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MolGraph-xLSTM as a graph-based dual-
level xLSTM framework for enhanced
molecular representation and
interpretability
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Predicting molecular properties is essential for drug discovery, and computational methods can
greatly enhance this process.Molecular graphs have become a focus for representation learning, with
GraphNeural Networks (GNNs)widely used.However,GNNsoften strugglewith capturing long-range
dependencies. To address this, we propose MolGraph-xLSTM, a novel graph-based xLSTM model
that enhances feature extraction and effectively models molecule long-range interactions. Our
approach processes molecular graphs at two scales: atom-level and motif-level. For atom-level
graphs, a GNN-based xLSTM framework with jumping knowledge extracts local features and
aggregates multilayer information to capture both local and global patterns effectively. Motif-level
graphs provide complementary structural information for a broadermolecular view. Embeddings from
both scales are refined via a multi-head mixture of experts (MHMoE), further enhancing
expressiveness and performance. We validate MolGraph-xLSTM on 21 datasets from the
MoleculeNet and Therapeutics Data Commons (TDC) benchmarks, covering both classification and
regression tasks. On the MoleculeNet benchmark, our model achieves an average AUROC
improvement of 3.18% for classification tasks and an RMSE reduction of 3.83% for regression tasks
compared to baseline methods. On the TDC benchmark, MolGraph-xLSTM improves AUROC by
2.56%, while reducing RMSE by 3.71% on average. These results confirm the effectiveness of our
model in learning generalizable molecular representations for drug discovery.

Predicting themolecular properties of a compound, particularly its ADMET
(Absorption, Distribution, Metabolism, Excretion, and Toxicity) character-
istics, is critical during the early stages of drug development1,2. Leveraging
deep learning for molecular representation to predict these properties sig-
nificantly enhances the efficiency of identifying potential drug candidates3,4.
Molecular graphs retain richer structural information, which is crucial for
accurate property prediction. In recent years, Graph Neural Networks
(GNNs) built on molecular graph data have been extensively utilized for
molecular representation learning to predict a wide range of properties5–13.

A key challenge in molecular property prediction lies in capturing
long-range dependencies—the influence of distant atoms or substructures
within amolecule on a target property.WhileGNNs leverage neighborhood

aggregation as their core mechanism—updating the hidden states of each
node by aggregating information from neighboring nodes using operations
like sum, max, or mean pooling14,15—they face significant limitations in
capturing these long-range dependencies. Specifically, over-smoothing and
over-squashing hinder their performance. Over-smoothing occurs when, as
the number of layers increases, node representations become increasingly
similar, leading to a loss of distinction between nodes16. On the other hand,
over-squashing refers to the compression of information fromdistant nodes
as it propagates toward the target node, making it challenging for relevant
information to be effectively transmitted17. These issues limit the ability of
GNNs to fully exploit global structural information, reducing their effec-
tiveness in complex molecular property prediction tasks.
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To address these challenges,we propose theMolGraph-xLSTMmodel,
which integrates the extended Long Short-Term Memory (xLSTM) archi-
tecture with molecular graphs. Traditionally, Long Short-Term Memory
(LSTM) networks have been widely used in Natural Language Processing
(NLP) tasks to capture sequential data representations18. With its gating
mechanisms, LSTM effectively decides which information to retain or
discard, enabling it to manage long-range dependencies. Thus, we incor-
porateLSTMintoourmodel to address the limitations ofGNNs inhandling
long-range information. Recently, an improved version, xLSTM, was
introduced19. xLSTM includes two additional modules, scalar Long Short-
TermMemory (sLSTM) andmatrix Long Short-TermMemory (mLSTM),
which expand the storage capacity of the original LSTM. Experimental
results have shown favorable performance compared to two state-of-the-art
architectures: Transformer20 and State Space Models21. For this reason, we
chose this xLSTMmodel in our framework.

We utilize both atom-level and motif-level molecular graphs in our
approach (Fig. 1). In the atom-level graph, each node represents an atom,
and each edge represents a bondwithin themolecule. Themotif-level graph,
on the other hand, is a partitioned version of the atom-level graph, where
each node represents a substructure (such as an aromatic ring) within a
molecule. This results in a significantly simplified representation compared
to the atom-level graph. Such simplification aids the model in learning
features linked to local structures, as similar local motifs, from a functional
group perspective, tend to impart similar properties to molecules22. Fur-
thermore, the simplified motif-level graph, by reducing complexity and
eliminating cycle structures, becomes closer to sequential data. This struc-
tural simplification aligns well with the strengths of xLSTM, which is
inherently designed to handle sequential information, making the motif-
level graph more suitable for processing with xLSTM.

However, relying solely on the motif-level graph would not capture all
molecular details effectively, and motif partitioning itself demands precise
segmentation. Therefore, we incorporate both atom-level and motif-level
graphs in our model. For the atom-level representation, we introduce a
GNN-based xLSTM with jumping knowledge23. Here, the GNN collects
local information from the atom-level graph, and jumping knowledge
aggregates features from multiple GNN layers, producing enriched node
representations as inputs to xLSTM. By combining features from both the
atom- and motif-level graphs, we constructed a comprehensive molecular
representation for accurate property prediction.

