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Real-time inline-IR-analysis via linear-
combination strategy and machine
learning for automated reaction
optimization
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Automation has revolutionized many fields by improving efficiency, accuracy, and reproducibility.
However, in organic chemistry, automating key tasks such as reaction optimization and analysis
remains a significant challenge. To accelerate advancements in organic chemistry research and
development, we propose a fully automated system based on real-time inline analysis performed by
Fourier-transform infrared spectroscopy and assisted by a neural network model. To rapidly collect
data, a linear combination of spectral intensities was used as training data for a yield predictionmodel.
Using this model, we demonstrated real-time yield prediction of Suzuki–Miyaura cross-coupling with
remarkable accuracy. By combining this yield predictionmodelwith real-time inline analysis and a flow
chemistry setup, we have developed a fully automated system for the rapid and efficient optimization
of reaction conditions and process analysis.

Many industries are actively pursuing or have already implemented auto-
mation systemswheremachines replace humans in labor-intensive tasks for
product manufacturing. Just as Henry Ford revolutionized industrial pro-
duction in the 20th century with the introduction of the assembly line,
commonly referred to as Fordism, the concept of fully automatedworkflows
may similarly drive innovation in today’s industrial systems. Organic
synthesis, which involves the creation of molecular-scale products, also
stands to benefit from automation1,2. Machines can now perform various
synthetic operations such as reagent addition3,4, reaction monitoring5, and
product purification6,7, thereby reducing or eliminating the need for human
intervention. Since organic synthesis is often labor-intensive and requires
delicate manipulation, the introduction of machines into the process can
significantly enhance both efficiency and reproducibility.

In addition to large-scale chemical manufacturing, automation also
holds significant promise for synthetic chemists working in research and
development (R&D)8. R&D frequently demands the synthesis of novel
compounds with specific functions or biological activities, which requires
performing a large number of reactions and optimizing reaction conditions.
Automation can greatly accelerate these demanding workflows. In this
context, flow reactors9,10 are especially well-suited for automated synthesis
because of their inherent compatibility with high-throughput
experimentation11. Furthermore, flow systems offer precise control over

time-12–14, temperature-15,16, and concentration17,18 to perform precisely
controlled reactions19–23. In contrast, conventional batch reactors often
suffer fromvariability and limited control,which can reduce reproducibility.

Although automated flow systems can significantly accelerate the
execution of reactions, R&D in organic synthetic chemistry remains a time-
consuming process. Synthesis represents only one aspect of the workflow.
The most time-consuming tasks, such as analyzing reaction products and
designing new reaction conditions, still largely depend on human expertise.
Automation of analysis and condition design can, in principle, be achieved
using autosamplers to perform automatic measurements. For instance,
Jamison and Jensen demonstrated a strategy in which inline sampling was
coupledwithHPLCanalysis to optimize reaction conditions bymaximizing
the peak area of the desired product24. However, chromatographicmethods
lack immediacy and are therefore not ideally suited for fully exploiting the
advantages of flow chemistry. In contrast, spectroscopic techniques such as
infrared (IR) spectroscopy allow real-time, inline analysis. Thismakes them
highly attractive for rapid optimization and process monitoring. Jamison
and Jensen also performed automatic optimization by minimizing the
carbonyl peak intensity using inline IR analysis24. Knight extended the
applicability of inline IR analysis to reaction systems lacking distinctive
spectral features—an area where traditional peak-based approaches are not
easily applicable25.However, theirmethodprovidedonly qualitative insights
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and could not support accurate yield prediction. Notably, these limitations
are not resolved even by incorporating internal standards or calibration
curves, as accurate quantification still requires clearly assignable spectral
features. In systems such as ours—where peaks are weak, overlapping, or
entirely absent—traditional quantification methods are inherently limited.
Therefore, an alternative approach is needed to achieve quantitative analysis
under these conditions.

