Table 1 Comparison of CycleGPT-HyperTemp and other models
From: Exploring the macrocyclic chemical space for heuristic drug design with deep learning models
Methods | Validity (%) | Macrocycle_ratio (%) | Novel_unique_macrocycles (%) |
---|---|---|---|
HMM | 3.29 ± 0.030 | 0.18 ± 0.021 | 0.18 ± 0.021 |
N_gram | 10.35 ± 0.035 | 2.85 ± 0.029 | 2.57 ± 0.013 |
Char_RNN | 56.37 ± 0.074 | 56.15 ± 0.056 | 11.76 ± 0.022 |
AAE | 14.82 ± 0.265 | 13.00 ± 0.137 | 10.86 ± 0.094 |
VAE | 22.31 ± 0.183 | 20.19 ± 0.123 | 14.14 ± 0.250 |
ORGAN | 6.46 ± 0.151 | 0 ± 0 | 0 ± 0 |
MolGPT | 100 ± 0 | 0 ± 0 | 0 ± 0 |
Llamol | 76.10 ± 0.209 | 75.29 ± 0.192 | 38.13 ± 0.125 |
MTMol-GPT | 71.95 ± 0.097 | 70.52 ± 0.030 | 31.09 ± 0.199 |
cMol-GPT | 7.87 ± 0.301 | 6.26 ± 0.209 | 6.25 ± 0.197 |
CycleGPT-HyperTemp | 79.02 ± 0.017 | 75.98 ± 0.002 | 55.80 ± 0.002 |