Additionally, we integrate the Multi-Head Mixture-of-Experts
(MHMoE) module24 to enhance the predictive performance of our model.
The sparsemixture-of-experts (SMoE)25 framework has been demonstrated
as an effective method for scalingmodels while maintaining computational
efficiency by dynamically assigning inputs to different expert networks. This
allows the input features to be processed by multiple experts, enabling
diverse perspectives and improving the quality of learned representations.
Building upon SMoE, the MHMoE architecture introduces further
advancements by enhancing the usage of experts and promoting a more
fine-grainedunderstandingof input features. By incorporating theMHMoE
module, our model is able to generate more expressive feature representa-
tions, which enhances its predictive accuracy.

The contributions of our work are as follows:
• Adaptation of xLSTM to dual-level molecular graph representation:

We design a unified architecture that applies the xLSTM to both atom-
level and motif-level molecular graphs. At the atom level, xLSTM
follows GNN layers to enhance local features with long-range context.
At the motif level, the graph is simplified through functional
substructure decomposition, resulting in a sequential-like topology
that further aligns with xLSTM’s modeling strengths. This dual-level
application enables comprehensive capture of fine-grained and high-
level structural dependencies, substantially boosting prediction
performance across 21 molecular property benchmarks.

• Integration ofMHMoE for enhanced prediction:We incorporated the
MHMoE module into our framework, which dynamically assigns
input features to different expert networks, enabling diverse feature
processing and improving predictive accuracy. This architecture
refines feature representations through fine-grained expert activation.

• Case study analysis for model interpretability: We conducted a case
study to investigate the substructures assigned the highest weights by
the network, demonstrating that the atom-level and motif-level
information are complementary. By cross-referencing with known
literature, we identified strong correlations between the highlighted
substructures and specific molecular properties, underscoring the
ability of the model to implicitly learn biologically relevant
information.

Results
Performance evaluation on MoleculeNet
MolGraph-xLSTM demonstrates improved performance across both clas-
sification and regression datasets, highlighting its robustness in handling
diverse molecular property prediction tasks. In the classification tasks
(Tables 1 and S1),MolGraph-xLSTMachieves particularly strong results on
the Sider datasets. For the Sider dataset,MolGraph-xLSTMachieves an area
under the receiver operating characteristic curve (AUROC) of
0.697 ± 0.022, representing a 5.45% improvement over the best baseline, FP-
GNN (0.661 ± 0.014).

For regression datasets (Table 2 and Table S2), MolGraph-xLSTM
delivers competitive performance across multiple benchmarks. On the
ESOL dataset, MolGraph-xLSTM achieves a Root Mean Squared Error
(RMSE) of 0.527 ± 0.046, reflecting a 7.54% improvement over the best-
performing baseline, HiGNN (0.570 ± 0.061). On the FreeSolv dataset,
MolGraph-xLSTM achieves the lowest RMSE of 1.024 ± 0.076 and the
highest Pearson Correlation Coefficient (PCC) of 0.960 ± 0.006, demon-
strating its reliability in regression tasks.

Performance evaluation on TDC benchmarks
MolGraph-xLSTM exhibits consistent performance across both classifica-
tion and regression tasks in the TDC benchmark, indicating its capacity to
generalize across diverse pharmacological endpoints. In classification tasks
(Tables 3 and S3),MolGraph-xLSTMachieves the highest average AUROC
(0.866) and area under the precision-recall curve (AUPRC) (0.861) across
nine classification datasets, slightly outperforming competitive baselines

Fig. 1 | Comparison of atom-level and motif-level
graph representations. a Atom-level graph repre-
sentation, where each atom is represented as a node
and each chemical bond as an edge. bMotif-level
graph representation, where substructures are
represented as single nodes, resulting in a graph that
is less complex than the atom-level graph.

(a) atom-level graph (b) motif-level graph
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such as DMPNN (AUROC: 0.861, AUPRC: 0.853) and FPGNN (AUROC:
0.859, AUPRC: 0.856).

MolGraph-xLSTM achieves noticeable improvement on the Bioa-
vailability dataset, whichmeasures the fraction of an administered drug that
reaches systemic circulation. It obtains an AUROC of 0.684 ± 0.118, com-
pared to 0.666 ± 0.035 from the best-performing baseline (FPGNN), and
maintains a competitive AUPRC of 0.872 ± 0.057.

In regression tasks (Tables 4 and S4), MolGraph-xLSTM achieves
leadingor comparable results. It obtains the lowestRMSEonboth theCaco2
(0.358 ± 0.015) and PPBR (11.772 ± 0.200) datasets, reflecting 11.17% and
3.81% improvements over the next-best models. Additionally, it achieves
the highest PCC of 0.861 ± 0.011 on Caco2 and 0.644 ± 0.019 on PPBR.

Interpretability analysis
To evaluate the interpretability of MolGraph-xLSTM, we visualized the
motifs and atomic sites with the highest model-assigned weights from the
motif-level and atom-level networks. By applying max-pooling to the out-
put of the xLSTM layer, we identified the features with the greatest con-
tributions, providing us insight into the substructures and atomic sites that
are most closely related to the properties of a particular molecule.