In cases where characteristic peaks are absent—or when spectral dif-
ferences are too subtle for human interpretation—machine learning
becomes especially powerful. It offers the potential to extract meaningful
patterns from nuanced spectral variations and enable quantitative predic-
tions that would otherwise be inaccessible through conventional analysis.
However, machine learning typically requires large, high-quality datasets
derived from a wide range of experimentally measured reaction mixtures.
This demand poses a substantial experimental burden, especially when the
spectral data lack distinct, easily identifiable features. Additionally, existing
methods for automated reaction analysis based on repeated inline mea-
surements still require a vast number of experiments to achieve precise yield
prediction.

To address this, we propose a streamlined approach in which IR
spectra are generated by linearly combining the spectra of the reactants and
products to produce “mimicked spectra” that approximate those of actual
reaction mixtures. These mimicked spectra serve as effective substitutes for
experimentallymeasured data, enabling the rapid and efficient construction
of training datasetswithout exhaustive experimentation.Using thismethod,
we demonstrate a fully automated system for organic synthesis that inte-
grates real-time inline analysis with a neural network-based predictive
model. This systemenables closed-loop reaction optimizationwithminimal
experimental burden (Fig. 1).

Results and discussion
We began this study using an existing flow system equipped with an inline
monitoring unit26 capable of real-time, high-accuracy analysis. Real-time
inline analysis, where the reaction solution is continuously analyzedwithout
manual sampling, is widely used to monitor reaction progress27,28. Among
the available analytical techniques29, Fourier-transform infrared spectro-
scopy (FTIR) is one of the most commonly employed because of its speed,
sensitivity, and resolution30. Historically, FTIR analysis has been extensively
used for the characterization of organic molecules, as it provides valuable
information linking specific vibrational frequencies to molecular sub-
structures (e.g., carbonyl groups typically exhibit a strong peak near
1715 cm−1). As a result, changes in reagent consumption or product for-
mation be tracked by monitoring specific peaks in the spectrum. However,

this peak-based approach is limited to reactions that involve significant
changes in functional groups31,32. Although the fingerprint region of the
spectrum, typically from 1500 to 650 cm−1, is unique to each molecule, its
complexity often makes it difficult for humans to interpret all of the peaks.
Machine learning, when combinedwithmultivariate data analysis, can help
address this issue by interpreting complex spectral features. However,
building an accurate model still requires a large and diverse training
dataset33.

To address this challenge, we focused on the fundamental principles of
FTIR spectroscopy. The intensity of each peak in an FTIR spectrum reflects
the abundance of the correspondingmolecular species.Whenmolecules are
mixed, the resulting spectrum can be approximated as a linear combination
of the spectra of the individual components.We hypothesized that it would
be possible to simulate the spectrum of a reaction mixture by linearly
combining the spectra of the materials involved, including the products.
This approach would allow for rapid generation of a large training dataset
using only a small number of measured spectra34.

As a model reaction, we selected the Suzuki–Miyaura cross-coupling
(SMC) reactiondue to itswide applicability in organic synthesis. SMC forms
a carbon–carbon bond between the organic groups fromaboronic ester and
a (pseudo)halide, typically without significant changes in the FTIR spec-
trum. This is characteristic of many cross-coupling reactions, especially
those in diluted conditions35. Indeed, the FTIR spectra of representative
reactants, boronic ester1 (0.049M) and iodoarene2 (0.033M), andproduct
3 (0.033M) in THF/MeOH (50/50 volume ratio) showed minimal differ-
ences to the naked eye (Fig. 2a). o prepare the training dataset, we first
performedFTIRmeasurements on compounds1, 2, and3. Each compound
was measured five times, and one measurement was randomly selected for
use in linear combination, in order to prevent themodel from learningnoise
patterns. Based on our previous study on flow coupling reactions36, we
assumed that using 1.5 equivalents of compound 1would be optimal for the
reaction. Because the reaction system is well-characterized and known to
involve few significant side products—particularly as 2 exhibits nearly ideal
mass balance—we considered that the reactionmixture could be reasonably
represented by a combination of the spectra of 1, 2, and 3. The training
dataset was constructed as shown in Fig. 2b. In this dataset, y denotes the
virtual percent yield of 3 (cyield), and X represents a one-dimensional data
vector corresponding to a simulated spectrumas a linear combination of the
FTIR spectra of compounds, reflecting a reaction that would produce 3 at
cyield% yield. To account the decomposition of compound 1, a random
number “r” was introduced to represent the decomposition rate. By
varying cyield and r from 0 to 100 in integer steps, we generated 10,000 (X, y)
datasets.

Fig. 1 | Schematic for fully-automated reaction
optimization with our strategy for model con-
struction. A schematic illustration of the proposed
strategy integrating machine-controlled flow
synthesis, machine learning-based analysis, and
reaction design.
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To evaluate the model, test solutions were prepared by dissolving
compounds 1, 2, and 3 in arbitrary proportions, similar to the combinations
used in Fig. 2b (see Supplementary Information section 2.2 and Table S1 for
detail). FTIRmeasurements were then conducted to determine whether the
model could predict the concentration of compound 3 (cyield) based on
the spectral data. However, the initial attempt resulted in complete failure
(Fig. 2c, left); themodel predicted a cyield of approximately 100 for all spectra.
We found that applying spectral differentiation significantly improved the
prediction accuracy (Fig. 2c, middle). Furthermore, when we limited the
spectral analysis to the fingerprint region (699–1692 cm−1) and applied

differentiation, the model was able to predict cyield with high accuracy
(Fig. 2c, right). These results indicate that restricting the spectral range can
enhance the performance of the prediction model, and that using a larger
number of data points is not necessarily beneficial.We note that whilemore
complex spectral combinationmethods could be considered (e.g., weighted
or nonlinear combinations), we deliberately selected simple linear combi-
nations to prioritizemethodological simplicity and ease of implementation,
while still achieving high predictive accuracy. We applied the model to
predict the yields of the SMC reaction under various conditions. According
to our previous study34, the reaction was carried out in a column reactor
packed with silica-supported palladium(0). A solution of 2 (0.033M),
containing 1 (1.5 equivalents) KOH(2 equivalents), wasflowed through the
column at 70 °C. By varying the flow rate, we generated multiple reaction
conditions to evaluate the model’s prediction accuracy (Fig. 2d). This
demonstrates that our linear combination approach allows the construction
of a model using only the spectra of substrates and products, yet provides
accurate yield prediction—a task challenging to achieve through manual
interpretation. Importantly, the rapid yield prediction enabledby ourmodel
allows seamless integration into real-time, closed-loop optimization fra-
meworks. Because the model requires only inline FTIR measurements and
can be trained with synthetic spectra derived from pure compounds, it
eliminates the need for extensive experimental screening. This makes it
especially well-suited for Bayesian optimization, where each new experi-
mental condition is selected based on predicted performance. The imme-
diacy and accuracy of our predictive framework offer a practical advantage
over conventional methods, enabling fast, data-efficient reaction optimi-
zation. This efficient analytical framework can accelerate the analysis stage
of R&D.

Having established the inline analysis model, we turned our attention
to the development of a fully automated reaction optimization system. A
schematic overview of the setup is shown in Fig. 3a. A programmable logic
controller (PLC) was connected to the pump and the water bath heater to
control the flow rate and temperature, respectively. To monitor system
stability, the PLCwas also connected to aflowmeter, pressure gauge (labeled
“gauge” in Fig. 3a), and thermometer. Finally, the PLC was connected to a
laptop computer, which controlled and monitored the entire system,
including theFTIRunit.Aprocessflowchart is shown inFig. 3b. Initially, the
reaction was carried out under randomly selected conditions from a total of
30 possibilities (five flow rates and six temperatures), defined as the “Initial”
state in theflow chart. This initial state was repeated a predefined number of
times, typically once or twice. After collecting the initial dataset, Bayesian
optimization (BO)37–41 was applied to suggest the next candidate condition.
The reaction was carried out automatically under the suggested conditions,
and the resulting yield was analyzed. This iterative process continued until
BO suggested a previously tested condition42.

In the first optimization trial, the initial conditions (6.0 mL/min and
50 °C,and4.0 mL/minand80 °C)were selected randomly.After six reaction
runs, BO suggested conditions that had already been tested (2.0 mL/min,
80 °C). The system thus concluded that 2.0mL/min and 80 °C were the
optimal reaction conditions, yielding the highest predicted yield (Fig. 3c,
1st trial). Notably, this entire process required only 70min to reach
optimization. In the second trial, using a different set of initial conditions,
the system again identified the same optimal parameters (Fig. 3c, 2nd trial).
Although three more reactions were needed in the second trial, the total
experimental time remained short at approximately 2 h. In our previous
study36, we found that increasing the concentration fourfold under high-
yielding conditions did not result in decreased yield. Therefore, it is likely
that the optimal conditions identified here could be applied at higher, more
productive concentrations, thereby improving throughput without com-
promising efficiency. These results highlight the rapidity and reproducibility
of the developed automated optimization system.

We assessed the accuracy of the prediction model by comparing the
predicted yields with those determined by gas chromatography (GC) using
an internal standard for the reaction solutions obtained during the opti-
mizationprocess. To further validate themodel, we conducted63additional

Fig. 2 | Preparation of the inline Fourier-transform infrared spectroscopy (FTIR)
prediction model. a FTIR spectra of the compounds and solvent. b Preparation of
training data. c Model evaluation, where the x-axis represents the experimentally
determined percent yield (cyield) of the prepared solution, and the y-axis indicates the
predicted percent yield from its FTIR. d Inline FTIR and yield prediction of actual
reactions. Gas chromatography (GC) yields were determined using an internal
standard.
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reactions under varied conditions and similarly compared the predicted
yields with experimentallymeasured values. As shown in Fig. 3d, the results
demonstrated excellent agreement, with a high coefficient of determination
(R² = 0.96). These findings confirm the robustness and general applicability
of the model across a broader range of conditions.

Finally, we applied the prediction model for real-time analysis,
demonstrating its utility as an example of process analytical technology
(PAT)43, as described above and shown in Fig. 3a. Our optimization system
allows for continuous monitoring of reaction parameters, with thermo-
meter, flowmeter, and pressure gauge connected to the PLC. These
instruments monitor the temperature, flow rate, and pressure in real time,
while reaction yields are recorded every minute using inline FTIR analysis.
Figure 4 shows a log of these measurements. The red line indicates the
predicted yield based on FTIR data, demonstrating that the model can
function effectively as a PAT system without further refinement. At some
points, we collected the reaction solution, and confirmed the predicted yield
is in good agreement with the yield determined by GC with the internal

standard. Notably, the monitoring system was able to detect subtle differ-
ences in stabilized reaction conditions that were not evident from physical
parameters alone, such as slight variations in temperature.

Conclusion
In conclusion, we have developed a concise method for preparing
FTIR data for machine learning, where individual FTIR spectra of the
reactants and products are linearly combined to simulate the spec-
trum of a reaction mixture. With appropriate data preprocessing, we
successfully constructed an accurate model for yield prediction. This
was achieved with limited experimental input, as the model was
trained on mimicked spectra generated from only the FTIR data of
pure reactants and products, reducing the need for extensive reaction
sampling. This framework enables real-time prediction of reaction
yield within an integrated system, allowing us to achieve fully auto-
mated optimization of the Suzuki–Miyaura cross-coupling reaction.
While this study employed a grid of reaction conditions, future

Fig. 3 | Automated optimization. a Schematic of
setup. b Process flowchart. “Initial”means to collect
initial data set. c Results of optimization trials.
d Assessment of the accuracy of the predic-
tion model.
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implementations could incorporate dynamic flow techniques to fur-
ther enhance experimental efficiency44. Furthermore, we demon-
strated that the prediction model can function as a practical example
of process analytical technology (PAT), capable of detecting subtle
differences in reaction conditions that are not evident from physical
parameters alone. We believe that the proposed system represents a
meaningful step toward industrial automation. As often envisioned in
science fiction45,46, it is becoming increasingly plausible that future
industries may be operated entirely by robotic systems, without the
need for human intervention.

Methods
Development of prediction model
Phenylboronic acid pinacol ester (1, 230mg, 1.13mmol) was dissolved in
THF/MeOH (23mL, 1:1 volume ratio) to be a 0.0049M solution. The
solution of 4-iodobenzonitrile (2, 0.033M) and 4-cyanobiphenyl (3,
0.033M)were similarly prepared. Each solutionwas pumpedwith a syringe
pump at a flow rate of 1.0 mL/min and then in-line measurement was
carried out. Five spectra were recorded in each solution considering noise
patterns. Raw spectra were differentiated using the numpy.gradient func-
tion provided by the NumPy library. Only a spectral range from 1506 to
699 cm−1 (434 datapoints) was used for neural network (NN) training and
prediction.

Training data was created with spectra of each compound (1, 2, and 3)
according to the following equation;

SpecLC ¼ 150� cyield
150

� �
×

r
100

× Spec1 þ
100� cyield

100

� �
× Spec2 þ

cyield
100

× Spec3

where cyield and r are the yield anddecomposed rate (integers from0 to100),
SpecLC means the spectrum of the generated, Spec1, Spec2, Spec3 mean the
spectra of 1, 2, and 3 respectively. In order to avoid learning noise pattern,
one spectrum was randomly chosen for each linear combination. In this
study, the number of training data was set to 10,000 throughout.

Automated optimization and reaction monitoring
Overall system control including file management and data logging, among
other things, was written in C#.NET. Machine learning tasks (Bayesian
optimization and prediction by NN model) were conducted using Python
and the scriptwas executed inC#.NET.The software forReactIR (iC IR)was
controlled through a mouse simulation. The pumps, sensors, heater and
chillerwere connected toPLC (Mitsubishi Electronic,MELSEC iQ-F series),
and PLC was controlled via SoftGOT 2000 (Mitsubishi Electronic). The
pump motor’s rotation speed was controlled through a voltage control

(0–10 V). Values of pressure gauges and flowmeters were red through
current measurements (4–20mA). Thermocouples were connected to a
dedicated unit of PLC, and the temperature was recorded. these values were
logged every second. Power supply to a heater and a chiller pump were
switched on and off by relays. According to our previous work39, the script
was written in Python with GPyOpt library.

Process flow is as follows. At first, the search space in Bayesian
optimization was determined, and a process was begun. In this work,
a search space contained temperature (30, 40, 50, 60, 70, 80 °C,
discrete) and flow rate (2, 3, 4, 5, 6 mL/min, discrete). The initial
reaction condition was selected randomly, and the temperature and
the flow rate were adjusted to the selected condition. After those
values achieved the target ones, the system started stabilizing phase.
The stabilizing phase lasted 480/F seconds (F means the flow rate).
After stabilization, the system measured IR, and if necessary, sample
solution was collected for GC analysis. After measurement, the flow
rate was changed to 1.0 mL/min (stand-by mode) in order to reduce
the waste of the reagents. During the stand-by mode, yield was
predicted from the spectrum by using NN model, and the next
candidate condition was selected randomly (as continuing Initial), or
was suggested by the Bayesian optimization algorithm. If the sug-
gested condition had not already selected in previous iterations, the
next iteration began. If the suggested condition had already selected,
the process completed

As a stock solution, 1 (9.356 g, 45.8mmol), 2 (6.998 g, 30.6 mmol),
potassium hydroxide (3.421 g, 61mmol), n-tridecane (2.363 g, an internal
standard) were dissolved in THF/MeOH (926mL, 1:1 volume ratio). The
stock solution was pumped into the tube reactor containing the polymer-
supported palladiums in the water bath with heater and cooling jacket. In
order to cool reactionmixture, another water bath was placed between tube
reactor and spectrometer. In optimization process, first two iterations were
carried out to obtain initial data and Bayesian optimization was executed
from the third iteration onwards.

For the real-time yield monitoring, IR spectrum was measured every
minute (128 scans). Moreover, additional waiting times of 240 and
120 seconds were taken before the spectrum measurement and after the
sampling step, respectively.

Data availability
All data are included in the Supplementary Information.

Code availability
The code used in this study consists of simple data processing scripts that do
not constitute a central component of the conclusions. Therefore, the code

Fig. 4 | Real-time reaction monitoring. Red bald
line: yields predicted by the model, black dash line:
pressure measured by the pressure gage (Pres), blue
dotted line: temperature measured by the thermo-
meter (Temp), gray line: flow rate measured by the
flowmeter (Rate).
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has not been deposited in a DOI-minting repository, but it is available from
the corresponding author upon reasonable request.
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