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Plastic waste management is challenged by the
inefficiencies and environmental impact of
traditional chemical recycling methods. Here, the
authors explore the chemoenzymatic cascade
depolymerization approach, which offers a
promising and sustainable solution for transforming
plastic waste into valuable products.

Since 1950, plastics have played a crucial role in modern society. Due to their
numerous advantages, such as versatile physical material properties and low
manufacturing costs, global plastic production reached roughly 400.3 mil-
lion tons in 2022" and is increasing yearly, with packaging (35%), consumer
goods (23%), and construction (18%) applications accounting for the largest
markets”. Despite its undeniable benefits, only 9% of single-use plastics are
recycled, while 19% are incinerated, 50% end up in landfill and 22% evade
waste management systems and go into either terrestrial or aquatic
environments’. The massive accumulation of plastic waste in the ecosystems
has posed serious threats to the various forms of life on earth. Therefore, an
effective solution to tackle this crisis by transforming plastic waste into
value-added products is immensely needed.

Thermal depolymerization of plastics utilizes high temperatures,
whereas chemical depolymerization employs a combination of temperature
control and solvents in the presence/absence of catalysts. If no catalyst is
used, the depolymerization is slow, and much higher temperatures and
pressures are needed’. Chemical recycling has gained both academic and
commercial interest in the recovery of valuable building blocks from plastic
waste. Apart from chemical oxidation that converts plastic into structurally
modified molecules’, it also includes various hydrolysis reactions, such as
glycolysis, microwave pyrolysis/hydrolysis, acid hydrolysis, alcoholysis,
aminolysis, and catalytic pyrolysis, in which hydrolysable plastic is broken
down into small oligomers or monomers’. The traditional chemical
approaches have been considered energy-intensive and solvent-sensitive,
especially to afford complete depolymerization and are projected to be able
to recycle only ca 17% of all end-of-life plastics by 2060”. Another issue is
selectivity, as often a “soup” of mixed products is observed that are difficult
to separate.

In contrast, enzymatic approaches have emerged as an alternative to
chemical counterparts, which offers numerous advantages such as selec-
tivity under milder reaction conditions, reduced energy consumption,
minimal environmental impact, and inherent sustainability’. Biocatalytic
depolymerization has achieved significant advancements in the biode-
gradation of polyethylene terephthalate (PET) and more recently, poly-
urethane (PU)’ and polyamide (PA)". Research efforts to enable
depolymerization of polystyrene (PS), polyethylene (PE), polypropylene
(PP), and polyvinyl chloride (PVC) are ongoing, although the

biotransformations mainly rely on free-radical mechanisms that can com-
promise selectivity otherwise offered by an enzyme active site'". In parti-
cular, enzymatic depolymerization and recycling of PET into its monomers,
including MHET (mono-(2-hydroxyethyl) terephthalic acid), TPA (ter-
ephthalic acid), have received much attention. Different enzymes (e.g.,
PETase, cutinases, esterases, lipases) have been reported to exhibit
impressive degradation activity against various real-life PET materials (e.g.,
powders/granules, bottles, films, bags), even achieving nearly complete
depolymerization at industrially relevant substrate loadings'*™"". Yet, the
efficiency of depolymerization heavily relies on the polymer’s properties,
such as chemical structures, molecular weights, and the degree of crystal-
linity, in addition to the enzyme’s inherent activity to the particular chemical
bond. For example, the FAST-PETase, a well-known variant engineered by
machine learning, showed a quite low enzymatic depolymerization rate
when commercial semi-crystalline PET bottles (degree of crystallinity
230%) were used as substrates, releasing only trace amounts of monomers
(0.09 to 0.14 mM)". Therefore, a more efficient method is required for
plastic depolymerization.

Chemoenzymatic cascade depolymerization of plastics

Is it possible to combine chemical and enzymatic processes by che-
moenzymatic cascade reactions (Fig. 1)? As a matter of fact, chemoenzy-
matic synthesis has been used as a multi-functional and highly sustainable
synthetic tool to manufacture high-value-added organic molecules'*™".
Likewise, there is a tremendous potential to use chemistry as a pre-treatment
step to enhance material accessibility and bioactivity in enzymatic plastics
deconstruction”. Herein, the role of the enzymes mainly is to assist in
selectively when upgrading lower molecular weight molecules resulting
from such chemical pretreatment'’, such as by hydrolysis of more exposed
bonds confined within the material. The final products can then be further
used as feedstocks to produce new materials through chemical synthesis or
implemented in metabolic engineering, achieving a circular plastics
economy ",

