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Theory of Coulomb drag in spatially
inhomogeneous 2D materials
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Coulomb drag is a favored experimental probe of Coulomb interactions between layers of 2D
materials. In reality, these layers display spatial charge density fluctuations known as puddles
due to various imperfections. A theoretical formalism for incorporating density inhomo-
geneity into calculations has however not been developed, making the understanding of
experiments difficult. Here, we remedy this by formulating an effective medium theory of
drag that applies in all 2D materials. We show that a number of striking features at zero
magnetic field in graphene drag experiment which have not been explained by existing
literature emerge naturally within this theory. Applying the theory to a phenomenological
model of exciton condensation, we show that the expected divergence in drag resistivity is
replaced by a peak that diminishes with increasing puddle strength. Given that puddles are
ubiquitous in 2D materials, this work will be useful for a wide range of future studies.
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from one layer and a hole from another (see Fig. 1) bind

together due to Coulomb interaction. Under the right condi-
tions! =4, these may condense into a superfluid phase>® below a
critical condensatlon temperature T.. This phase is believed to
hold great promise for low-power electronics7 and there has been
a sustained experimental pursuit of its realization and detection in
various two-dimensional material heterostructures®-1¢. The tool
of choice for detecting a condensate in these experiments is the
Coulomb drag measurement!” which involves driving a current
in one (active) electronic layer and measuring the induced
potential drop in the other (passive) layer as shown in Fig. 1. The
corresponding induced electric field is then divided by the current
density in the active layer to yield drag resistivity. Tunneling
between the two layers is prevented during this process by a
dielectric spacer between them so that the induced electric field is
solely due to the interlayer Coulomb interaction. The exciton
condensate is then expected to reveal itself as a divergence!8 or
enhancement!® of the drag resistivity.

There exists a large body of theoretical literature on Coulomb
drag in 2D systems including a comprehensive review paper?’
Most of these theoretical works describe drag between two ideal
electronic layers each possessing a uniform charge density. In
reality, electronic layers are known to possess charge density
fluctations known as puddles?!-23 as shown in Fig. 1 arising from
either charged impurities?* or local strain in the layer?® and there
is no known method of eliminating them completely. In spite of
this, a controlled way of calculating their effects in actual drag
measurements has never been developed, creating difficulties in
interpreting drag measurements searching for exciton con-
densates and other many-body phases.

In this work, we formulate a rigorous framework accounting
for puddles in Coulomb drag calculations by generalizing Brug-
geman’s effective medium theory (EMT) approximation?-2? for
the first time to the case of Coulomb drag between two inho-
mogeneous sheets (see Fig. 2). The EMT is a machinery that
averages over inhomogeneities in a macroscopically inhomoge-
neous medium in a self-consistent manner in order to obtain its
effective behavior. It has been applied in a wide array of contexts,
including magnetoresistance in polycrystalline metals, super-
conductivity in granular materials and hydrodynamics in sus-
pensions to name but a few??. This work establishes that this
powerful machinery may be brought to bear on the Coulomb

I ndirect excitons are quasiparticles that form when an electron

15

Fig. 1 Typical experimental Coulomb drag setup. In reality, the two-
dimensional layers possess density fluctuations (i.e., puddles) as shown but
their effects are largely ignored theoretically, leading to contradiction with
experiment. We solve this by generalizing the well-established effective
medium theory27-2% to the case of Coulomb drag. The scale bar shows
local density in units of 1010 cm=2

drag problem and sheds considerable light on existing experi-
mental data. The resulting drag EMT applies in all 2D materials.
We illustrate the utility of this formalism through two examples.
First, we consider drag between graphene sheets as studied in the
experiment by Gorbachev et al.?, focusing only on drag in zero
magnetic field. This experiment shows a number of observed
features in qualitative contradiction with the predictions of
standard theory ignoring puddles, with an unexpected positive
peak in drag resistivity at the double neutrality point (DNP) being
the one that has received the most attention. The most widely
accepted theoretical explanation of the zero-field experimental
data invokes a puddle-induced thermoelectric ‘energy drag’°
effect. The work of Song et al.3 however does not consider the
non-zero ‘momentum drag’31-3¢ resistivity that will inevitably be
induced at the DNP by these same puddles, leaving the question
of what exactly causes the peak still open. A second experimental
feature that has not been reproduced from theoretical micro-
scopic calculations is the increase of the finite density drag
resistivity peaks as a function of temperature. Microscopic cal-
culations of drag in homogeneous samples in fact yield finite
density drag peaks that decrease with increasing temperature (see
for instance Fig. 8b of Narozhny et al.3%). In fact, no theoretical
work to date has successfully reproduced both the above
experimental features. We show here that once puddles with
negative interlayer correlations are taken into account using drag
EMT, momentum drag alone is able to reproduce all these fea-
tures with nearly quantitative agreement. As a second application,
we demonstrate using a phenomenological model that puddles
cause the divergence in drag resistivity expected upon exciton
condensation to be re-normalized to a peak that goes down as the
reciprocal of the puddle strength. These two example applications
show that puddles must be taken into account in order to
understand existing drag experiments on graphene and suggest
that they will also play a role in the behavior of drag resistivity in
an exciton condensate. Since height corrugations are ubiquitous
in 2D materials®’ and these in turn lead to puddles®®, we expect
that the present formalism will be useful for explaining many
future 2D Coulomb drag experiments.

Results

Model. The derivation of drag EMT parallels that of the usual
EMT for inhomogeneous single layer transport (see Supplemen-
tary Note 1). Consider the Coulomb drag setup of Fig. 1—two
parallel 2D electronic layers with charge density fluctuations
separated by some finite distance with an insulating spacer
material, with a current flowing through the active layer while the
passive layer remains open. We model the inhomogeneities by

EA =Epo+ Ens
A"

Epf=Epo+ Eps
P

Fig. 2 Embedding procedure of effective medium theory. An arbitrary ith
pair of inclusions in the inhomogeneous layers are each embedded inside
an effective medium. The effective in-plane conductivities of the
inhomogeneous samples are given by o% and ok and the effective drag
conductivity by of
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assuming the active and passive layers are each made up of N
inclusions each with its own constant local conductivity, o* and
oF, respectively, where i =1, ..., N. In other words, we model the
puddles using a collection of inclusions. These inclusions are
assumed to be concentric circles of radius a (i.e., the ith inclusion
of the active layer is assumed to lie exactly atop the ith inclusion
of the passive). The local drag conductivity %, corresponding to
each ith pair of inclusions is also assumed to be constant. In order
for the assumption of constant local conductivities within the
inclusions to be justified, the typical conductivity fluctuations
within each inclusion must be small. More precisely,
|(o(r) — 0;)/0;] < 1 must be obeyed for all points r within each
inclusion, and o; is the average conductivity of the area within the
inclusion. Here o; refers generically to the intralayer con-
ductivities, as well as the drag conductivity. We do not make any
further assumptions about the nature of the inclusions.

Choosing an arbitrary ith pair of inclusions, one from each
layer, we regard them each as being embedded within an effective
medium as shown in Fig. 2. The two effective media have within
them effective uniform fields E, oand EP o representing the total
field from all other inclusions, as well as the fields E, ¢ and Ep
arising from the embedded inclusions. Drag conductivity between
the two effective media shall be denoted by %, while the effective
media possess effective conductivities 0% and o, respectively.
Within the EMT approximation, o5, of and of are the intralayer
and drag conductivities that will be obtained in experimental
measurements on inhomogeneous_substrates. We solve for the
electric fields inside the inclusions E} %, and E’ (see Supplementary
Note 2 for details) and sgbstltu_ge them 1nto _‘the EMT self-
consistency equations >, f'E} = E, ; and >, f'E}, = E;, where
f refers to the areal fraction of the ith inclusion relative to the
whole layer. These equations enforce the condition within each
layer that upon averaging the intra-inclusion field over all
inclusions, one should recover the effective uniform field E,. Note
that the effective fields E a0 and EP o drop out from the equation
once the above substitutions are made as is expected since the
above condition makes no demands on the specific values of the
effective fields. Modeling the densities of the inclusions with
continuous probablity distribution functions, we obtain expres-
sions for the effective drag conductivity of and in-plane
conductivities 0% and o5. The effective drag conductivity is then
obtained as

/ / A aD(n'A.,n'P)
o Jdn, [dnyPy(ny, np) [(Uﬁgi\(m\))(ggwp(%))]
D — YA O'A(Vl;x)

Jan, [dnyPy;(ny, np) {(U%JA(@))(@MP(@))

(D)
|

where 1, denotes the local charge density in a small region on the
active layer and n, denotes the same in a small region directly
beneath it on the passive layer, and oy, (1, 1) denotes the drag
conductivity between two sheets of uniform densities n, and np.
Py (ny, nP) is the joint probability distribution of having two such
local regions with given charge densities (n,,7,). The effective

in-plane conductivities oF on the other hand are given by the

solutions of
00 . "y _ LE
\/7 dnlpmono( ) W = 07 (2)

where i=A, P henceforth denotes the layer index (instead of
inclusion index) and o;(n 18 is the conductivity of layer i at
uniform density n;. P (n;) is the single layer probability
density of a point on layer i having charge density #;. This is the
well-known effective conductivity expression from single layer