In Fig. 2, all three molecules highlight the—SO2NH—(sulfonamide)
substructure, a chemical motif known to be strongly linked with adverse
reactions such as Type IV hypersensitivity, blurred vision, and other side
effects26. These adverse effects correspond to side effects labeled in the Sider
dataset, including Eye Disorders, Immune System Disorders, and Skin and
Subcutaneous Tissue Disorders, demonstrating an alignment between the
highlighted substructure and known biological properties of sulfonamides.
Additionally, molecules like Fig. 2e, f emphasize atomic sites beyond the
sulfonamide motif. In Fig. 2f, the highlighted N atom resides within the
hydrazine group (− NH − N =), which is known to exert toxic effects on
multiple organ systems, including neurological, hematological, and
pulmonary27. This suggests that the atom-level network captures additional
fine-grained features that complement the broader motif-level representa-
tions, demonstrating the capacity of the model to integrate complementary
information from both atom-level and motif-level networks.

We further conducted an analysis on the BBBP dataset (blood-brain
barrier permeability), a crucial property in evaluating the ability of a drug to
cross the blood-brain barrier and target Central Nervous System (CNS)
disorders. Accurate prediction of this property is essential for developing
CNS-targeted therapies. For each molecule in the dataset, the substructure
with the highest weight assigned by MolGraph-xLSTM was identified.
These substructures were further analyzed using a random forestmodel28 to
determine their relationship with BBBP labels.

Fig. 3 illustrates the importance scores of substructures as determined
by the random forest model. Among these, the substructure − CC(= O)
O − , containing a carboxylic group (− C(= O)O −), achieved the highest
importance score. This finding is supported by previous studies29,30, which
have highlighted the role of the carboxylic group in influencing BBBP.

Ablation study
Effect of different designedmodules. We conducted an ablation study
to evaluate the contributions of different components in MolGraph-
xLSTM, including the atom-level branch (MolGraph-xLSTM (Atom-
Level)), motif-level branch (MolGraph-xLSTM (Motif-Level)), multi-
head mixture-of-experts module (MolGraph-xLSTM(w/o MHMoE)),
and the GNN component within the atom-level branch (MolGraph-
xLSTM (w/o GNN)). The results, presented in Table S5 and Fig. S1,
highlight the importance of these components in achieving superior
performance.

The full MolGraph-xLSTM model consistently outperformed all
ablation variants, highlighting the effectiveness of its integrated architecture.
Notably, evenwith only the atom-level branch,MolGraph-xLSTMachieved
competitive performance, outperforming other atom-level graph-based
models like DMPNN and DeeperGCN, as well as TransFoxMol, a hybrid
model integrating GNN and Transformer. These results validate the designT
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of our hybrid GNN and xLSTM framework as an effective approach for
molecular representation learning. For the motif-level branch, it also out-
performed other baselines on the Sider dataset, including HiGNN, which
also utilizes motif-level graphs, in the classification task. However, its per-
formance on the regression dataset was suboptimal. This suggests that the
motif-level initialization features utilized in our model may not sufficiently
capture the granularity required for regression tasks, highlighting oppor-
tunities for further improvement.

The MHMoE module contributed to the model performance, particu-
larly on the FreeSolv dataset. Removing the MHMoE module resulted in an
RMSE increase from 1.024 to 1.158, closely aligning with the performance of
the atom-level-only variant, indicating its role in improving regression per-
formance. As shown in Figs. S2 and S3, the activationmaps demonstrate that
all experts actively contribute to the task, indicating effective load balancing.
Thisbalancedactivationensuresno single expert is overwhelmed, allowing the
network to fully leverage the diverse expertise of all experts.

Among the four components, the GNN had the least impact on the
Sider dataset but showed a notable influence on FreeSolv. Overall, the
ablation study demonstrates that the atom- and motif-level branches pro-
vide complementary insights into molecular representation learning, and
their integration enhances the model performance. This highlights the
effectiveness of the proposed approach for molecular modeling.

Impact of node input order for molecular graphs on performance.
xLSTM is originally designed for sequence data, which inherently has a
fixed order. However, graph data does not have this property, as it
can start from any node (Fig. 4). In our initial tests, we used the default
node order provided by RDKit. In this section, we evaluate the effect of
using a randomized starting node during training. Specifically, we gen-
erate the node sequence by performing a Depth-First Search (DFS)
starting from a randomly selected initial node in the graph for each
training instance.

Fig. S4 compares the performance of MolGraph-xLSTM trained with
the RDKit default node order and the DFS random order on Sider and
Freesolv datasets. On the Sider dataset (Fig. S4a), themodel trainedwith the
RDKit default order slightly outperformed the DFS random order in
both AUROC and AUPRC metrics. Similarly, on the FreeSolv dataset
(Fig. S4b), theRMSE andPCCmetrics indicate amarginal advantage for the
RDKit default order. Despite these differences, the results show that
MolGraph-xLSTM achieves competitive performance with both node
orderings. This suggests that the model is robust to changes in the input
node sequence.

One possible explanation for this robustness is that although the initial
node varies, the DFS imposes a relatively consistent traversal pattern across
graphs. As a result, the relative positions of most nodes, particularly those
within local substructures, tend tobepreserved regardlessof the startingpoint.
This consistency likely helps maintain the stability of input sequences and
contributes to the model’s training stability and reproducibility across runs.

Long-range information retention via gate-based analysis
To provide direct evidence that the proposed xLSTM architecture captures
long-rangedependencies in themolecular graph,weperformedagate-based
memory retentionanalysis. This analysis is basedon thedecaymatrixD[t, s],
which measures howmuch the hidden state at timestep s contributes to the
representation at timestep t through the internal gating mechanism of
the model.