Bornscheuer et al. disclosed a chemoenzymatic concept for the depo-
lymerization of low molecular weight PE. The polymer was chemically
pretreated with m-chloroperoxybenzoic acid (mCPBA) and ultrasonication
under relatively mild temperatures (<100 °C), followed by a four-enzyme
cascade reaction, eventually leading to a ~27% polymer conversion (Fig. 2).
Atomic force microscopy (AFM) confirmed the significant reduction of
particle size, and gas chromatography/mass spectrometry (GC/MS) found
the formation of small-molecule products including w-hydroxycarboxylic
acids and o, w-carboxylic acids after this cascade treatment. The cleavage of
sp® C-C bonds in PE is challenging. Purely chemical depolymerization, such
as noncatalytic pyrolysis and gasification, requires high-temperatures input
(2500 °C), and these processes yield uncontrolled distribution of products™.
Incorporating versatile catalysts into the chemical depolymerization of
PE does contribute to increasing the reaction efficiency at around
200-300 °C***. While efficient, a mild, simple, green, and sustainable
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moenzymatic cascade depolymerization of plastic. :

Chemoenzymatic

For the chemical part, the plastic polymers will /) Structurally modified polﬁners/ depolymerization
undel'rgo a series of pr.etreatments such as l;xydrolysls chomical . o™ -
or oxidation, producing structurally modified depolymerization ‘% A o) @
- .

polymers or low M,, oligomers/monomers; for the " @ o 6 A 4
enzymatic part, these intermediates will be further Low Mw oligomers/monomers Enzyme '&OO ? Q O— & 4
converted (e.g., hydrolyzed) into final monomers or 2 ©:© p Qé
added-value molecules in a higher yield compared to © o Q Qo

) ai

that of single enzymatic depolymerization, which

Plastic polymer Enzymatic

Monomers/added-value molecules

might not even be working for some types of plastic depolymerization o © ®

(dotted line). Overall, the chemoenzymatic cascade @ o

process can accelerate plastic depolymerization, 77 > e © ¢

offering a more sustainable approach for plastic Monomers

waste management.

Fig. 2 | Schemes of chemoenzymatic cascade R R,
depolymerization of low-molecular-weight poly- i hgng
ethylene. Reproduced with permission”. Copyright Polyethylene

2024, WILEY.

OH OH

R1WR2
n

NADP*
ADH
NADPH

e} e}

n

0,, NADPH
BVMO (

Oxidative step (mCPBA, RpKatG-peroxidase)

SN

OH OH

RWWRZ
n
NADP*
ADH C
NADPH
(0] (0]

R1WR2
n

0,, NADPH
BVMO (

H,O, NADP* H,O, NADP*
o o o o
Rﬂ/\OWO)K/RZ R1/\0W0f R,
Lipase l H,O Lipase l H,O
(0] (0] (0]
HOWOH + HOKRZ R NOH + HOWOH * ok

"
R OH

w-hydroxycarboxylic acids

a, w-carboxylic acids

strategy is needed for recycling of PE waste. Clearly, the work by Born-
scheuer et al. represents an important step forward in the depolymerization
of PE based on chemistry coupled with a biological method. However,
further improvements are needed as mCPBA is toxic; accordingly, an
alternative chemical or pretreatment route could be employed to achieve the
same effects in a safer manner. The complex procedure observed and the
necessity of four enzymes potentially increase the cost, time, scope, and
quality if applied in industry. Moreover, it would be important to perform
the Life Cycle Assessment to evaluate the environmental impacts of the
entire process.

For PU recycling, glycolysis is one of the promising routes, as it gives a
highly pure polyol moiety and under mild reaction conditions. Recent

examples include deamination resulting in polyols recovered from the PU
glycolysis® and a glycolysis process of PU waste by Riccardo et al.”’. In
comparison, a two-step chemoenzymatic recycling procedure for PU was
reported recently, which consisted of pretreatment by glycolysis followed by
enzymatic hydrolysis™. Chemical glycolysis of polyether-PU foam resulted
in the formation of low molecular weight dicarbamates. Subsequently,
recently discovered urethanases identified from metagenomic analysis
hydrolyzed these intermediates into the final monomer toluene-2,4-dia-
mine (TDA) (Fig. 3). This work stands out as a new breakthrough in the
depolymerization of polyether-based PU since the enzymatic hydrolysis of
polyester-based PU that has been frequently reported in the previous studies
rely on hydrolysis of ester bonds™”’. However, challenges remain in the
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combination of glycolysis and enzymatic degradation. It is essential to select
a suitable catalyst to perform the glycolysis, which not only affects the
hydrolysis efficiency but also possibly inactivates enzymes later in the
process. More steps such as neutralization and separation are likely involved
to ensure the compatibility between the complex chemical reaction system
and the enzymatic process.

Recent years have seen tremendous progress in the chemoenzymatic
cascade valorization of PET’"”, polyamide (PA)”, PS*, and PET/poly-
lactic acid (PLA) blends™. Among these, glycolysis is generally used as a
chemical pretreatment of plastic in this two-step depolymerization. The
reasons could be the high efficiency, relatively mild conditions compared
to many pyrolysis methods (e.g., relatively low temperature of 200 °C)
and flexible choice of various catalysts. Working with highly active
enzymes, this chemo-bioprocess has been suggested to be potentially
applicable to the recycling and upcycling of large-scale plastic waste.
However, it would be desirable to use a noncatalytic, efficient, and more
environmentally friendly method to pretreat these plastics before
deploying a bio-depolymerization.