EMT?7-29 To calculate drag resistivity in the presence of puddles,

we take the clean (i.e., puddle-free) conductivities calculated as a
function of (n;\7 nP) and substitute them into the EMT Egs. (1)
and (2). This yields the effective conductivities 0%, 0%, o5 in the
presence of puddles. The latter step may be understood as an
effective averaging of the homogeneous drag resistivity over
densities in a manner prescribed by electrostatics. Finally, the
effective drag resistivity pE is obtained by inserting the effective
conductivities into
o
PED:_EEDEz' 3)
o305 — (0p)

The above Egs. (1)-(3) constitute the generalization of
Bruggeman’s historic EMT expression?® to the drag problem.
We emphasize that they apply to drag between two layers of
arbitrary 2D electronic material. Having completed the deriva-
tion, let us make some further caveats. First, so long as the
inclusion size a is chosen much larger than the electronic mean
free path [ in both layers, one may assume the intralayer and drag
conductivities ai(nj and op(n,,np) are the same as those
derived assuming infinite samples (i.e, no finite size effects).
Second, we have ignored the drag effect between neighboring
inclusions (i.e., the ith inclusion in each layer has a Coulomb drag
effect on only the ith inclusion of the other layer and has no effect
on other inclusions). This is again justified provided that a > I in
both layers. Last, the above derivation assumes that transport is
dominated by scattering within the inclusions instead of across
the boundaries, thus ignoring scattering processes at the
boundaries of the inclusions. We note that an earlier work3®
has shown that the above conditions are satisfied in graphene.

The probability distributions Py, and Py; are characterized
by the average layer densities 74 p, the root mean square density
fluctuations n2F, and the interlayer correlation coefficient #
which ranges between —1 for perfect negative correlation of
puddles and 1 for perfect positive correlation. The last three
quantities n? , n® and 7 are parameters of the theory. The nA?
values are typically extracted from experimentally obtained
intralayer conductivities using Eqs. (2). In the case where a
microscopic theory has been formulated for the puddle correla-
tions between the layers’®, the latter information is already
sufficient to determine the correlation function # as a function of
the experimental phase space comprised by average densities (115,
np) and temperature. In the absence of a microscopic theory for
puddle correlations, 7 may be extracted from experiment using a
single slice of drag resistivity in density space (14, #np) at fixed
temperature and a second slice of drag measured as a function of
temperature at fixed density (preferably low density since
correlations weaken with increasing temperature). This leaves
the rest of the large parameter space available for independent fit
parameter-free verification of the theory. The drag EMT
formalism may be used as a probe of the depth and the
correlations of puddle fluctuations in future applications of 2D
van der Waals heterostructures*?

Drag in graphene. We consider ‘normal’ drag (i.e., without
exciton condensation) in graphene layers and show that a number
of distinct features observed in the experiment® can only be
explained using drag EMT. For simplicity, we restrict our con-
siderations to temperatures below 200K so that virtual phonon-
induced enhancements to the drag resistivity that become
noticeable starting at about 150 K#! may be neglected while still
maintaining a reasonable level of accuracy.

The microscopic theory in the disorder-scattering dominated
regime for drag between graphene layers ignoring charge puddles
and considering screened interlayer interactions up to second
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order has been worked out in several papers3!-3¢ and will

henceforth be referred to as the standard momentum drag theory
or ‘standard’ theory for brevity. We show here that this theory
shows striking differences with the experimental data of
Gorbachev et al.® performed on graphene encapsulated in
hexagonal boron nitride (hBN). These discrepancies do not
imply that standard momentum drag theory’!=3¢ is wrong.
Instead, they arise because the samples of Gorbachev et al8
possess significant charge puddle fluctuations whereas the
standard theory applies to spatially homogeneous systems.

We note that theories for Coulomb drag extending into the
carrier-carrier collision dominated (i.e., hydrodynamic) limit
have also been developed*?~4>. We focus here on the disorder-
dominated regime and begin by using the standard theory3!-3¢
(see Methods for detailed expressions) to calculate the drag
resistivity pp of graphene encapsulated in hBN. We take into
account enhancements to pp due to random dielectric inhomo-
geneity?® known to occur in the encapsulating hBN substrate?’.
The particular device studied in Fig. 3a of Gorbachev et al®
displays dielectric inhomogeneity enhancement by a factor of
about 3.6 based on a fit to the experiment (see details in Methods)
and we denote the enhanced drag resistivity as p, = 3.6p,. We
note that this work may be modified to include various effects
such as dielectric spatial anisotropy*! and frequency
dependence34.

