.
Conversely, proteins with CVs higher than 20% showed a shift towards
lower correlations with other platforms. This trend is true for all platforms,
except for MS-Nanoparticle, where there is no clear distinction in correla-
tion valueswith technical CVs of proteins. This exceptionmay be due to the
unique characteristics of the nanoparticle-based protein enrichment strat-
egy. Factors such as nanoparticle surface chemistry, selective binding affi-
nities, and the specific mass spectrometry workflow can introduce
additional variability. This variability can affect protein quantification, and
because even the most precise assays show limited correlation, differences
between high and low CV groups can be difficult to detect.

We also examined the connection between the technical CV and data
completeness for each platform. Figure 3d is a scatterplot showing the
percentage of data completeness versus CV, illustrating a clear negative
correlation between the two. This negative correlation was more pro-
nounced in MS-HAP Depletion, MS-Nanoparticle and Olink platforms,
which also had the highest number of missing values. A similar correlation
between CV and data completeness has been reported for Olink 5K, where
CV was strongly inversely correlated (r = -0.77) with protein detectability,
consistent with our findings30.

Differences in proteoform selectivity are also likely to play a significant
role in the low correlation observed between platforms. In Fig. 4a, we show
correlation data for ApoE and its biologically significant proteoforms,
ApoE2, ApoE3, and ApoE4, one of the very few targets for which some
proteoform-specific data is available across the platforms. Most platforms
measure only total ApoE (non-proteoform specific), but SomaScan 7 K and
11 K also include assays for all three isoforms, and NULISA also measures
ApoE4 specifically. Total ApoE correlates strongly across the platforms
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Fig. 3 | Comparative analysis of shared proteins across platforms. a Intersection
sizes of detected proteins between each pair of platforms. bHistograms showing the
distribution of Spearman Rho correlation coefficient calculated on a per-protein
basis. The median Spearman Rho correlation coefficient is shown in the upper
triangle. cDensity plot of the Spearman Rho correlation coefficient between a single

platform and all other platforms, for the shared 259 proteins across all platforms,
excluding NULISA. The density plot is colored by technical CV of the baseline
platform. d Technical CV versus Data Completeness for each analyte across each of
the platforms.
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except for Olink 3 K and 5 K. There is low or no correlation between
NULISAApoE4 andApoE assays, or withmost other platform’s total ApoE
assays, which is fully consistent with the expectations based on the low
prevalence of the ApoE epsilon4 allele (~24%) in the general population35.
However, there is also no correlation between NULISA ApoE4 and
SomaScanApoE4assays,which is not expected. In addition, there is a strong
correlation between all four SomaScan ApoE assays, whether supposedly
isoform selective or not, suggesting poor isoform selectivity. This is con-
firmed by information provided on the SomaLogic website (menu.soma-
logic.com) for the ApoE4 assay stating that “Binding was observed with
Apolipoprotein E, Apolipoprotein E (isoform E2) and Apolipoprotein E
(isoform E3) with similar affinities.” This example illustrates how differ-
ences in proteoform selectivity can affect the correlation between multiple
assays targeting the same protein.

To further validate our findings, we searched for and extracted quan-
tification of anApoE4-specific peptide fromour twodiscoveryMSdatasets -

MS-HAP Depletion and MS-Nanoparticle. We assessed the correlation of
this ApoE4-specific peptide with both the NULISA ApoE4 and total ApoE
assays. ApoE4 peptide data of both MS approaches showed convincingly
strong correlation with the NULISA ApoE4 assay but no correlation at all
with the isoform-agnostic total ApoE assay (Fig. 4b). These results strongly
support the isoform specificity of the NULISA ApoE4 assay and highlight
the power of the unbiased MS proteomics approaches for discovery at
proteoform–level resolution.

We then specifically examined the correlation between the “redun-
dant” SomaScan 11 K assays, i.e. assays utilizing different SOMAmers for
measuring the same protein for 834 distinct protein targets. While the
median of the Spearman correlation coefficients for the redundant assays is
0.54, the distribution is bimodal with one group of assays showing excellent
correlation (rho ~0.9), and a second group showing weak correlation (rho
~0.4) (Supplementary Fig. 6). While the result discrepancies are most likely
related to differences in the selectivity profiles of the redundant SOMAmers,

Fig. 4 | Comparison of APOE isoformmeasurements across diverse proteomic platforms. a Spearman correlation of APOE proteoformmeasurements across platforms.
b Scatter plot and Spearman correlation of APOE proteoform measurements between APOE4 specific peptides by MS and total APOE and APOE4 by NULISA.
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interpretation of the results is difficult without knowing those selectivity
profiles. Identifying the exact target selectivity of each aptamer requires
experimental approaches such as pull-down assays and protein structure
determination, ultimately at the proteoform level.

Supplementary Fig. 7 presents three example proteins with different
correlation patterns across six discovery and theMS-IS Targeted platforms.
P11226 (MBL2), for example, is one of the proteins that is highly correlated
among all platforms, with Spearman correlation values ranging from 0.86-
0.99. For some other proteins, correlations are high between affinity plat-
forms, but notwith thediscoveryMSplatforms. P07359 (GP1BA) illustrates
this trend, showing high correlation values (0.79-0.93) among affinity
platforms and low correlation values between either of the MS discovery
platforms and any of the other platforms (0.10-0.24). In this case, MS-IS
Targeted iswell correlatedwith affinity platforms, indicating the accuracy of
theirmeasurements (0.76-0.81). P01008 (SERPINC1), on the other hand, is
an example of a protein whosemeasurements do not correlate between any
of the platforms, even showing poor correlation between two different
versions of SomaScan and Olink platforms (0.17-0.50).

Biological relevance and variance analysis of identified proteins
To examine the biology covered by these proteomics platforms, proteins
measured by each platform were categorized into protein classes defined by
the PANTHER Classification System. Figure 5a shows a heatmap repre-
senting the distribution of PANTHER protein classes across different plat-
forms. There is a vast difference in protein class coverage of these platforms,
primarily due to the number of covered proteins or targeted/untargeted
nature of each platform (Supplementary Data 4). As expected, SomaScan
11K covered the highest number of protein classes compared to the other
platforms. There are 48 protein classes common across all platforms, with at
least one protein representation in the class. Globin, cytokine, and com-
plement component are the three highest represented protein classes across
all platforms. The Runt transcription factor class was uniquely characterized
by SomaScan platforms, whereas the class of mitochondrial carrier proteins
was uniquely characterized by SomaScan 11K and MS-Nanoparticle plat-
forms. While DNA methyltransferase was uniquely characterized by
SomaScan and MS-Nanoparticle platforms, DNA photolyase was uniquely
characterized by SomaScan 11K with 100% representation (class size of 2
proteins). Further, SomaScan 11K was able to characterize seven additional
protein classes (DNA ligase, DNA photolyase, adenylate cyclase, centromere
DNA-binding protein, deacetylase, mitochondrial carrier protein, tubulin),
compared to SomaScan 7K. Olink 5K characterized 13 additional protein
classes (DNA ligase, MADS box transcription factor, RNA methyl-
transferase, adenylate cyclase, amino acid transporter, centromere DNA-
binding protein, gene-specific transcriptional regulator, glucosidase, mRNA
capping factor, mRNA polyadenylation factor, primase, replication origin
binding protein, storage protein) compared to Olink 3K. The transketolase
class was identified in all SomaScan and MS-based platforms but not
antibody-based platforms, whereas the phosphatase activator class was
identified in SomaScan, MS-HAP Depletion and MS-Nanoparticle
platforms.

To assess the biological relevance of these proteins, we employed a
linear model that incorporated available metadata (age, sex, race, hemato-
crit, total protein, BMI, and smoking status) to identify significant markers
associatedwith each factor across the various platforms. Figure 5b illustrates
the number of significant markers identified by each platform, based on
either p-values (p-val < 0.05) or Benjamini–Hochberg adjusted p-values (p-
adj < 0.05). SomaScan 11K, which covered the highest number of proteins
and protein classes, identified the greatest number of biologically relevant
markers compared to other platforms for age (2170 p-val and 685 p-adj),
BMI (5239 p-val and 4040 p-adj), and sex (2726 p-val and 1074p-adj). MS-
Nanoparticle also identified large number of sex related markers and
majority of these markers were significant after the p-value adjustment
(2427 p-val and 1873 p-adj). Supplementary Fig. 8 highlights the distribu-
tion of linearmodel coefficients categorized by their significance level. After
SomaScan platforms, Olink 3K and 5K emerged as the next most

comprehensive assays for identifying markers related to age, sex, and BMI.
Supplementary Data 5 and Supplementary Fig. 9 summarize number of
shared and unique biological markers for each platform. For all platforms,
only a few proteins are shared as age, sex and BMI markers and mostly are
unique to each of the biological factors.

Our results indicate that the number of significant markers (p-adj <
0.05) varied across platforms, independent of their overall protein coverage.
The distribution of p-values strongly influenced the extent of reduction in
significant proteins on multiple comparison adjustment, with some plat-
forms showing disproportionate reductions compared to others.

A variance decomposition analysis (Supplementary Fig. 10a) revealed
that each platformcaptured unique biological factors but to varying degrees.
By accounting for known factors of age, sex, race, hematocrit levels, total
proteinBMIand smoking status inour analysis,we evaluated thepercentage
of explained variance specific to each platform, as shown in Fig. 5c. A
substantial portion of the variance remained unexplained, suggesting the
influence of additional biological factors beyond those included in our
model (Supplementary Data 6). Two main factors, disease status and
genetics, have been reported9 to be highly important in explaining the
variance of plasma proteins. However, these are absent from our dataset as
our cohort consists of healthy individuals, and due to the small number of
subjects, a genomics association study was not considered for this cohort.
Figure 5d lists the top 20 protein classes that are representative of proteins
with more than 50% unexplained variance shared among all discovery
platforms. In our cohort with information on biological factors available,
NULISA, MS-IS Targeted, Olink 3K, MS-Nanoparticle, SomaScan 7K and
11K explained about the same amount of variance (19.9–22.9%) which is
higher than Olink 5K, and MS-HAP depletion platforms (13.8-14.5%).
Notably, despite covering fewer proteins, NULISA and MS-IS Targeted
explained a significant amount of variance.

Supplementary Fig. 10b highlights examples of proteins, all exhibiting
more than 40% explained variance contribution in all discovery platforms.
These examples demonstrate similar variance contribution by the different
platforms for candidate biomarkers of sex, age and BMI. For instance,
Leptin (P41159), a circulating adipokine involved in regulating appetite,
food intake, and fat distribution36, is known to be influenced by sex hor-
mones. Sex-related differences in leptin levels are well-documented, with
women generally having higher concentrations than men37. In obese indi-
viduals, leptin levels are elevated and correlate with BMI and body fat
percentage38. This aligns with our data, where biological factors such as sex
and BMI explained 38.4% and 40.5% (on average among all platforms) of
the variance associated with this protein across all platforms. Another
example of sex biomarker is Pregnancy Zone Protein (P20742), where the
sex factor alone explained up to 46.3% of the variance in PZP levels. This is
consistent with strong sex-related differences in PZP plasma levels, with
females having significantly higher levels than males11. Chromogranin-A
(P10645) and Insulin-like growth factor-binding protein 2 (P18065), two
known markers of age39, explain age variable with 22.9% and 13.3%,
respectively, or higher variance in all platforms. As expected, IGFBP2, as an
insulin regulatory protein, explains BMI the most40, and again this obser-
vation is consistent between all platforms. Similar patterns of variance
decomposition were also observed across platforms for Neurocan core
protein (O14594), a predictive marker of age41, and L-xylulose reductase
(Q7Z4W1) which participates in glucose metabolism.

Age-related markers
Among all biological factors analyzed in the study, we closely examined age-
relatedmarkers. Figure 6a shows the intersectionof significant (p-adj <0.05)
age markers identified across all platforms. Olink 3K identified the highest
number of agemarkers (669), followed by SomaScan 11K (628). Among the
MS-based platforms, MS-Nanoparticle had the most age-related markers.
In terms of the exclusive age markers identified by a platform, SomaScan
11K identified the greatest number of 282 markers that were not found by
any other platform, followed by Olink 3K and Olink 5K, which identified
176 and 99 exclusive markers, respectively. Nine proteins (P07998, P10645,
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Fig. 5 | Platform-specific protein classes, predictive markers, and variance ana-
lysis. a Percent class representation of PANTHER protein classes across the plat-
forms. b Number of protein markers identified for each of the seven biological
predictors by the different platforms at p-val < 0.05 and p-adj < 0.05 significance.

c Percent variance explained by the biological factors included in the model across
the eight platforms. d PANTHER protein classes for proteins with >50% unex-
plained variance across six platforms (MS-IS Targeted and NULISA excluded).
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Fig. 6 | Cross-platform analysis of age-associated proteins and pathways. aUpSet
plot showing the intersection of significant (p-adj < 0.05) age markers identified by
each platform. b Results of pathway enrichment analysis using significant age
markers from each platform and the union of proteins across all platforms as a
background. GO, KEGG and Reactome pathway analysis of significant age markers

from each of the platforms. Each bubble represents a term, and the size of the bubble
indicates the number of markers involved. Only terms with significant (p-adj < 0.01)
and at least 10 markers are shown. c UpSet plot showing the intersection of sig-
nificant age-related pathways identified across platforms. Only terms with sig-
nificant (p-adj < 0.01) and at least 10 markers are shown.
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P17936, P18065, P49747, Q15113, Q9NQ79, P08254, and P36222)
appeared in at least seven of the eight tested platforms. P18065 (IGFBP2,
Insulin-like growth factor-binding protein 2) andP17936 (IGFBP3, Insulin-
like growth factor-binding protein 3) are well-knownmarkers of aging and
have been identified in plasmaproteomics studies as associatedwith aging39.
Bothproteins are linked to cellular senescence and are likely involved in age-
related physiological and pathological processes. P10645 (CHGA, Chro-
mogranin-A), P49747 (COMP, Cartilage oligomeric matrix protein) and
Q9NQ79 (CKTAC1, Cartilage acidic protein 1), markers of extreme agers,
have been recently reported as age-associatedproteins39.Q15113 (PCOLCE,
Procollagen C-endopeptidase enhancer 1) has also been reported as an
aging protein discovered via quantitative mass spectrometry42. P07998
(RNASE1, Ribonuclease pancreatic) is among the top 20 most significant
SOMAmer targets associated with chronological age43. P08254 (MMP3,
Stromelysin-1) is a secreted protein associated with skin elasticity and
aging44 andP36222 (CHI3L1,Chitinase-3-like protein 1) has been identified
as a protein associated with age waves of 10-year windows of 80 and 90
years old45.

Pathway analysis of significant age markers revealed distinct patterns
across the various platforms with substantial differences in the number of
pathways enriched in GO terms of molecular function, cellular component
and biological process. We used the union of detected proteins across all
platforms as a background (Fig. 6b). Using this method, we identified 409,
120, 98, 45, 501, 366, 127, and 202 enriched terms in NULISA, MS-IS
Targeted, MS-HAP Depletion, MS-Nanoparticle, Olink 3K, Olink 5K,
SomaScan 7K and SomaScan 11K respectively at the p-adj < 0.01 level with
at least 10markers present in the pathway, of which 113, 10, 1, none, 66, 25,
4, and 22 were unique to each platform (Fig. 6c). Ten of these terms were
commonly enriched across all platforms, mainly involved in cell signaling
and communication, cellular structure and tissue and organ function
(Supplementary Data 7).

In addition, we compared the aging markers identified by SomaScan
11K andOlink 5K to those detected by the earlier versions of the platforms.
Based on our findings, SomaScan 11K and Olink 5K contribute a broader
array of age-related markers compared to their predecessors. Specifically,
SomaScan 11K identifies 118 aging markers that were not present in
SomaScan 7K,whileOlink 5Kdetects 68 unique aging proteins not found in
the previous version. Overall, affinity-based platforms contributed the lar-
gest number of both unique and shared significant aging markers. In con-
trast, discovery and targeted MS platforms identified fewer significant
markers, but each added valuable proteins that were not covered by the
affinity proteomics platforms (Supplementary Fig. 11). Additionally, while
we identified markers present in both old and new SomaScan or Olink
versions, their statistical significance was sometimes observed in only one
version. This discrepancy is likely attributable to differences in protein
numbers impacting multiple hypothesis testing corrections and/or varia-
tions in the technical characteristics between platform versions, as well as to
assay-to-assay variation.

We calculated linear model coefficients of age for all proteins in each
platform and examined their correlation between any two platforms.
Although correlation values are low (between 0.34 to 0.75) for all shared
proteins, correlation between coefficients of shared significant age markers
is high (0.66 to 0.95), indicating that when a marker is biologically sig-
nificant, it is likely to exhibit a strong correlation across multiple plat-
forms (Fig. 7).

To assess the relevance of the age markers identified in this study, we
compared the significantmarkers across all platformswith those reported in
the UK Biobank Pharma Proteomics Project (UKB-PPP). The UKB-PPP
dataset contains plasma proteomic profiles of 54,219 participants using the
Olink Explore 3072 platform46. This dataset is widely used in plasma pro-
teomics research. Supplementary Fig. 12 displays the number of markers
identified by each platform that were also present in the UKB dataset.
Despite the limited size of the cohort included in our analysis, we observed
overlap between the markers identified by each platform and those in the

UKB dataset, reinforcing the biological relevance and reliability of the age-
related markers identified across the different platforms.

Conclusions
As plasma proteomics gains importance for biomarker discovery, both
affinity-based and mass spectrometry (MS) platforms have become indis-
pensable tools. We benchmarked eight technologies in a healthy cohort,
spanning over 13,000 proteins, and found that affinity assays detect low-
abundance proteins effectively while targeted MS, despite lower coverage,
uniquely provides absolute quantification.

SomaScan 11 K achieved the broadest proteome coverage and near-
complete detectability of healthy plasma proteins, making it well suited
for discovery studies. However, affinity assays target predefined proteins
and are not fully unbiased, while MS coverage—though improving—still
struggles with robust quantification of low-abundance proteins. Untar-
geted MS excels at identifying biomarkers beyond known panels, but
preparation methods like nanoparticle enrichment may introduce
contaminants such as platelets47,48. Pre-analytical factors, including
plasma processing, also influence results, underscoring the need for
harmonization49,50.

Technical precision and data completeness were key determinants of
performance. Platforms such as SomaScan7K/11K,Olink3K,NULISA, and
MS-IS Targeted had low technical CVs and favorable CV gaps, indicating
strong biological signal detection.Olink 5K showed higherCVs comparable
to discovery MS, though filtering by detection limits improved precision at
the cost of coverage. Across all platforms, assays with more missing data—
often low-abundance proteins—had higher variability, complicating inter-
pretation. Interestingly, different SomaScan assays for the same protein
sometimes preferentially detected distinct proteoforms, causing sample-
dependent differences that likely reflect underlying biological heterogeneity
rather than platform limitations.

Although cross-platform correlations were generally modest, con-
sistent with prior reports27,29,34,51,52 and reflective of fundamental methodo-
logical differences, concordance was higher for biologically significant
proteins. Pairwise comparisons of sharedproteins showed strong agreement
in model coefficients for significant markers (p < 0.05), such as age-
associated proteins. Cross-referencing with UK Biobank data confirmed
overlaps, with Olink 3K and 5K showing the highest match to their age-
relatedmarkers. Our analysis also captured 82% ofUKBiobank aging clock
proteins, >90% of SomaScan markers from large cohorts, and 79% of MS-
derived centenarian markers39,53,54. This underscores how multiple plat-
forms, each with distinct strengths, collectively provide a more compre-
hensive view of biomarker landscapes and reveal complementary aspects of
marker biology.

In summary, each proteomics platform offers unique and com-
plementary strengths. Selection should be guided by study goals, balancing
coverage, precision, and discovery potential. Continued cross-platform
evaluations will be essential as technologies advance, enabling improved
biomarker discovery and deeper insight into the complexity of the plasma
proteome.

Methods
Ethics
Informed consent was obtained from all subjects at Access Biologicals.

Study enrollment
Subjects were selected from among regular plasma donors of Access
Biologicals. 78 subjects (39 female and 39 male) were selected in two
groups of young (18–22 years old) and aged (55–65 years old). Subjects
were considered healthy since they were from qualified plasma donor
participants. Information on their medications, medical condition,
fasting time, smoking status as well as biometric data (BMI), blood
pressure, temperature, hematocrit level, total protein, age, gender and
race were collected.
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Plasma collection
Plasma was collected through plasmapheresis with sodium citrate as
anticoagulant from each participant.

Plasma profiling—SomaLogic
Plasma samples were analyzed in two versions of the SomaScan proteomics
platform, SomaScan v4.1 (7K) and v5.0 (11K), at Somalogic (Boulder, CO,

Fig. 7 | Platform agreement in linearmodel coefficients for shared agingmarkers.Purple symbols represent shared significant agemarkers, dark gray symbols are used for
all other shared proteins.
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USA). The two platform versions share the same assay technology but differ
in the number of assays included (7288 vs 10,776 human protein assays,
respectively).

The technology is based on Somalogic’s proprietary Slow Off-rate
Modified Aptamers (SOMAmers) that bind to structural epitopes on pro-
teins. SOMAmers include afluorophore and a photocleavable biotinmoiety
in addition to the binding probe single-stranded DNA sequence that con-
tains modified bases to promote protein binding. During the assay, the
SOMAmer reagents are pre-immobilized onto streptavidin beads and used
to capture target proteins from biological samples. Unbound proteins are
washed away, and captured proteins are biotinylated usingNHS-biotin. UV
light is used to cleave the photosensitive linker, releasing complexes back
into solution in the presence of a high concentration of universal poly-
anionic competitor. Complexes and some free proteins that dissociated are
captured onto new streptavidin beads. After washing, SOMAmer reagents
are eluted from the beads by denaturing the proteins. The eluate is placed
onto a custom Agilent microarray with probes complementary to each
SOMAmer reagent for overnight hybridization. Slides are washed and read
in an Agilent microarray scanner. The resulting RFU values reflect the
amount of target epitope in the initial samples.

SomaScan Assay data used in our studies were first normalized using
hybridization controls tomitigate variation that originates from the readout
steps, followed by median signal normalization across calibrator replicates
within the run. The plate scale factors and calibration scale factors based on
the calibrator replicates and external reference values were used to adjust for
overall signal intensity differences between runs and SOMAmer reagent-
specific assay differences, respectively. Finally, median signal normalization
was performed using Adaptive Normalization by Maximum Likelihood
(ANML) to scale data to an external reference exclusively based on QC
control samples but not based on test samples.

Protein profiling—Olink
Plasma samples were analyzed in two versions of the Olink proteomics
platform, Olink® Explore 3072 and Explore HT (Olink Proteomics AB,
Uppsala, Sweden) atOlinkAnalysis Services in Boston (MA,USA). The two
platform versions share the same assay technology but differ in the number
of assays (3072 vs 5416, respectively) as well as sample requirement and
throughput.

The shared underlying technology is based on Proximity Extension
Assay (PEA)55 coupled with next-generation sequencing (NGS) as readout.
In brief, pairs of oligonucleotide-labeled antibody probes against the same
protein bind to their target, bringing the complementary oligonucleotides in
close proximity and allowing for their hybridization. The addition of aDNA
polymerase leads to the extension of the hybridized oligonucleotides, gen-
erating a unique protein identification “barcode”. Next, library preparation
adds sample identification indexes and the requirednucleotides for Illumina
sequencing. Prior to sequencing using the Illumina® NovaSeq™ 6000/
NextSeq™ 550/NextSeq™ 2000, libraries go through a bead-based purifica-
tion step and the quality is assessed using the Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA). The raw output data is quality
controlled, normalized and converted into Normalized Protein expression
(NPX) values,Olink’s proprietary unit of relative abundance. Three internal
controls are spiked into every sample and are used to monitor the perfor-
mance of the three main steps in the protocol: an incubation control, an
extension control and an amplification control. In parallel with the samples,
the protocol is performed on a set of external controls: Two sample controls,
three negative controls and three plate controls (PCs).

Quality control is performed for each sample plate on both the samples
(using the spiked internal controls) and the external controls. All assay
validation data (detection limits, intra- and inter-assay precision data,
predefined values, etc.) are available on the manufacturer’s website (www.
olink.com).

Olink data used in our studies were normalized by the standard Olink
process. This included normalization based on the Extension controls to
correct for intra-plate technical variation, followed by normalization based

on the PCs to adjust for batch variability (plate-to-plate variation). As in the
case of SomaScan data, no test sample-based normalization was used.

Protein profiling—Biognosys TrueDiscovery™ Pipeline
Plasma samples were shipped frozen by Alkahest and subsequently pro-
cessed and analyzed at Biognosys. Samples were depleted using a Multiple
Affinity Removal Column Human 14 (Agilent) column. Samples were
prepared for LC-MS/MS according to Biognosys’ SOP which includes
reduction, alkylation and digestion to peptides using trypsin (Promega, 1:50
protease to total protein ratio) per sample overnight at 37 °C. Peptides were
desalted using a C18 HLB µElution plate (Waters) according to the man-
ufacturer’s instructions and dried down using a SpeedVac system. Peptides
were resuspended in 1% acetonitrile and 0.1% formic acid and spiked with
Biognosys’ iRTkit calibration peptides. Peptide concentrations were deter-
minedusing aUV/VIS Spectrometer at 280 nm(SPECTROstarNano, BMG
Labtech).

For DIA LC-MS/MS measurements, 3.5 µg of peptides per sample
were injected into an in-house packed reversed phase column on a Ther-
moScientific™EASY-nLC™1200 nano-liquid chromatography system con-
nected to a ThermoScientific™Orbitrap™Exploris480™mass spectrometer
equippedwith aNanosprayFlex™ ion source and a FAIMSPro™ ionmobility
device (ThermoScientific™). LC solventswereA:waterwith 0.1%FA;B: 80%
acetonitrile, 0.1% FA in water. The nonlinear LC gradient was 1 –50%
solvent B in 210min followed by a column washing step in 90% B for
10minutes, and afinal equilibration step of 1%B for 8minutes at 60 °Cwith
a flow rate set to 250 nL/min. The FAIMS-DIA method consisted per
applied compensation voltage of one full range MS1 scan and 34 DIA
segments as adopted from Tognetti et al.16.

A directDIA™ spectral library was generated by searching the HRM
mass spectrometric data using Spectronaut (Biognosys, version 16.2), the
false discovery rate on peptide and protein level was set to 1%. A human
UniProt. Fasta database (Homo sapiens, 2022-07-01) was used for the
search engine, allowing for 2 missed cleavages and variable modifications
(N-term acetylation, methionine oxidation, deamidation (NQ) and
ammonia-loss). The results were combinedwith a proprietary deep spectral
library for human plasma using Spectronaut.

Raw mass spectrometric data were first converted using the HTRMS
Converter (version 15.6, Biognosys) and then analyzed using Spectronaut
(Biognosys, version 16.2) with the default settings, but Qvalue filtering with
background signal as imputation method was enabled and the hybrid
spectral library generated in this study was used. Default settings included
peptide and protein level false discovery rate control at 1% and cross-run
normalization using global normalization on the median.

For testing of differential protein abundance, protein intensities for
each protein were analyzed using a two-sample Student’s t test. P-values
were corrected for overall FDRusing the q-value approach. The following
thresholds were applied for candidate identification: q-value < 0.05;
absolute average log2 ratio > 0.58 (fold-change > 1.5). Distance in heat
maps was calculated using the “manhattan”method, and clustering was
performed using “ward.D” for both axes. Principal component analysis
was conducted in R using prcomp and a modified ggbiplot function for
plotting, and partial least squares discriminant analysis was performed
using mixOMICS package. Functional analysis was performed using
String-db(string-db.org, version 11.5). Topology of candidate proteins
was visualized using Protter. General plotting was done in R using
ggplot2 package.

Protein profiling—Seer Proteograph
Plasma samples were processed with the Proteograph XT Assay at Seer Inc
in Redwood City (CA, USA)20,26. In brief, 240 µL from each sample was
transferred to Seer Sample Tubes for processing with the Proteograph XT
Assay kit. Plasma proteins were quantitatively captured in nanoparticle
(NP) associated protein coronas. Proteins were subsequently denatured,
reduced, alkylated and subjected to proteolytic digestion (trypsin andLysC).
Peptides were purified and yields were determined using PierceTM
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Quantitative Peptide Digest Fluorescent Standards (Thermo Fisher Scien-
tific catalog #23290). Peptides were dried down overnight with a vacuum
concentrator and reconstituted with a reconstitution buffer to a con-
centration of 50 ng/µL.

For Data-Independent Acquisition (DIA), 8 µL of reconstituted pep-
tidemixture fromeachNPpreparationwas analyzed, resulting in a constant
400 ng mass MS injection between NP A and NP B samples. Each sample
was analyzed with a VanquishTM Neo UHPLC system coupled with a
OrbitrapTM AstralTM (Thermo Fisher, Germany) mass spectrometer using a
trap-and-elute configuration. First, the peptides were loaded onto an
AcclaimTM PepMapTM 100 C18 (0.3mm ID x 5mm) trap column and then
separatedona50 cmµPACTManalytical column(PharmaFluidics, Belgium)
at a flow rate of 1 µL/min using a gradient of 5 – 25% solvent B (0.1% FA,
100% ACN) mixed into solvent A (0.1% FA, 100% water) over 22min,
resulting in a 33min total run time. Themass spectrometer was operated in
DIA mode with MS1 scanning and MS2 precursor isolation windows
between 380–980m/z. MS1 scans were performed in the Orbitrap detector
at 240,000 R every 0.6 seconds with a 5ms ion injection time or 500%AGC
(500,000 ion) target. Two-hundred fixed window MS2 DIA scans were
collected at the Astral detector per cycle with 3 Th precursor isolation
windows, 25% normalized collision energy, and 5ms ion injection times
with a 500% (50,000 ion) active gain control maximum. MS2 scans were
collected from 150-2000m/z.

Raw mass spectral files were processed using DIA-NN search
engine, v1.8.1 using a Homo Sapiens FASTA file containing canonical
reviewed and unreviewed proteins. Library-free search was performed in
silico based on the input UniProt reference database listed above with
Match Between Runs (MBR) enabled. A 1% FDR filtering for identifi-
cation on peptide/protein group level and a quantification strategy of
Robust LC (high precision) was used. DIA-NN search parameters
included N-term M excision fixed modification, C carbamidomethyla-
tion fixed modification, minimum Peptide Length 7, maximum Peptide
Length 30,minimumPrecursor Charge 1,maximumPrecursor Charge 4,
minimum Precursorm/z 300, maximum Precursorm/z 1800, minimum
Fragmentation Ion m/z 200, and maximum Fragment Ion m/z 1800.
Panel Rollupwas performed usingMaxLFQ treating each nanoparticle as
independent species per precursor via R package iq56. Precursor-level
data were normalized using median intensities from a set of calibration
peptides (PepCal) spiked into each MS run to correct for MS drift. The
PepCal normalized precursor intensities were rolled up to protein group
level using the MaxLFQ algorithm implemented by Precursors observed
on multiple nanoparticle wells were kept as separate feature inputs to
MaxLFQ. Post-MaxLFQ was applied using the removeBatchEffect
function from the R package Limma (https://rdrr.io/bioc/limma/man/
removeBatchEffect.html)57 with plate_id as the batch term to correct for
plate-level batch effects for each protein group.

Protein profiling—NULISA
Plasma samples were analyzed using two NULISAseq panels from Alamar
Biosciences: the CNS Disease Panel 120 (targeting neurodegenerative
disease-related targets as well as inflammatory and immune response
cytokines/chemokines) and the Inflammation Panel 250 (targeting pri-
marily inflammatory and immune response cytokines/chemokines). Both
panels utilize the same assay technology but differ in the number and nature
of targets. NULISAseq assays were performed at Alamar Biosciences as
previously described23. Briefly, -80°C stored sampleswere thawedon ice and
centrifuged at 2,200 g for 10minutes. 25 µL of supernatant from each
samplewas plated in 96-well plates and analyzed. TheARGO™HTplatform
was used for the NULISAseq workflow, which included: immunocomplex
formation with DNA-barcoded capture and detection antibodies; capture
andwashingof immunocomplexes onparamagnetic oligo-dTbeads; release
of immunocomplexes into a low-salt buffer followed by capture and
washing on streptavidin beads; and ligation of the proximal ends of DNA
strands to generateDNA reportermolecules containing target- and sample-

specific barcodes. These reporter molecules were then pooled, amplified by
PCR, purified, and sequenced on an Illumina NextSeq 2000.

Sequencing data were processed using the NULISAseq algorithm
(Alamar Biosciences). Sample- (SMI) and target-specific (TMI) barcodes
were quantified, allowing for up to two basemismatches or one indel and
one mismatch. Intraplate normalization was performed by dividing
target counts by the well’s internal control counts. Interplate normal-
ization used interplate control (IPC) wells, dividing counts by target-
specific medians of the three IPC wells per plate. Finally, data were
rescaled, a value of 1 was added, and the data were log2 transformed to
generate NULISA Protein Quantification (NPQ) units for downstream
statistical analysis.

Note:Most platform-specific analyses, including data processing, were
performed by the technology providers using their standard pipelines. As
such, comparisons reflect the full analytical workflow, including both
experimental procedures and data processing steps.

Protein profiling—SureQuant
SureQuant Analysis was performed on site at Alkahest Inc. Undepleted
human plasma was processed using the Thermo Scientific™ EasyPep™ MS
Sample PrepKit. A set of 804 SIL peptides fromPQ500 (Biognosys PN#Ki-
3019-96) was spiked at approximately 80 fmol (median value) into 1 µg of
plasma tryptic digest. The volume corresponding to 1 µg of the digest was
injected for LC-MS/MS analyses on an Orbitrap Exploris 480 mass spec-
trometer (Thermo Fisher Scientific) coupled with a Vanquish NeoUHPLC
system (Thermo Fisher Scientific).

Chromatographic separations were performed using a 0.5 cm C18
PepMap™ Neo Trap Cartridge column (5 µm, 100 Å, 300 µm inner dia-
meter; Thermo Fisher Scientific Cat# 174500) and a 15 cm C18 EASY-
Spray™HPLCcolumn (2 µm, 100 Å, 150 µm inner diameter; ThermoFisher
Scientific Cat# ES906). Peptides were separated over a gradient from 2% to
31.5% acetonitrile (80%) with 0.1% formic acid over 60minutes.

To implement this method, the custom SureQuant acquisition tem-
plate available in the Thermo Orbitrap Exploris was utilized. In the ‘watch’
mode of the SureQuant method, the MS1 resolution was set to 120k to
monitor the predefined optimal precursor ions of the internal standard (IS),
which were included in the targeted mass filter. This was followed by the
recognition of heavy peptide precursors and fragments from the list at a low
resolution of 7.5k, with HCD collision energy set to 27% and a maximum
injection time of 10ms. The detection of the IS triggered the ‘quant’mode,
which required at least five product ions to initiate an offset scan at a
resolution of 60k, with HCD collision energy at 27%, a normalized AGC
target of 1000%, and a maximum injection time of 116ms in profile mode.
Data analysis from SureQuant acquisitions was performed using Spec-
troDive™ (Biognosys).