In our recent study, microwave-assisted hydrolysis (polymer in water
at 200 °C for 1-2 h), followed by PETase/S238A biodegradation, has shown
high potential in PET depolymerization™. It was found that the microwave
pretreatment resulted in the polymer chain’s conformation transitioning
from gauche to trans using solid-state nuclear magnetic resonance (NMR)
whereas in silico simulations and atomic force microscopy (AFM) were used
to confirm trans selectivity of S238A PETase. At this point, the trans-
selective variant S238A exhibited higher degradation activity compared to
the wild-type enzyme, in particular for commercial water bottles (Fig. 4).
Our study highlighted the importance of conformational selection in bio-
catalytic plastic hydrolysis. It also demonstrated that microwave pretreat-
ment (here hydrolysis instead of pyrolysis) could modify the properties of
the polymer (e.g., chain conformation, molecular weight, and crystallinity)
and make it more susceptible to enzymatic degradation. In principle, this
combination of microwave pretreatment and enzymatic depolymerization
can be extended to other polymer plastics, further accelerating enzymatic
cascade depolymerization.

Challenges for chemoenzymatic cascade reaction
processes

These wide ranges of successful examples have shown how enzymatic
processes potentially enhance the efficiency, sustainability and applicability
of chemical depolymerization for producing various valuable products.
Thus, chemoenzymatic cascade depolymerization has already offered a

proof-of-concept pipeline for the recycling and upcycling of plastics.
However, several challenges remain. First, besides mechanical grinding to
generate particles with increased surface area, there is no general formula of
chemical pretreatment on various plastic polymers. In fact, different
methods, such as microwave pre-treatment introduced by us for biocatalytic
plastic recycling, may bring about diverse effects or even unwanted or no
actions on these macromolecules (i.e., not all molecules absorb microwave
radiation). Second, for non-hydrolysable petro-polymers (PE, PP, PS and
PVC) with carbon chain backbones, enzyme activities remain largely
unknown. Third, the enzyme’s activity or stability can be lower than
expected, due to the release of byproducts from chemical processes or
additives, and the complex reaction systems (e.g., the need for various
chemical catalysts in the reaction mixture, metal ions, organic solvents,
extreme pH conditions, high temperatures and pressures). The often
stringent requirement of controllable conditions (e.g., temperature, pH,
substrate concentration) for high enzyme activity can be described as
reaction incompatibility. Fourth, a green, sustainable, cost-effective, and
environmentally friendly pipeline of these two-step or one-pot che-
moenzymatic cascade depolymerizations remains to be demonstrated.
There is often a trade-off between reaction efficiency and environmental
concerns as well as economic feasibility. Fifth, the recycling of plastics into
final monomers is highly desired but faces challenges such as low yield and
low purity, especially when blended plastic waste is used, causing high
separation costs, hindering large-scale industrial applications.

Outlook

In the coming future, many efforts will focus on process optimizations and
innovations to enable viable chemical cascade depolymerization of plastics.
Integration of chromatographic and spectroscopic techniques such as high-
resolution liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS) will facilitate the identification of all intermediates and reac-
tion species involved that affect biocatalyst performance in situ (e.g., various
antioxidants, UV absorbers, light stabilizers and plasticizers). Moreover, a
multi-enzyme cascade reaction could further increase the decomposition
rate of the intermediates produced from the initial and intertwined chemical
processes and allow the realization of much more complex product syn-
thetic schemes”. A key priority will be the development of novel and tailor-
made biocatalysts showing new-to-nature activities by de novo protein
design®*'. Here the intrinsic stability often shown by de novo designed
enzymes in concert with their unprecedented activities makes them highly
suitable to be applied in chemoenzymatic cascade depolymerization stra-
tegies of difficult-to-recycle polymers. In this way, addressing chemical
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reactions that are currently considered too energy-intensive and envir-
onmentally unfriendly could be realized. A prominent example would be the
exceptionally tough and durable polyolefins, requiring strong oxidative
chemistries leading to reactive oxygen species, e.g., hydroxyl radicals.
Generation of binding domains that wrap around the plastic will help in the
enzymatic depolymerization, by either changing the surface property of
plastic or increasing the adhesion capability of catalytic domains of enzymes;
much like cellulose binding domains in nature*. Metabolic engineering that
requires few dedicated enzymes will open new pathways for converting rich
carbon sources derived from chemical cascade depolymerization to valuable
products, such as bioplastics and biosurfactants>”’. Perhaps led by these
advancements, chemoenzymatic cascade depolymerization can contribute
to mitigating plastic pollution and improving the circularity in the chemical
and plastic industry beyond PET.
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