In Fig. 3a, we plot drag resistivity p|, calculated using standard
theory as a function of oppositely matched layer densities at
several temperatures. These curves compared to the experiment
of Gorbachev et al®. shown in Fig. 3b show qualitative differences
in addition to a general quantitative disagreement. First, the
experiment sees the peaks at finite density (i.e., the ‘outer’ peaks)
increase as temperature increases, whereas standard theory
predicts that they decrease. Next, a strong positive central peak

a
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= —20
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—60
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at the DNP is seen in the experiment, while standard theory
predicts zero drag due to electron-hole symmetry. Last, standard
theory predicts drag resistivity peaks bunched up relatively near
the DNP which rapidly decay to zero as density increases. The
experiment shows a more smeared out structure with the outer
peaks occurring at noticeably higher densities and decaying more
slowly to zero. To give a sense of the behavior of drag resistivity
throughout density space, we plot in Fig. 3c a color map of pp,
calculated as a function of layer densities. We note that a similar
plot results for drag in the hydrodynamic regime*3. To
demonstrate another difference between standard theory and
experiment, Fig. 3d shows the contour lines of p|, in the density
space. Each contour line comes in the form of a triangle with two
sides lying almost atop the axes and the third ‘outward’ line being
rather concave. Gorbachev et al.8 point out that this disagrees
with the contour lines obtained experimentally which take the
form of triangles with two sides slightly shifted away from
the axes, and with the ‘outward’ line being noticeably straighter
(see Fig. 1c and Fig. 5 in the supplementary material of
Gorbachev et al.).

Existing works. Before presenting our drag EMT calculations, it
is useful to briefly review existing theoretical literature to place
our findings in context. The problem of the central drag peak has
drawn three explanations. First, it has been theoretically shown by
Schiitt et al.#? that a third-order interlayer interaction term gives
rise to a nonzero drag resistivity at the DNP. This however cannot
be the explanation of the experimental data because third order
drag remains finite (see Fig. 3 of Schiitt et al.) as temperature goes
to zero whereas the peak in experiment® vanishes in this limit.
The more ‘popular’ explanation is the energy drag mechanism?3°
that gives rise to positive drag at the DNP due to interlayer energy
exchange*® in the presence of positively correlated puddles ( > 0)

b 30 T
— T=10K
251 — T=70K
Experiment of — T=130K
20 Gorbachev — T=190K

etal

g 15}
10}
5t
0 ‘W
-5 L L L L L
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Fig. 3 Standard theoretical drag resistivity compared against experiment. a Drag resistivity calculated along the the line of oppositely matched densities,
assuming puddle-free samples. b Drag resistivity from the experiment of Gorbachev et al.8. ¢ Drag resistivity calculated as a function of layer densities at
T=70K. d Contour lines for the plot in ¢. Contour lines are drawn every 0.5Q from £1Q to £3 Q. Interlayer spacing d =9 nm throughout. Scale bars

represent pp, in units of Q
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caused by charged impurities (a similar effect is mentioned in
Schiitt et al.#3). Since Song et al.’% neglects the sizable negative
contribution of momentum drag in the presence of positively
correlated puddles at the DNP while taking them into account
only in energy drag, one cannot definitely conclude that the latter
is the cause of the central peak.

The last proposed explanation is by Gorbachev et al.® who
argue that local sheet corrugations (known as ripples) give rise to
spatially varying potentials which induce puddles?>. At the DNP,
the oppositely charged electron and hole puddles in the layers
attract one another, creating negative interlayer correlations (1 <
0) which lead to a positive peak at the DNP since momentum
drag between oppositely charged carriers is positive (see upper
left and lower right quadrants of Fig. 3c).

Numerical results. Having shown that the zero-field data of
Gorbachev et al.8 is still not well understood, we present our drag
EMT calculations in Fig. 4. The axes n, and np refer to the
average layer densities deduced from gate voltages or Hall resis-
tivity measurements in experiment. Figure 4a shows drag along
the line of oppositely matched densities in the presence of
negatively correlated puddles and agrees remarkably well with
experiment (see Fig. 3b) while Fig. 4b shows the same but in the

a 30 : : , , '
S 0.6 T=10K — T=10K
= 04 nA=—nP —_— T=70K
25} &
o 02 — T=130K
) 0 — T=190K
207 220 10 0 10 20 ]
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5
0 : . A \ -
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na (1 010 cm—2)
C
50 20
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d=9nm
20
Inhomogeneous
25
B n<0
% 10
IS
G
2 0 4 o
e
< -10
25
-20
-50 _30
-50 -25 0 25 50

nu (1019 cm2)

