Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Chemistry
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications chemistry
  3. articles
  4. article
Adsorption of organic donor-acceptor molecules on graphene/SiC preserves light-induced charge transfer
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 19 February 2026

Adsorption of organic donor-acceptor molecules on graphene/SiC preserves light-induced charge transfer

  • Masoud Mansouri  ORCID: orcid.org/0000-0003-1960-74461,
  • Cristina Díaz  ORCID: orcid.org/0000-0002-9318-58462,
  • Jaime T. Alcolea-Cerdán  ORCID: orcid.org/0009-0007-8043-01133,
  • Nazario Martin  ORCID: orcid.org/0000-0002-5355-14773,4 &
  • …
  • Fernando Martín  ORCID: orcid.org/0000-0002-7529-925X1,4 

Communications Chemistry , Article number:  (2026) Cite this article

  • 590 Accesses

  • 2 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemical physics
  • Electronic structure
  • Optical materials
  • Photochemistry
  • Surface spectroscopy

Abstract

Identifying solid substrates that can effectively support donor-acceptor (DA) organic molecules without hindering their intrinsic charge transfer induced by ultraviolet and visible light is crucial for device fabrication and the precise control of photoinduced electric currents. Here, we demonstrate that graphene/SiC(000\(\overline{1}\)) interfaces preserve the optoelectronic response of three DA molecules: 1-amino-4-nitrobenzene, 1-amino-6-nitro-pyrene, and 1-fluoro-6-methoxy-pyrene. Although adsorption induces a substantial renormalization of the molecular quasiparticle gaps, the corresponding charge-transfer excitation energies exhibit relatively small redshift compared to the gas-phase molecules. This is attributed to the substrate-induced screening that reduces both the quasiparticle gap and the electron-hole binding energy, leading to a partial cancellation in the excitation energy. Additionally, we show that the intramolecular charge-transfer excitons retain their character upon adsorption, suggesting graphene/SiC(000\(\overline{1}\)) as a suitable platform for stable physisorption of DA chromophores and for enabling time-resolved studies of early-stage charge migration, opening pathways toward molecular optoelectronic architectures with minimal substrate interference.

Similar content being viewed by others

Optoelectronic properties of electron-acceptor molecules adsorbed on graphene/silicon carbide interfaces

Article Open access 04 July 2024

Designing small organic non-fullerene acceptor molecules with diflorobenzene or quinoline core and dithiophene donor moiety through density functional theory

Article Open access 04 October 2021

Supramolecular engineering of charge transfer in wide bandgap organic semiconductors with enhanced visible-to-NIR photoresponse

Article Open access 16 June 2021

Data availability

All data generated and analyzed throughout this work are available from the corresponding authors upon reasonable request.

References

  1. Thomsen, C. L., Thøgersen, J. & Keiding, S. R. Ultrafast charge-transfer dynamics: studies of p-nitroaniline in water and dioxane. J. Phys. Chem. A 102, 1062–1067 (1998).

    Google Scholar 

  2. Máximo-Canadas, M. & Borges Jr, I. Absorption spectra of p–nitroaniline derivatives: charge transfer effects and the role of substituents. J. Mol. Model. 30, 120 (2024).

    Google Scholar 

  3. Wang, S. et al. Rational design of hybridized local and charge transfer emitters towards high-performance fluorescent blue oleds. J. Mater. Chem. C. 11, 8196–8203 (2023).

    Google Scholar 

  4. Bergkamp, J. J., Decurtins, S. & Liu, S.-X. Current advances in fused tetrathiafulvalene donor–acceptor systems. Chem. Soc. Rev. 44, 863–874 (2015).

    Google Scholar 

  5. Amacher, A. et al. A quinoxaline-fused tetrathiafulvalene-based sensitizer for efficient dye-sensitized solar cells. Chem. Commun. 50, 6540–6542 (2014).

    Google Scholar 

  6. Mubarik, A., Shafiq, F., Wang, H.-R., Jiang, J. & Ju, X.-H. Theoretical design and evaluation of efficient small donor molecules for organic solar cells. J. Mol. Model. 29, 373 (2023).

    Google Scholar 

  7. Haseena, S. & Ravva, M. K. Theoretical studies on donor–acceptor based macrocycles for organic solar cell applications. Sci. Rep. 12, 15043 (2022).

    Google Scholar 

  8. Irfan, A. & Mahmood, A. Designing of efficient acceptors for organic solar cells: molecular modelling at dft level. J. Clust. Sci. 29, 359–365 (2018).

    Google Scholar 

  9. Meier, T. et al. Donor-acceptor properties of a single-molecule altered by on-surface complex formation. ACS Nano 11, 8413–8420 (2017).

    Google Scholar 

  10. Gilbert Gatty, M. et al. Hopping versus tunneling mechanism for long-range electron transfer in porphyrin oligomer bridged donor-acceptor systems. J. Phys. Chem. B 119, 7598–7611 (2015).