Formally, let ik and fk denote the input and forget gate activations at
timestep k, respectively. The element D[t, s] is defined as:

D½t; s� ¼ is �
Qt

k¼sþ1
f k; 0≤ s≤ t;

0; s > t;

8<
:

where is determines howmuch new information is introduced at timestep s,
and

Qt
k¼sþ1f k quantifies the proportion of that information retained by the

forget gates from s+ 1 to t. This formulation canbe interpreted as ameasure
of temporal attention or memory retention within the xLSTM.

As an illustrative case study, we analyzed themolecule C1=C[C@@H]
([C@@H]2[C@H]1[C@@]3(C(=C([C@]2(C3(Cl)Cl)Cl)Cl)
Cl)Cl)Cl from the FreeSolv dataset.We examinedD[22, s], representing
the influence of all previous timesteps s ≤ 22 on the final atom. The resulting
memory retention plot is shown in Fig. 5.

Interestingly, the retention profile does not decay monotonically with
temporal distance. Instead, multiple distant timesteps (e.g., steps 0-15)
exhibit substantial influence, in some cases exceeding that of more recent
steps.This suggests that xLSTMselectivelypreserves information fromnon-
adjacent atomic contexts, adapting its retention patterns to the molecular
structure and contextual requirements.

These findings provide direct evidence that xLSTM overcomes the
short-range dependency bias inherent in standardGNNs, enabling effective
modeling of non-local interactions across distant motifs or atoms.

Hyperparameter analysis
Performance of MolGraph-xLSTM with varying numbers of experts
and heads in theMHMoE. The heatmaps in Fig. S5 reveal the impact of
the number of experts and heads in the MHMoE module on the model’s
performance for the Sider and FreeSolv datasets. For both datasets,
configurations with two experts generally perform poorly, while
increasing the number of experts to 4 or 6 yields better results. Beyond 6
experts, no significant improvements are observed, suggesting that
additional experts may become redundant for these datasets, as they do
not process substantially different information.

For the Sider dataset,measured byAUROC, an increase in the number
of heads consistently enhances performance, indicating that more heads
improve themodel’s ability to handle classification tasks. In contrast, for the
FreeSolv dataset, measured by RMSE, increasing the number of heads
beyond 8 leads to a noticeable decline in performance, particularly when the

Table 2 | Performance evaluation on regression datasets from MoleculeNet

ESOL Lipo Freesolv

RMSE PCC RMSE PCC RMSE PCC

FP-GNN 0.658 ± 0.006 0.946 ± 0.006 0.610 ± 0.028 0.861 ± 0.012 1.106 ± 0.195 0.951 ± 0.023

DeeperGCN 0.615 ± 0.044 0.954 ± 0.008 0.645 ± 0.048 0.842 ± 0.026 1.261 ± 0.022 0.938 ± 0.007

DMPNN 0.575 ± 0.073 0.957 ± 0.015 0.553 ± 0.033 0.842 ± 0.026 1.211 ± 0.120 0.945 ± 0.007

HiGNN 0.570 ± 0.061 0.959 ± 0.013 0.563 ± 0.041 0.882 ± 0.018 1.068 ± 0.092 0.956 ± 0.007

TransFoxMol 0.930 ± 0.261 0.917 ± 0.047 0.652 ± 0.033 0.855 ± 0.011 1.225 ± 0.155 0.945 ± 0.007

BiLSTM 0.743 ± 0.038 0.931 ± 0.012 0.779 ± 0.031 0.765 ± 0.026 1.398 ± 0.070 0.923 ± 0.015

AutoML 0.843 ± 0.062 0.910 ± 0.023 0.792 ± 0.043 0.748 ± 0.031 1.235 ± 0.220 0.941 ± 0.024

MolGraph- xLSTM (Ours) 0.527 ± 0.046 0.965 ± 0.010 0.550 ± 0.026 0.888 ± 0.011 1.024 ± 0.076 0.960 ± 0.006

Best results are shown in bold.
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number of heads reaches 16. This decline is likely due to overfitting, as
FreeSolv is a relatively small dataset. These observations highlight the need
to balance the number of experts and heads based on the task and dataset
size, as excessive complexity can negatively affect performance.

Performance of MolGraph-xLSTM with varying number of
jump layers. The results in Fig. S6 illustrate the impact of varying the
number of jump layers on the performance of MolGraph-xLSTM across
the Sider and FreeSolv datasets. On the Sider dataset, the AUROC shows
relatively small fluctuations, with the maximum value of 0.697 observed
at 4 jump layers and the minimum value of 0.673 at 8 jump layers,
representing a difference of 3.4%. In contrast, for the FreeSolv dataset, the
impact of jump layers is more pronounced. The RMSE increases sig-
nificantly from its lowest value of 1.042 at 4 jump layers to its highest
value of 1.326 at 8 jump layers, a difference of 27%. The decline in
performance at higher numbers of jump layers suggests that the inherent
oversmoothing problem in GNNs may lead to the integration of overly
smoothed deep features, which can negatively impact the performance of
tasks requiring precise regression predictions.

Discussion
In this study, we propose a molecular representation learning framework
that leverages xLSTM for both atom-level and motif-level graphs, pro-
viding a novel approach to molecular property prediction. Additionally,
we incorporate the MHMoE module into our framework, which dyna-
mically assigns input features to diverse expert networks, enhancing
predictive accuracy through fine-grained feature activation. The effec-
tiveness of ourmodel is demonstrated acrossmultiplemolecular property
prediction datasets, as presented in the “Results” section. Additional
results for other evaluation metrics are provided in the supplementary
material.

Our framework integrates atom-level and motif-level representations,
and the ablation study highlights the independent effectiveness of these two
levels. Specifically, both the atom-level and motif-level networks achieve
competitive results individually in classification tasks (section “Effect of
different designed modules”). However, the motif-level network exhibits a
noticeable decline in regression performance. This limitationmay be due to
the initialization features of the motif-level graph, which rely on basic
substructure properties, such as the counts of specific atoms (e.g., carbon) or
bond types (e.g., single bonds). While these features capture useful infor-
mation for classification tasks, they may lack the precision required for
accurate regression predictions.

Regarding motif decomposition, certain complex molecules, such as
polycyclic compounds with fused ring systems, can introduce structural
complexity and pose challenges for decomposition. Nevertheless, the
adopted decomposition strategy, ReLMole, applies uniform rules across all
molecules, ensuring consistent motif representations regardless of topolo-
gical intricacy. This consistency helps preserve the model’s generalization
ability, even when handling multi-ring systems.

We also note some trade-offs between different evaluationmetrics. For
example, whileMolGraph-xLSTM generally achieves strong ranking-based
performance across classification datasets, discrete metrics such as F1 or
accuracy may be lower on certain datasets, reflecting conservative prob-
ability predictions near classification thresholds. Similarly, in regression
tasks, RMSE and MAE values may show subtle differences, indicating the
model’s ability to control large errors while maintaining a centralized pre-
diction distribution. These observations suggest opportunities for further
calibration or representation refinement.

In addition to quantitative results, our interpretability analysis (section
“Interpretability analysis”) highlights the strengths of the model. By ana-
lyzing the high-weight substructures identified by the model, we observed
biologically meaningful correlations between the recognized substructures
and specific molecular properties. This demonstrates that the model not
only achieves competitive predictive performancebut also provides valuable
interpretability. Such interpretability is crucial for practical applications, as itT
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can assist in drug design by guiding the identification of key molecular
features associated with desired properties.

To further assess the practical utility of our model, we provide a
comparison ofGPUmemoryusage, training time, and inference timewith

FP-GNN in the supplementarymaterial (Table S6). These results indicate
that, despite its architectural complexity, our model is computationally
efficient in practice and well-suited for large-scale molecular
screening tasks.

Table 4 | Performance evaluation on regression datasets from TDC

Caco2 PPBR LD50

RMSE PCC RMSE PCC RMSE PCC

FP-GNN 0.408 ± 0.056 0.835 ± 0.027 12.238 ± 1.194 0.614 ± 0.068 0.911 ± 0.040 0.544 ± 0.046

DeeperGCN 0.624 ± 0.034 0.470 ± 0.112 14.634 ± 0.392 0.305 ± 0.040 0.951 ± 0.063 0.472 ± 0.109

DMPNN 0.487 ± 0.103 0.796 ± 0.023 12.497 ± 0.230 0.588 ± 0.031 0.859 ± 0.035 0.608 ± 0.033

HiGNN 0.457 ± 0.064 0.794 ± 0.043 13.247 ± 0.724 0.554 ± 0.056 0.941 ± 0.038 0.523 ± 0.034

TransFoxMol 0.596 ± 0.082 0.719 ± 0.071 13.638 ± 0.349 0.512 ± 0.027 0.922 ± 0.053 0.538 ± 0.066

BiLSTM 0.611 ± 0.051 0.528 ± 0.103 13.930 ± 0.284 0.416 ± 0.041 0.980 ± 0.029 0.446 ± 0.038

AutoML 0.403 ± 0.014 0.820 ± 0.009 13.565 ± 0.139 0.471 ± 0.016 0.841 ± 0.011 0.622 ± 0.012

MolGraph-xLSTM (ours) 0.358 ± 0.015 0.861 ± 0.011 11.772 ± 0.200 0.644 ± 0.019 0.871 ± 0.026 0.600 ± 0.026

Best results are shown in bold.
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Fig. 2 | Visualization of the highest-weighted motifs and atoms identified by the model for molecules from the Sider test set containing the SO2NH substructure. a–c
Motifs with the highest attention weights from the motif-level branch. d–f Atoms with the highest attention weights from the atom-level branch.

Fig. 3 | Importance scores of substructures identified by MolGraph-xLSTM on
the BBBP dataset. For each molecule, the substructure with the highest model-
assigned weight was analyzed using a random forest model to determine its

relationship with BBBP labels. The substructure − CC( = O)O − , containing a
carboxylic group, received the highest importance score (highlighted by the blue
dashed box).
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Methods
Datasets and evaluation
MoleculeNet. MoleculeNet31 is a widely used benchmark designed to
evaluate machine learning models onmolecular property prediction.We
selected a subset ofMoleculeNet datasets covering both classification and
regression tasks.

For dataset splitting, we adopted different strategies based on task type.
For single-task classification datasets, we employed scaffold splitting to
ensure that molecules with different core scaffolds are separated into
training, validation, and test sets. This strategy evaluates model general-
ization to novel chemical structures. For multi-task classification and
regressiondatasets,weused randomsplitting to avoiddata imbalance due to
the relatively small dataset sizes.

Each dataset was split into training, validation, and test sets using an
8:1:1 ratio. The model was trained on the training set and evaluated on the
validation set after each epoch. The best-performing model on the valida-
tion set was then used to reportmetrics on the test set. Each experiment was
repeated three times, and we report themean and standard deviation of the
results.

Therapeutics data commons (TDC). We further evaluated ourmodel on
benchmark datasets from the TDC32.We adopted the official scaffold-based
splits provided by TDC, where each dataset is partitioned into training,
validation, and test sets in a 7:1:2 ratio. Each dataset includes five predefined
splits. No additional resplitting or preprocessing was applied.

Evaluation metrics. For classification tasks, we used AUROC and
AUPRCas evaluationmetrics. For regression tasks,we reportedRMSEand
PCC.Detailed dataset information is summarized in Tables S7 and S8, and
training hyperparameters are listed in Tables S9 and S10.

Hyperparameter tuning. For our proposed model, we performed grid
search on the validation set to tune the hyperparameters, including the
power coefficient (searched over {1, 2, 4}), hidden dimension ({64, 128,
256}), number of experts ({4, 8}), number of attention heads ({4, 8, 16}),
and the number of expert layers ({1, 2, 3}). For baseline models, we
followed the original implementations and used the reported hyper-
parameters when available; if not explicitly provided, we adopted values
consistent with those used on similar datasets in the literature.

Baselines
We compare our proposedmethod against seven baselinemodels: Directed
Message Passing Neural Network (DMPNN), Fingerprints and Graph
Neural Networks (FPGNN), Hierarchical Informative Graph Neural Net-
works (HiGNN), Deeper Graph Convolutional Network (DeeperGCN), a
transformer-based framework with focused attention (TransFoxMol), a
sequence-based BiLSTM model, and an automated machine learning
pipeline (AutoML). Each baseline represents a distinct approach to mole-
cular representation learning or model optimization.
• FPGNN10: combinesmolecular fingerprints with features derived from

graph attention networks, capturing both traditional cheminformatics
features and structural insights from graphs.

• DeeperGCN7: a pure graph neural network based on GCN, designed
for deeper architectures to enhance feature extraction.

• DMPNN6: optimizes message passing by centering aggregation on
bonds insteadof atoms, effectively encoding the chemical structure and
avoiding redundant loops.

• HiGNN33: learns molecular representations at both the atomic level
and the level of substructures using hierarchical GNNs.

• TransFoxMol12: integrates the power of GNNs and transformers to
capture global and local molecular features efficiently.

• BiLSTM34: a sequence-based model that processes SMILES strings
using Bidirectional LSTM layers to capture sequential molecular
patterns.

• AutoML: a model selection and optimization pipeline based on auto-
mated machine learning techniques. It ensembles multiple algorithms
and performs hyperparameter tuning automatically. In our experi-
ments, we used H2O AutoML35, which includes tree-based models
such as XGBoost, Gradient Boosting Machine (GBM), and stacked
ensembles.

xLSTM
A standard LSTM updates its cell state ct and hidden state ht through gated
mechanisms:

ct ¼ it � zt þ f t � ct�1; ð1Þ

ht ¼ ot � tanhðctÞ; ð2Þ

where it, ft, and ot denote the input, forget, and output gate vectors,
respectively, and zt is the candidate state vector. These gates are para-
meterized by sigmoid activations, which regulate information flow across
time steps.

Fig. 4 | Examples of different atom input orders
for molecular graphs in xLSTM. a RDKit default
order: atoms are ordered as per the default output
from RDKit. b DFS order: atoms are ordered based
on a DFS traversal of the molecular graph.

(a) RDKit Default Order (b) DFS order

Fig. 5 |Memory retention.Gate-basedmemory retention plot at timestep 22 for the
molecule C1=C[C@@H]([C@@H]2[C@H]1[C@@]3(C(=C([C@]2(C3(Cl)
Cl)Cl)Cl)Cl)Cl)Cl from the FreeSolv dataset.
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The xLSTM introduces two enhanced variants, sLSTM and mLSTM.
Both replace the sigmoid gating functions in it and ftwith exponential gates,
improving stability and extending effective memory:

it ¼ expðw>i xt þ r>i ht�1 þ biÞ; ð3Þ

f t ¼ expðw>f xt þ r>f ht�1 þ bf Þ; ð4Þ

where wi, wf, ri, and rf are weight vectors, and bi, bf are bias scalars.
Furthermore, mLSTM extends the memory capacity by upgrading the

vector-valued cell state ct 2 Rd into a matrix-valuedmemory Ct 2 Rd × d ,
enabling richer storage and interactions:

Ct ¼ It � Zt þ Ft � Ct�1; ð5Þ

where It, Ft, and Zt are matrix analogs of the input, forget, and candidate
states, respectively.

The xLSTM block is formed by stacking alternating sLSTM and
mLSTM layers, and multiple blocks are combined to construct the full
xLSTM architecture. This design enhances the model’s ability to capture
long-range dependencies in sequential data.