Dilution linearity
Two pooled plasma samples, one from young (18-22 year-old, pool of 20)
and one from aged (55–65-year old, pool of 20) healthymales, were diluted
3x and 9x with PBS. At least three technical replicates of each of the undi-
luted samples, their two dilutions, and the buffer were tested by the pro-
teomic platforms. Pearson correlation coefficient (r) of the resulting protein
level versus sample relative concentration data was calculated for each
measured protein and used to characterize the linearity of the platforms in
the range of healthy plasma protein levels. Estimated Limit of Detection
(eLOD) was calculated as mean + 3*SD of buffer controls.

Data analysis
Multi-UniProtAccession IDanalyteswere addressedby sorting theUniProt
Accession IDs of these analytes in order to maintain consistency between
platforms.

For the affinity-based platforms, eLOD values for each protein were
calculated depending on the platform. For SomaScan 7K and 11 K
platforms, eLODvalues were calculated from buffer controls usingmean
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+ 3.3*SD. For Olink 3K, eLOD values were provided with the data.
For Olink 5K, eLOD values were calculated using the olink_lod
function from the OlinkAnalyze 3.8.2 R58 package using the fixed LOD
method.

Data completeness for each analyte was calculated across all platforms,
defined by the percentage of analytes that were detected in each sample. For
MS- based platforms, raw measurements were used. For affinity-based
platforms, pre and post eLOD filtered values were used.

Technical and total CVs were calculated for each analyte across all
platforms. For the SomaScan 7K assay dataset, the technical CV was cal-
culated using duplicates of eight samples. For the SomaScan 11K assay
dataset, the technical CV was calculated using four samples with four
technical replicates each. This included one aged female bridging sample,
one young female bridging sample, a bridging sample pool of 20 agedmale
subjects, and a bridging sample pool of 20 young male subjects. For Olink
3K, depleted Mass Spectrometry data, and SureQuant data, a technical CV
was calculated using three samples tested in triplicate. For Olink 5K and
Seer, a technical CV was calculated using two pools of samples, aged male
and young male, each tested in six replicates. Total CV percentages were
calculated for each analyte across all platforms, using 78 shared samples.
Unique proteins were determined using uniqueUniProtAccession IDs. For
platforms in which a single UniProt Accession ID was represented by
multiple analytes, all analytes were kept separate in the analysis until Uni-
Prot Accession IDs were necessary to work with. To compare platforms to
one another, we calculated the correlation for analytes between platforms
using Spearman’s rank correlation. For instances in which there was a one-
to-many or many-to-many relationship of analytes representing the same
UniProt Accession IDs, correlations were calculated using all combinations
of analytes. For SomaScan 7K and 11K, due to the analytes of 11K being a
superset of the 7K analytes, we performed a one-to-one comparison of the
same analytes.

To assess platelet contamination for the MS—Nanoparticle technol-
ogy, a platelet index was computed for paired neat and nanoparticle-
enriched plasma samples. The platelet contamination index was computed
as the sum of intensities of previously identified platelet contaminant pro-
teins, divided by the sum of intensities of the non-platelet contaminant
proteins31.

PI ¼
P

Platelet protein intensity
P

Non�Platelet protein intensity

Multivariate linear modeling was performed in R v4.3.2 ith lm
according to the formula Log2(Protein Measurement) ~ Age + Gender +
Race+Hematocrit+ TotalProtein+ SmokingStatus+ BMI. The protein
measurement used was platform dependent. The mass spectrometry data-
setswerefiltered for at least 2/3rds data completenesswithin each age group.
TheOlink datasets were left unfiltered. The SomaScan datasets were filtered
based on eLOD values. Pathway enrichment was performed using topGO
v2.54.0, ReactomePA v1.46.0 and clusterProfiler v4.10.1 using proteins
identified with a p-adj less than 0.05. The total set of detected proteins for
each platformwas used as a background. Pathways with at least 10markers
present andp-adj less than0.01werehighlighted. Plotswere generatedusing
the R package ggplot2 v3.5.1, Heatmaps and UpSet plots were generated
using the R package ComplexHeatmap v2.18.0.

Isoform analysis of Apolipoprotein E
Apolipoprotein E (ApoE) isoforms were analyzed in the respective MS-
HAPDepletion (Biognosys) andMS-Nanoparticle (Seer) datasets. RawMS-
Nanoparticle mass spectral files were processed using DIA-NN search
engine, using a Homo Sapiens FASTA file containing canonical reviewed
proteins as previously described and including ApoE isoform sequences.
Raw MS-HAP Depletion mass spectral files were processed using Spec-
tronaut as previously described with Homo Sapiens FASTA file containing
canonical reviewed proteins, with the addition of ApoE isoform sequences.
Spearman correlation coefficient of the resulting MS data versus

NULISA proteomic data was calculated for each measured ApoE isoform-
specific peptide sequence and used to characterize the relationship of
MS quantitation versus NULISA quantitation of total ApoE and the ApoE4
isoform.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All raw and search results of datasets of MS-Nanoparticle, MS-HAP
Depletion, MS-IS Targeted have been deposited to the PRIDE repository
(https://www.ebi.ac.uk/pride/archive/) with the data set identifier
PXD067119, PXD067064, PXD067061, respectively. Amap of the raw data
and search files is included in each PRIDE submission. Affinity proteomics
data is available upon request from corresponding author. Data on Subjects
is available in Supplemental Data 10, limited to age and sex due to consent
restrictions.
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