    Google Scholar 

  11. Metzger, R. M. Unimolecular electrical rectifiers. Chem. Rev. 103, 3803–3834 (2003).

    Google Scholar 

  12. He, Y., Li, N. & Brabec, C. J. Single-component organic solar cells with competitive performance. Org. Mater. 3, 228–244 (2021).

    Google Scholar 

  13. Duan, L., Qiao, J., Sun, Y. & Qiu, Y. Strategies to design bipolar small molecules for oleds: Donor-acceptor structure and non-donor-acceptor structure. Adv. Mater. 23, 1137–1144 (2011).

    Google Scholar 

  14. Kim, S.-Y., Kim, M.-J., Ahn, M., Lee, K.-M. & Wee, K.-R. Systematic energy band gap control of pyrene based donor-acceptor-donor molecules for efficient chemosensor. Dyes Pigments 191, 109362 (2021).

    Google Scholar 

  15. Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    Google Scholar 

  16. Lara-Astiaso, M. et al. Attosecond pump–probe spectroscopy of charge dynamics in tryptophan. J. Phys. Chem. Lett. 9, 4570–4577 (2018).

    Google Scholar 

  17. Calegari, F. & Martin, F. Open questions in attochemistry. Commun. Chem. 6, 184 (2023).

    Google Scholar 

  18. Vismarra, F. et al. Few-femtosecond electron transfer dynamics in photoionized donor–π–acceptor molecules. Nat. Chem. 16, 2017–2024 (2024).

  19. Loriot, V. et al. Attosecond metrology of the two-dimensional charge distribution in molecules. Nat. Phys. 20, 765–769 (2024).

  20. Mocci, D. et al. Ultrafast structural reorganization and charge dynamics in a photoionized donor-acceptor biphenyl molecule. Ultrafast Sci. 5, 0108 (2025).

    Google Scholar 

  21. Galli, M. et al. Generation of deep ultraviolet sub-2-fs pulses. Opt. Lett. 44, 1308–1311 (2019).

    Google Scholar 

  22. Reduzzi, M. et al. Direct temporal characterization of sub-3-fs deep uv pulses generated by resonant dispersive wave emission. Opt. Express 31, 26854–26864 (2023).

    Google Scholar 

  23. Colaizzi, L. et al. Few-femtosecond time-resolved study of the uv-induced dissociative dynamics of iodomethane. Nat. Commun. 15, 9196 (2024).

    Google Scholar 

  24. Wanie, V. et al. Capturing electron-driven chiral dynamics in UV-excited molecules. Nature 630, 109–115 (2024).

    Google Scholar 

  25. Hass, J. et al. Structural properties of the multilayer graphene/\(4h{{\rm{}}}-{{\rm{}}}{{\rm{Si}}}{{\rm{C}}}(000\overline{1})\) system as determined by surface x-ray diffraction. Phys. Rev. B 75, 214109 (2007).

    Google Scholar 

  26. Forbeaux, I., Themlin, J.-M. & Debever, J.-M. High-temperature graphitization of the 6H-SiC (0001) face. Surf. Sci. 442, 9–18 (1999).

    Google Scholar 

  27. Hass, J. et al. Highly ordered graphene for two dimensional electronics. Appl. Phys. Lett. 89, 143106 (2006).

    Google Scholar 

  28. Cavallucci, T. & Tozzini, V. Multistable rippling of graphene on sic: a density functional theory study. J. Phys. Chem. C. 120, 7670–7677 (2016).

    Google Scholar 

  29. Mansouri, M., Martín, F. & Díaz, C. Tunable doping and optoelectronic modulation in graphene-covered 4H-SiC surfaces. J. Phys. Chem. C. 129, 4155–4164 (2025).

    Google Scholar 

  30. Mansouri, M., Díaz, C. & Martín, F. Optoelectronic properties of electron-acceptor molecules adsorbed on Graphene/Silicon Carbide interfaces. Commun. Mater. 5, 117 (2024).

    Google Scholar 

  31. Bolotin, K. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

    Google Scholar 

  32. Neaton, J. B., Hybertsen, M. S. & Louie, S. G. Renormalization of molecular electronic levels at metal-molecule interfaces. Phys. Rev. Lett. 97, 216405 (2006).

    Google Scholar 

  33. Garcia-Lastra, J. M., Rostgaard, C., Rubio, A. & Thygesen, K. S. Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces. Phys. Rev. B 80, 245427 (2009).

    Google Scholar 

  34. Garcia-Lastra, J. M. & Thygesen, K. S. Renormalization of optical excitations in molecules near a metal surface. Phys. Rev. Lett. 106, 187402 (2011).

    Google Scholar 

  35. Despoja, V., García de Abajo, F. J., Šunjić, M. & Novko, D. Quasiparticle spectra and excitons of organic molecules deposited on graphene and metallic substrates. Phys. Rev. B 88, 235437 (2013).