presence of positively correlated puddles. The agreement of
the experiment with Fig. 4a supports the presence of negatively
correlated puddles as argued in Gorbachev et al.8. The experi-
mental increase of the outer peaks with temperature and the drag
peaks at the DNP (see Supplementary Fig. 2 for temperature
dependence) are both successfully reproduced in Fig. 4a with an
almost quantitative level of agreement with experiment. The non-
zero drag at the DNP is possible because electron-hole symmetry
is broken by the puddles in the presence of nonzero correlations.
Puddles also cause the outer peaks to move out to densities where
9] (£
This general smearing of the drag resistivity throughout the
density space is demonstrated in Fig. 4c. Figure 4d shows the
contour lines of drag EMT resistivity calculated as a function of
na and np. The previously concave contour lines have straigh-
tened and the other lines have moved away from the axes, in
agreement with experiments®® (see Supplementary Fig. 3).

The above calculations were performed by substituting the
standard theory expressions31-3¢ (see Methods section) into the
EMT equations (1) and (2) and numerically evaluating the result
with the layer densities modeled by the bivariate normal
distribution in Eq. (7) with average densities n,, np and root

mean square fluctuations nﬁfﬁs,nﬁﬁfs. We have excluded energy

+ kg T) ~ 1, in agreement with the experiment.
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Fig. 4 Effective medium theory graphene drag calculations. a and b show calculations of the effective drag assuming negatively and positively correlated
puddles, respectively, with n? = 6x10'° cm™2 in both cases. a uses 7 in Eq. (16) while b uses the same but with the sign flipped. ¢ EMT drag resistivity

rms

calculated as a function of both layer densities at T= 70 K for the same EMT parameters as a. d Contour lines of the plot in (¢). The previously curved parts
of the contour lines at low density have straightened out and the isolevels that were previously almost touching the axes have moved away from them due
to the density-smearing caused by puddles, in agreement with experiments®®. Isolevels are drawn every 0.5 Q from +1Q to +3 Q. Interlayer spacing d =

~EMT

9nm throughout. Scale bars represent pp*'' in units of Q
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drag in our calculations and discuss this later. As mentioned
earlier, nA? should be determined from measurements of
intralayer conductivity. Since such measurements are not
available in the experiment of Gorbachev et al.3, we have chosen
nP = 6x 10 cm~2 by fitting to the experimental drag resistiv-
ities at the outer peaks, where correlations are assumed to be
weak so 7 may be set to zero during this fit. These #,,,, values are
comparable with typical measured density fluctuations in
graphene on hBN?322, In all panels of Fig. 4 with the exception
of panel (b), we made use of the negative correlation function #
given by Eq. (16). Since there is currently no microscopic theory
available for arbitrary interlayer correlations, we used a form of #
which we believe to be reasonable. First, # was required to
decrease in magnitude with increasing density and temperature
since screening (which suppressess correlations) in graphene
increases with these two quantities. The functional form of # in
Eq. (16) was chosen to satisfy this requirement and its numerical
prefactors were obtained by fitting to two slices of drag resistivity
in density and temperature parameter space (see Methods for
more details on this fitting procedure). Since we have only used
three lines in the parameter space of n,, np and T for our fits, this
leaves the rest of the large three-dimensional parameter space for
fit parameter-free verification of our predictions. At temperatures

kBT<0.5’E(A’P) , we find in our numerics that the outer peaks

F,rms

FAP)

F,rms |

increase with temperature while at temperatures ky 720.5

the homogeneous behavior of the outer peaks decreasing with
temperature remains unchanged (see Supplementary Note 3 and
Supplementary Fig. 4). Here E(F")rms = hvgy/ n'bls. This suggests
that cleaner samples in future will show outer peaks that decrease
with increasing temperature. We stress that the temperature trend
of the outer peaks depends only on the magnitude of #,,,, and not
on 7 (see Supplementary Fig. 5 for the uncorrelated 7 =0 case).

The above changes from homogeneous behavior are explained
by noting that the EMT calculation basically averages (in a
manner prescribed by the laws of electrostatics) the homogeneous
drag resistivity over density space (1, n;) with the center of the
averaging region given by the average densities (14, np) and the
size of the averaging region given by the root mean square
fluctuations ", In the case of uncorrelated puddles 7 =0, the
averaging region is circular in shape, while in the case of
negatively (positively) correlated puddles <0 (>0), the
averaging region is an ellipse with its major axis parallel to the
line n, = —n, (np = n,). It is easily verified that at the DNP,
negative (positive) correlations involve an average involving
mainly regions of positive (negative) drag resistivity (see for
instance Fig. 3c). This explains the sign of the drag at DNP in
Fig. 4a, b. The change in temperature dependence of the outer
peaks occurs because the homogeneous peaks at low temperature
are narrower in width (see Fig. 3a) and thus more strongly
diminished by the averaging procedure. A more physical way to
understand Fig. 4 is to note that drag increases (decreases) with
increasing temperature at fixed density in the low (high)
temperature regime3C. Since the presence of puddles causes the
local densities in the layers to saturate in magnitude at a lower
bound of about 7 (with the relative signs of n, and np in these
local regions given by #), if nA2>|n, |, |np|, the system can be in
the low temperature regime locally (which determines the drag
characteristics) even if ny and np are in the high temperature
regime (ie., kBT>‘E? ‘P|). This causes the low temperature
behavior of increasing with T to occur even at average densities
that are low relative to temperature. As temperature goes to high

values where kyT > ‘EéAmlz , drag in this nFP

rms

>|ny|, |np| regime

goes to zero everywhere with increasing temperature because all
local regions are in the high temperature regime.

We now discuss the implications of our results for the role of
energy drag®0. The energy drag resistivity values reported in Song
et al.”0 in fact give contributions to drag resistivity at the DNP
that are roughly equal in magnitude but opposite in sign to the
central peaks shown in Fig. 4a, b. This implies that momentum
and energy drag will cancel each other to give close to zero drag at
the DNP, in contradiction with the experiment. There are
however reasons suggesting that energy drag (see details in
Supplementary Note 4) is far smaller than momentum drag at the
DNP and the latter alone causes the large central peak. The fact
that our calculations using momentum drag alone agrees well
with experiment supports this conclusion (see also Supplemen-
tary Fig. 6).

So far, we have used drag EMT to explain features that have
already been reported experimentally. We now predict a new
unreported feature. Our calculations predict that drag resistivity
does not go to zero along the axis lines n, =0 and np =0 in the
presence of nonzero interlayer puddle correlations. Instead, there
is a transition in the sign of drag as one tunes the average density
of one layer while keeping the other fixed at zero. To be specific,
we fix average density of the passive layer np =0 and tune the
average density of the active layer 1, from —eo to +eo as shown in
Fig. 5 while using the negative-valued correlation function # given
in Eq. (16). The double sign change occurs because the EMT
average in the case of negative correlations involves an average of
the homogeneous drag resistivity over a slanted ellipse.
Consistent with this, Gorbachev et al.3 report that the lines of
zero drag in density space follow “closely but not exactly” the
neutrality points of the individual layers (see Fig. 4c and Fig. 5).
We note that if interlayer puddle correlations were positive,
measuring drag along this same line would result in Fig. 5
multiplied by an overall minus sign.

Puddles and drag upon exciton condensation. Drag resistivity is
expected to jump discontinuously or diverge as temperature
approaches T.!8. This occurs because the drag conductivity in Eq.
(3) approaches the values of the single layer in-plane con-
ductivities. The exact value of T, in graphene is a controversial
topic**0, and it is not known whether a finite T is even possible.
Our objective here is not to discuss this subtle question but to
investigate the impact of puddles on drag resistivity in a system
where T is assumed to be finite (without the need for a magnetic
field) and has already been reached. We describe this hypothetical

25 . .
— T=70K
20 Inhomogeneous — T=130K
momentum drag — T=190K
15} (n<0)
10} np=0

p~DEMT ©

-20 0 20 40 60

n,(10%m2)

Fig. 5 Puddle-induced sign changes of drag near double neutrality. Here we
calculate effective drag resistivity as a function of na along the line np =0
using effective medium theory with negatively correlated puddles. We use
the same parameters as in Fig. 4a. We predict this set of crossovers of the
sign of drag may be seen in future experiments
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system using the following physically motivated phenomen-
ological expressions. The monolayer conductivity is given by

B
: (4)

and the drag conductivity by

; B
D _ (nalilneD) | (1=sgn(nsnp)
0, _B(mm LONBLG ) ( sgnzn n )

A ny
1/2 (1+sgn(nAnP)>
—

(5)

natp
oy

+C

Here, i = A, P is the layer index, and 0, = %, o= 1010 cm—2. B, B
and C < B are phenomenological coefficients, the values of
which can be chosen quite arbitrarily to fit the material being
considered. The statements that we make here do not depend on
their particular values. The expressions above are chosen to
satisfy the following physical requirements. When the layer
densities are perfectly matched (i.e., equal in magnitude but
opposite in sign) and the passive layer is open, the electric fields
in the layers should be equal based on a minimum dissipation
premise®!, whereas in the case of a short-circuited passive layer
with zero electric field, the layers must contain charge currents of
equal magnitude in opposite directions. One easily verifies that
Egs. (4) and (5) satisfy these requirements. Whenever the layers
have densities of the same sign, the usual non-excitonic drag that
is much weaker than excitonic drag is to be expected. This is
represented by the second term with C < B.

We study the effect of puddles in this model by substituting
Egs. (4) and (5) into the EMT equations and calculating pEIB as a
function of charge density ny = —np for various n  =mnF__in
Fig. 6. We have used the particular values B=5, =1 and =0
but stress that we find numerically the following statements apply
for arbitrary # and all positive 8, B and C so long as C < B and
nAP <« |n A7P|. Figure 6 shows that the infinite drag resistivity at
perfectly matched densities gets suppressed by puddles to a finite
value that decreases with increasing puddle strength. The inset
shows that the magnitude of drag at perfectly matched densities
goes inversely as P In actual experiment where several samples
of differing quality will typically be studied, a drag resistivity that
goes as 1/m,,, may be interpreted as a sign of exciton
condensation.

Discussion. We have generalized the powerful formalism of
effective medium theory to the problem of Coulomb drag

0.4

Nms =0
Nyms = 0.5x 10" cm2| ]
— Ne=1x10"cm™
Npe=2x10"cm™ |1

2

0.35
15
Io oL
03~ o~ Pims
<os

0.25 % 05 1

Nms (10%°0m?)
'E.‘ib 0.2
<
0.15
0.1
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40 45 50 55 60

n,(10°cm?)

Fig. 6 Exciton-condensate drag in the presence of puddles. Drag resistivity
in a model of exciton condensate is plotted as a function of np for different
puddle strengths n =nf =n_ . npis held constant at —50 x10'0 cm

~2, Interlayer correlation coefficient = O throughout. Inset: pp at na =
—np=50x10"0cm=2 as n,,, is varied

rms*

between 2D materials possessing puddle fluctuations with arbi-
trary interlayer correlation. Applying it to graphene drag at zero
magnetic field reproduces the striking features observed experi-
mentally that have yet to be fully understood®. Our work shows
that these features arise due to momentum drag in the presence of
negative interlayer puddle correlations.

There is currently strong experimental®>~>> and theoretical®®>”
interest in indirect exciton formation in transition metal
dichalcogenide heterostructures. Some experimental drag studies
along this line have already begun in heterostructures of MoS,%,
a material in which the existence of puddles has been
experimentally verified®®®, Since the drag EMT formalism
developed here applies to arbitrary 2D materials, we believe that
it will prove important in the understanding of these and future
drag experiments.

Several venues of investigation open up following the present
work. The drag EMT formalism may be generalized to include
finite magnetic fields!? and interlayer thermoelectric effects®!
along the lines of earlier theoretical work on single layer graphene
thermoelectricity®2. The present work and its extensions will also
be useful for assessing and designing potential technological
devices such as those in Refs!>03,

Methods
Charge density distributions. We model the single layer charge density using a
Gaussian distribution,

Pmono (nx) P,

mono (

g i
ni" n” nrms)

n—n ? (6)
oo (-52F)

where n; without the prime superscript denotes the average charge density of layer i
set by the external gate voltage. n'__ is the root mean square density fluctuation
about the average caused by charged impurities or corrugations and quantifies the
strength of inhomogeneity in the sample.

We model the double layer distribution using the bivariate normal probability

distribution

_ 1
2ang o

Pbi(”;w"/P) = Pbi(”A:”i)? Mas Mp, M, ”fmsv’?) = m
<ot [+ G- p=])
7)
where the interlayer correlation coefficient 5 quantifies the charge density
fluctuations between the two layers. Mathematically, # is defined by
(=) = ) ©

nl"AmSnl]')lnS
where the angular brackets refer to averaging over the areas of the two layers. A
value of =1 (—1) corresponds to perfectly positively (negatively) correlated
charge density fluctuations within the two layers, while a value of =0
corresponds to uncorrelated fluctuations. All forms of interlayer correlation may be
modeled in Eq. (7) by choosing the value of # accordingly.

Graphene conductivity expressions. The drag conductivity op(n, 1p) between
two sheets at uniform densities 7, and np, respectively can be derived dia-
gramatically®*%, or from a Boltzmann equation approach®® as

1 (o dq I dw
L6mky T J—o00 (27)? J—00

i) .

x5 (ny, q, )3 (np, q, )| V(g, 0, d) [,

op(ny,np) =

where T is temperature, and d the interlayer spacer width. V(g, w,d) is the dyna-
mically screened interlayer Coulomb interaction given by

Vi2(9,d)
V(g,w,d) = 222 10)
0D =g, rd) (
where the double-layer dielectric function ¢p is given by
ep(q,0,d,T) = (1= Vi (II,(q, @, T))(1 = Vo (9)TTp(q, 0, T)) (11)

—V12(9) Va1 (914 (g, 0, T)Tp(q, @, T),
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with bare interlayer and intralayer Coulomb potentials V,,(q,d) = V,,(q,d) =
2mé? exp(—qd) /xq and V1,(q) = Vaa(q) = 2me?/xq, respectively, where « is the
dielectric constant of the material encapsulating the graphene sheets and d is the
interlayer spacing. I1; is the dynamical polarizability of layer i as shown in existing
theoretical literature®’. I** refers to the x-component of the nonlinear susceptibility
in monolayer graphene,

r?(”i!‘l? (U) = F;‘(w,q, ‘ux/kBT)

= T(w,q.,/ks T)cos (6, ), (12)

where we convert charge density to chemical potential using the methods
detailed in Supplementary Note 5. We make use of the dimensionless notation,
_ E 2E+ @

E=——"_. = .
KT °T g

hw hveq

ho o hveg 13
KT 17 kT (13)

W=

P

With this notation, we follow the approach detailed in Narozhny et al.3 to obtain
the expressions

%j?dZI(Z’ZLa) ﬁz) ii;?;Kz(z7q7w)7‘w|<q (14)
I(quﬁ‘:’al]x)
— tanh (52) — tanh (52) - tanh (“@*ﬁ”f‘f) ~ tanh (W)
Ki(z,q,0) =1, 20— 7 jﬁzy

where 7; is the transport scattering time of layer i, assumed here to be energy-
independent. This is done only for computational efficiency. We have performed
preliminary numerical checks with energy-dependent scattering time corre-
sponding to charged impurities (as seen for example in Eq. (10) of Hwang et al.%%)
and found that it makes no qualitative difference to the behavior of drag resistivity.
Note that the dimensionless frequency and momenta defined in this work differ
from that in Narozhny et al.3¢ by a factor of 1/2.

The in-plane conductivity of layer i at uniform density n; is given by

o,(n;) = #/dED(E)T,(fM),

30 (15)

where i = A, P, D(E) = 2|E|/(n}?v2) is the density of states and f(E) the Fermi
-1

function, given byf(E7 @) = (exp (%) + 1) . In the case of completely

uniform sheets, we have o}, = o, (n,, np) and aﬁ_’P =04p (nA_P). In the absence

. E
of exciton condensation, o, < 0, p, and hence Eq. (3) becomes pf ~ — =2, in
" AYP

which case 74 p drop out of the equation and drag resistivity becomes
independent of the scattering mechanism. We assume d =9nm in all our
calculations here, corresponding to the sample in Fig. 3(a) of the
Manchester experiment®. We assume the dielectric constant of hBN to be
K =3.5%.

Fitting procedure for dielectric enhancement. The dielectric inhomogeneity
enhancement factor of 3.6 is obtained by dividing the 130 K drag resistivity seen in
the experiment of Gorbachev et al.® by that predicted by homogeneous momentum
drag theory in the high density regime n, = —np = 6 x 10!! cm~2, where inho-
mogeneities have a negligible effect on transport.

Fitting procedure for correlation function. The correlation function # used in
Fig. 4a, ¢, d is chosen in the following way. Based on the physical requirement that
correlations decrease with increasing density and temperature due to enhanced
screening, we consider the following functional form

= F(ny,np, T)O(—F(ny,np, T)),
F(ny,np,T) = [B+ C(T — To)®(T — T,)Je PVImml,

where

(16)

Here ® denotes the Heaviside stepfunction. We determine the numerical
coefficients by considering two slices of drag resistivity obtained in the experiment.
First, we fit our EMT drag resistivity to the behavior of the experimental drag at the
DNP as a function of temperature to obtain B= —1 (i.e., negative correlations), C
=0.005K~! and T, =70 K. Next, we fit to the experimental drag resistivity

measured as a function of n, along the line ny = —np at T=70K (see Fig. 3(b))
and obtain D = 0.5 x 101 cm?. This correlation function gives perfect negative
correlation between the layer puddles at low temperature and decreases in
magnitude as density and temperature increase, reflecting that screening gets
stronger with increasing density and temperature. We note that this fit was
performed by trying different functions by hand. It is likely that even better
agreement with experiment will be obtained using more rigorous optimization
procedures.

Code availability. Codes used to generate the data shown here are available at
https://github.com/derekhoyh/Coulomb-drag-EMT.

Data availability. Data that support the findings of this study are available from
the authors on reasonable request.
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