Model architecture
Construction of atom- and motif-level molecular graphs. Starting
from the SMILES string of a molecule, we convert it into an atom-level
molecular graph Gatom = {Vatom, Eatom} using the RDKit tool36, where
Vatom ¼ fvatomp g represents the set of nodes, and Eatom ¼ fðvatomp ; vatomq Þg
represents the set of edges. Each node vatomp corresponds to an atom and is
initialized with 11 atomic features, including atomic number, chirality,
and aromaticity (Table S11). Likewise, each edge ðvatomp ; vatomq Þ represents
a bond and includes features such as bond type, stereochemistry, and
conjugation (Table S12).

Based on the atom-level graph, we then generate a motif-level graph
Gmotif = {Vmotif, Emotif} through ReLMole, as described by ref. 37. In
ReLMole, three types of substructures are considered as motifs: rings, non-
cyclic functional groups, and carbon-carbon single bonds. In this motif
graph, each node represents amotif and is initializedwith 12 features, while
each edge represents the connection between two motifs. Details of the
initial features are provided inTable S13 in the Supplementary Information.

Both node and edge features are embedded into a d-dimensional fea-
ture vector. Specifically, we denote the input node feature matrix of the
atom-level and motif-level graphs as H0

atom 2 RNatom × d and
H0

motif 2 RNmotif × d , respectively, where Natom is the number of atoms and
Nmotif is the number of motifs. The input feature vector of the edge in the
atom-level graph between nodes p and q is epq 2 Rd .

Feature extraction on the atom-level graph
Graph neural network. In the GNN component, we employ a simplified
message-passingmechanismthat incorporates both residual connections7 and
virtual nodes14. At each GNN layer, the process starts by applying Layer
Normalization (LN) to the node representations, followed by a ReLU acti-
vation. To facilitate the exchange of global information across the graph, we
introduce virtual nodes, which aggregate the features of all nodes in the graph.
The resulting virtual node information is then added to the individual node
representations. The operations can be formally expressed as:

h l
p ¼ ReLU LNðhlpÞ

� �
þ vl; ð6Þ

vl ¼
XNatom

k¼1
hlk; ð7Þ

whereh l
p 2 Rd denotes the hidden state vector of node p at layer l, and

v l represents the virtual node vector.

Next, the message-passing step occurs, where the information from
neighboring nodes and the edges connecting them is aggregated. For each
edge epq, a message is computed as:

mpq ¼ h l
q þ epq:

The messages from all neighboring nodes N ðpÞ are summed and used to
update the node representation through an MLP:

h lþ1
p ¼ MLP

X
q2N ðpÞ

mpq

0
@

1
A: ð8Þ

Finally, a residual connection is applied, adding the original node
representation from layer l to the updated node representation at layer
l + 1: h lþ1

p  h lþ1
p þ hlp:

Jumping knowledge. After the GNN, we apply a jumping knowledge
mechanism to aggregate information from all GNN layers. This allows each
node feature to encapsulate representations from both shallow and deep
layers. The operation is defined as:

hGNNp ¼ CONCAT h1pA
T
1 ; h

2
pA

T
2 ; . . . ; h

l
pA

T
l

� �
; ð9Þ

where hGNNp 2 Rdskip × njk represents the aggregated feature vector of
node p from the GNN, andAT

l 2 Rd × dskip is a weight matrix that maps the
layer-specific node feature hlp 2 Rd to a lower-dimensional space. In our
experiments, we evaluate the impact of the number of jumping knowledge
layers njk on performance.

Using xLSTM to capture long-range information. In this section, we utilize
xLSTM to capture long-range dependencies for each node in the graph.We
treat the output of the GNN, HGNN 2 RNatom × ðdskip × njkÞ, as a sequence of
length Natom, where each row corresponds to one node. This sequence is
then passed through the xLSTM model, producing an output
HxLSTM

atom 2 RNatom × ðdskip × njkÞ, as follows:

HxLSTM
atom ¼ xLSTMðHGNNÞ: ð10Þ

Motif-level feature extraction. The motif-level graph is processed
directly by the xLSTMmodel.We firstmap the input featureH0

motif to the
dimension dskip × njk, matching the output dimension of the atom-level
graph. This mapped feature is then passed through the xLSTMmodel to
produce an output HxLSTM

motif 2 RNmotif × ðdskip × njkÞ:

HxLSTM
motif ¼ xLSTMðH0

motif Þ: ð11Þ
PerformaMHMoEon the features.Wefirst apply a globalmax-pooling
operation to HGNN, HxLSTM

atom , and HxLSTM
motif to obtain three graph-level fea-

ture vectors: fGNN, f
xLSTM
atom , and fxLSTMmotif . These are summed to produce the

final molecular feature fout. Subsequently, an MHMoEmodule is applied
to enhance representation learning.

For any input feature vector f 2 Rhmoe × d , we first partition it into hmoe

segments f1; f2; . . . ; fhmoe
, eachof dimension d. The output of theMoE layer

for a given segment fs is computed as:

fMoE
s ¼

Xn
i¼1

Gðf sÞi Eiðf sÞ; ð12Þ

where Ei denotes the i-th expert, implemented as a feedforward network
(FFN) with a configurable number of fully connected layers and nonlinear
activations. The gating function Gðf sÞi assigns a weight to each expert:

Gðf sÞ ¼ softmax TopKðgðf sÞ þDnoise;KÞ
� �

; ð13Þ
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where g(fs) computes raw expert scores and Dnoise introduces stochasticity
during training. The TopK function selects the K highest-scoring experts:

TopKðv;KÞi ¼
vi if vi is among the top K elements of v;

�1 otherwise:

�

ð14Þ

Finally, the outputs of all segments are concatenated to form the
MHMoE output:

fMHMoE ¼ CONCATðfMoE
1 ; fMoE

2 ; . . . ; fMoE
hmoe
Þ: ð15Þ

This design enables each segment of the input to be routed to the top-K
most appropriate experts, allowing specialization of different experts for
processing distinct types of molecular features.

Overall architecture. The overall architecture is illustrated in Fig. 6. We
perform feature extraction on both the atom-level graph and the motif-
level graph. For the atom-level graph, wefirst apply theGNN, followed by
a skip connection that aggregates the outputs from all GNN layers,
resulting in HGNN. This aggregated output is then passed through the
xLSTMmodule, producingHxLSTM

atom (section “Feature extraction on atom-
level graph”). Next, global pooling is applied separately to HGNN and
HxLSTM

atom to obtain graph-level features from theGNN (fGNN) and from the
xLSTM (fxLSTMatom ). These two features are then summed to generate
fatom 2 Rdskip × njk , representation of the feature of the atom-level graph.

The motif-level graph is fed directly into the xLSTM model, yielding
HxLSTM

motif (section “Motif-level feature extraction”). We obtain a graph-level
feature fmotif 2 Rdskip × njk for the motif-level graph by applying global
pooling on HxLSTM

motif . Then, fatom and fmotif are summed to form the final
molecular feature, which is passed through the MHMoE module (section
“Perform a multi-head mixture-of-experts on the features”) to further
enhance the representation. Finally, the resulting feature is passed through
an MLP to predict the molecular property:

fout ¼ MHMoEðfatom þ fmotif Þ; ð16Þ

output ¼ MLPðfoutÞ; ð17Þ

where output 2 RK , and K represents the number of tasks.

Loss function
To optimize themodel, we applied two loss functions: the task lossLtask and
the supervised contrastive loss (SCL)LSCL

38. The task loss guides themodel
to minimize the error between the true label y and the predicted value ŷ,
while the SCL encourages the feature embeddings fout to have samples with
the same label close to each other in the embedding space, and samples with
different labels far apart.

Task loss. For classification tasks, we use the cross-entropy loss, which
measures the difference between the true label yi and the predicted
probability distribution ŷi. This loss is formulated as:

Lclassification
task ¼ �

XK
k¼1

yi;k logðŷi;kÞ; ð18Þ

where yi,k represents the true label for task k, and ŷi;k is the predicted
probability for task k.

For regression tasks, we adopt the Mean Squared Error (MSE) loss,
which captures the discrepancy between the predicted value ŷi and the true
value yi. The MSE loss is expressed as:

Lregression
task ¼ ðyi � ŷiÞ2: ð19Þ

SCL for the classification task. We apply the SCL to all features: fout,
fatom, and fmotif. Here, we illustrate the calculation using fout. First, we
normalize fout as:

f normout ¼
fout

k foutk2 þ ϵ
; ð20Þ

k foutk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

d
f 2out;d

q
; ð21Þ

where ϵ is a small constant to prevent numerical instability, and d
indexes the dimensions of the feature vector.

Next, the SCL LSCL is computed using the normalized feature:

LSCL ¼
X
i2I

�1
jPðiÞj

X
p2PðiÞ

log
expðf normout;i � f normout;p =τÞP

a2AðiÞ expðf normout;i � f normout;a =τÞ
; ð22Þ

where i indexes the anchor molecule, P(i) denotes the set of samples
sharing the same label as the anchor, A(i) represents the set of all sample
indices excluding i, and τ is the temperature parameter.
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SCL for the regression task. For regression tasks, positive samples are
defined based on the Euclidean distance between labels of all sample pairs
in the training set. Let dmed and dmax denote the median and maximum
distances, respectively. A sample is considered positive for a given anchor
if its distance to the anchor is less than dmed. Additionally, weights are
assigned to reflect the relative importance of samples: closer positive
samples are given higher weight, and farther negative samples are
weighted more heavily. The SCL is formulated as:

LSCL ¼
X
i2I

�1
jPðiÞj

X
p2PðiÞ

wp log
expðf normout;i � f normout;p =τÞP

a2AðiÞwa expðf normout;i � f normout;a =τÞ
; ð23Þ

with weights defined as:

wp ¼
dmed � dip

dmed
; ð24Þ

wa ¼ exp
dia � dmed

dmax � dmed

� 	
; ð25Þ

where dip and dia are the Euclidean distances between sample i and
sample p, and between sample i and sample a, respectively.

Overall loss function. The total loss for training the model is the sum of
the task-specific loss and the SCL:

Ltotal ¼ Ltask þ LSCL: ð26Þ

Data availability
The datasets used in this study are sourced from MoleculeNet (https://
moleculenet.org/) and the TDC (https://tdcommons.ai/). The processed
versions of these datasets used inour experiments are available onGitHub at
https://github.com/syan1992/MolGraph-xLSTM/tree/main/datasets. The
source data underlying all figures are provided in Supplementary Data 1.

Code availability
The source codes for MolGraph-xLSTM are freely available on GitHub at
https://github.com/syan1992/MolGraph-xLSTM.
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