    Google Scholar 

  36. Deilmann, T. & Thygesen, K. S. Important role of screening the electron-hole exchange interaction for the optical properties of molecules near metal surfaces. Phys. Rev. B 99, 045133 (2019).

    Google Scholar 

  37. Aumiler, D., Wang, S., Chen, X. & Xia, A. Excited state localization and delocalization of internal charge transfer in branched push- pull chromophores studied by single-molecule spectroscopy. J. Am. Chem. Soc. 131, 5742–5743 (2009).

    Google Scholar 

  38. Sun, G. et al. Effect of hybridized local and charge transfer molecules rotation in excited state on exciton utilization. Sci. Rep. 11, 17686 (2021).

    Google Scholar 

  39. Hedin, L. New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965).

    Google Scholar 

  40. Martin, R. M., Reining, L. & Ceperley, D. M. Interacting Electrons: Theory and Computational Approaches (Cambridge University Press, 2016).

  41. Rangel, T., Hamed, S. M., Bruneval, F. & Neaton, J. B. An assessment of low-lying excitation energies and triplet instabilities of organic molecules with an ab initio bethe-salpeter equation approach and the tamm-dancoff approximation. J. Chem. Phys. 146, 194108 (2017).

    Google Scholar 

  42. Jacquemin, D., Duchemin, I. & Blase, X. Benchmarking the bethe-salpeter formalism on a standard organic molecular set. J. Chem. Theory Comput. 11, 3290–3304 (2015).

    Google Scholar 

  43. Mansouri, M., Casanova, D., Koval, P. & Sánchez-Portal, D. GW approximation for open-shell molecules: a first-principles study. N. J. Phys. 23, 093027 (2021).

    Google Scholar 

  44. Mahmoodi, T. & Mansouri, M. Structural effects of substitutional impurities on MoO3 bilayers: a first principles study. J. Korean Phys. Soc. 69, 1439–1444 (2016).

    Google Scholar 

  45. Nitzan, A. & Ratner, M. A. Electron transport in molecular wire junctions. Science 300, 1384–1389 (2003).

    Google Scholar 

  46. Bruneval, F. et al. Molgw 1: many-body perturbation theory software for atoms, molecules, and clusters. Comput. Phys. Commun. 208, 149–161 (2016).

    Google Scholar 

  47. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  48. Hamann, D. R. Optimized norm-conserving vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

    Google Scholar 

  49. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  50. Deslippe, J. et al. BerkeleyGW: a massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput. Phys. Commun. 183, 1269–1289 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank the Mare Nostrum Supercomputer of the Red Española de Supercomputación (BSC-RES) and the Centro de Computación Científica de la Universidad Autónoma de Madrid (CCC-UAM) for providing computational resources. This work has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 951224, TOMATTO), the Ministerio de Ciencia e Innovación MICINN (Spain) through the projects PID2022-138288NB-C31 and PID2022-138288NB-C33, and the “Severo Ochoa" Programme for Centres of Excellence in R&D (CEX2020-001039-S).

Author information

Authors and Affiliations

  1. Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Madrid, Spain

    Masoud Mansouri & Fernando Martín

  2. Departamento de Química Física, Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain

    Cristina Díaz

  3. Departamento de Química Orgánica I, Universidad Complutense de Madrid, Madrid, Spain

    Jaime T. Alcolea-Cerdán & Nazario Martin

  4. Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Campus de Cantoblanco, Madrid, Spain

    Nazario Martin & Fernando Martín

Authors
  1. Masoud Mansouri
    View author publications

    Search author on:PubMed Google Scholar

  2. Cristina Díaz
    View author publications

    Search author on:PubMed Google Scholar

  3. Jaime T. Alcolea-Cerdán
    View author publications

    Search author on:PubMed Google Scholar

  4. Nazario Martin
    View author publications

    Search author on:PubMed Google Scholar

  5. Fernando Martín
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.M. performed the theoretical calculations, analyzed the data, and drafted the initial manuscript. J.A.-C. carried out the experiments under the supervision of N.M. All authors discussed the results. M.M., C.D., and F.M. revised the manuscript. F.M. supervised the project.

Corresponding authors

Correspondence to Masoud Mansouri or Fernando Martín.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

SUPPLEMENTAL MATERIAL

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, M., Díaz, C., Alcolea-Cerdán, J.T. et al. Adsorption of organic donor-acceptor molecules on graphene/SiC preserves light-induced charge transfer. Commun Chem (2026). https://doi.org/10.1038/s42004-026-01943-6

Download citation

  • Received: 15 September 2025

  • Accepted: 05 February 2026

  • Published: 19 February 2026

  • DOI: https://doi.org/10.1038/s42004-026-01943-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Chemistry (Commun Chem)

ISSN 2399-3669 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing