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A statistical approach to detect protein complexes
at X-ray free electron laser facilities
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The Flash X-ray Imaging (FXI) technique, under development at X-ray free electron lasers

(XFEL), aims to achieve structure determination based on diffraction from individual mac-

romolecular complexes. We report an FXI study on the first protein complex—RNA poly-

merase II—ever injected at an XFEL. A successful 3D reconstruction requires a high number

of observations of the sample in various orientations. The measured diffraction signal for

many shots can be comparable to background. Here we present a robust and highly sensitive

hit-identification method based on automated modeling of beamline background through

photon statistics. It can operate at controlled false positive hit-rate of 3 × 10−5. We

demonstrate its power in determining particle hits and validate our findings against an

independent hit-identification approach based on ion time-of-flight spectra. We also validate

the advantages of our method over simpler hit-identification schemes via tests on other

samples and using computer simulations, showing a doubled hit-identification power.

DOI: 10.1038/s42005-018-0092-6 OPEN

1 Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3Box 596SE-751 24 Uppsala, Sweden.
2 European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany. 3 Department of Physics and Astronomy, Uppsala University, Box 516SE-751 20,
Uppsala, Sweden. 4 Chemistry Research Laboratory, Department of Chemistry, Oxford University, 12 Mansfield Rd, Oxford OX1 3TA, UK. 5 ELI Beamlines,
Institute of Physics, Czech Academy of Science, Na Slovance 2, CZ-182 21, Prague, Czech Republic. 6 Condensed Matter Physics, Department of Physics,
Chalmers University of Technology, Gothenburg, Sweden. 7 Centre for Bio-imaging Sciences, National University of Singapore, 117557 Singapore, Singapore.
8 Department of Physics, National University of Singapore, 117551 Singapore, Singapore. 9 Department of Biological Sciences, National University of Singapore,
117557 Singapore, Singapore. 10 Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
11 Division of Scientific Computing, Department of Information Technology, Science for Life Laboratory, Uppsala University, Lägerhyddsvägen 2(Box 337)SE-
751 05 Uppsala, Sweden. Correspondence and requests for materials should be addressed to C.N. (email: carl.nettelblad@it.uu.se)

COMMUNICATIONS PHYSICS |            (2018) 1:92 | DOI: 10.1038/s42005-018-0092-6 | www.nature.com/commsphys 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1171-6683
http://orcid.org/0000-0002-1171-6683
http://orcid.org/0000-0002-1171-6683
http://orcid.org/0000-0002-1171-6683
http://orcid.org/0000-0002-1171-6683
http://orcid.org/0000-0001-7683-6419
http://orcid.org/0000-0001-7683-6419
http://orcid.org/0000-0001-7683-6419
http://orcid.org/0000-0001-7683-6419
http://orcid.org/0000-0001-7683-6419
http://orcid.org/0000-0002-2141-438X
http://orcid.org/0000-0002-2141-438X
http://orcid.org/0000-0002-2141-438X
http://orcid.org/0000-0002-2141-438X
http://orcid.org/0000-0002-2141-438X
http://orcid.org/0000-0003-0458-6902
http://orcid.org/0000-0003-0458-6902
http://orcid.org/0000-0003-0458-6902
http://orcid.org/0000-0003-0458-6902
http://orcid.org/0000-0003-0458-6902
mailto:carl.nettelblad@it.uu.se
www.nature.com/commsphys
www.nature.com/commsphys


To date, diffraction experiments have been one of the major
techniques used in determining molecular structures up to
high resolution, by shining X-rays on stable, static, and

highly repetitive crystalline systems. Final results constitute an
average over all occurrences of the crystal unit and also rely on
proper phasing being achievable from the identified Bragg peaks1.
Unfortunately, many samples of biological interest do not lend
themselves to crystallization2,3. Thanks to the advent of X-ray
free-electron lasers (XFELs), which provide very intense and
ultrashort pulses with a brilliance 109 times greater than any
other existing source and pulse lengths of ~ 50 fs, diffraction
experiments on non-crystalline samples are becoming achievable.
Over the last few years, successful reconstructions in two
dimensions (2D) and three dimensions (3D) have been achieved
for various larger biological samples (~ 50–500 nm in diameter),
such as viruses and cell organelles4–8.

In an XFEL imaging experiment, the sample can be delivered
fixed on a solid substrate9 or in form of aerosols10. Aerosolisation
has the advantage of removing background diffraction caused by
the substrate; however, the position of the aerosolized sample in
the X-ray beam is not well determined and the exact orientation
and position of a particle when an X-ray pulse hits is generally
purely stochastic. For a highly focused X-ray beam, intended to
give the highest strength of the diffraction signal, the probability
of hitting a particle thus also decreases. Thus, even though the
typical problems associated with crystallization can be overcome,
other issues can arise, such as the hit-finding problem that con-
sists in discerning sample hits of any kind from background
events. The background consists of signal occurring from
beamline and optical components, scattering from remaining
traces of sample buffer and injection or background gases, and
detector electronic noise.

The main topic of this paper is a statistical hit-finder approach,
based on the comparison of recorded individual patterns to a
typical background signal, generally automatically extracted from
the very same data set. Such a technique is relevant for any
photon-counting pixel-based experimental modality with spora-
dic presence of sample signal on top of a background of com-
parable strength. For example, this would include imaging
experiments using high-harmonic generation light sources, or
attempts at short-pulsed operation at synchrotrons. Depending
on the purity of the sample preparation and the reliability and
tuning of the injection method, these identified hits then need to
be classified to identify a subset of hits that actually correspond to
single pristine particles.

In our experiments performed at the Coherent X-ray Imaging
(CXI) end station9 at the Linac Coherent Light Source (LCLS),
the sample is injected into a vacuum chamber, suspended in
aerosol droplets. When these droplets interact with the X-ray
beam, diffraction before destruction11 principle holds and the
scattered signal is collected by the photon detectors at CXI
(Fig. 1). The principle states that femtosecond X-ray pulses can
outrun sample damage, as single pulses are so short that they end
before any damage to the sample occurs11,12. This was demon-
strated at a free-electron laser in Hamburg and at the LCLS on
fixed targets12–14 and laid the foundations for serial X-ray fem-
tocrystallography (SFX)12, where sub-nanometer reconstructions
are now successfully achieved routinely. SFX allows the study of
several classes of samples that do not readily form large crystals,
but where smaller crystals (at nanometer scales) can still be
obtained. However, there is still a significant set of proteins and
macromolecular complexes that cannot be studied even with this
technique, but where FXI might prove successful.

The idealized view of our measurement assumes that the X-ray
pulses hit only the sample macromolecules, as pure buffer dro-
plets are expected to evaporate before reaching the X-ray

interaction region4. However, a variety of different cases can take
place, which produce signal on the detector or even diffraction
patterns that may or may not be representative of the sample of
interest: buffer droplet or small impurities (quite common),
impurities clusters, sample clusters, or single-sample molecules.

The two main factors affecting the detection capability are the
nature of the sample, and the nature of the background. Smaller
samples with weaker total scattering cross-section will be harder
to detect, whereas a stable background signal will simplify
detection.

There have been multiple techniques used for doing hit-finding
in both SFX and FXI. These include methods based on ion time-
of-flight spectra and plasma emission in serial femtosecond
crystallography15,16 and photon-based flat-threshold hit-finders
for virus particles, cells and organelles in FXI experiments4,17–19.
To date, no diffraction from a single-protein complex has been
confirmed. We have developed a novel statistical method, based
on the analysis of beamline background and relying on photon-
counting statistics, which is able to discriminate sample hits from
background in the recorded diffraction patterns, even when noise
and sample signal are comparable. Such detection performance
could allow definite validation of single-particle hits, if combined
with suitable further analysis (e.g., size and orientation determi-
nation of the particle). Modeling the background signal is not
only important for the hit-finding process, but also for all later
reconstruction and analysis algorithms sensitive to noise,
including methods for 3D reconstruction based on multiple dif-
fraction patterns, such as the Expansion-Maximization-
Compression (EMC) algorithm20.

In this work, we discuss the analysis of the background and the
method itself is introduced, followed by a validation of the
method by applying it on FXI scattering data from a macro-
molecular machinery: RNA polymerase II21. It is at this point one
of the smallest single particles ever studied at an XFEL. The
experimental photon energy was ~ 6 keV, corresponding to ~ 2
nm photon wavelength, the beam pulse was of ~ 50 fs and the
nominal focus beam size of 100 nm22. To further corroborate our
results, we report a comparison with an independent time-of-
flight ion detector (ToF) hit-finder, used in drift mode. Then, we
show the efficiency of our statistical approach by testing it on data
sets collected on other samples and by computer simulations.

Results
Implementation of the statistical hit-finding approach. Under
stable experimental conditions (same injector, nozzle, pressure,
buffer concentration, etc.) background has proved not to vary
significantly during the same experimental shift (Fig. 2). Hence,
we can establish an upper threshold on the amount of variation
and denote as hits any event over this threshold. Whatever is
below is then called a background event (or a miss).

Most previous hit-finding methods make use of arbitrary
thresholds, basing the decision on, for example, the number of
downsampled (binned) detector pixels (e.g., one pixel being
constituted by 4 × 4 detector pixels) that are lit4,5. Other
thresholds can be defined by considering as hits patterns with a
photon count above, e.g., four standard deviations from the mean
value in the overall background photon count distribution after
applying some arbitrary mask to ignore the least reliable sections
of the image. Such a stringent threshold is too coarse to be
effective in the case of weak scatterers. Therefore, we introduce a
more sophisticated method, which has its foundations in the
expected Poisson statistics of the number of photons hitting a
pixel. A pixelwise comparison is made between each frame within
a sample run, and the expected background. This approach also
allows an automatic determination of pixels deviating from the
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model, which are then included in the mask (see Methods). This
step guarantees the usage of a wider number of detector pixels—
and thus better statistics—compared with more ad-hoc
approaches of defining a suitable mask4,5,17.

Our formal null hypothesis is the following: in the case of
background patterns each detector pixel in each frame follows
Poisson statistics (i.e., each pixel constitutes an observation nki
with expected mean photon count λki—see Fig. 3a, b).
Furthermore, detector pixels are here considered to be indepen-
dent from one another, with the exception that they are all a
function of the total signal strength. In the low-photon emission
regime, the first hypothesis constitutes a well known physical
process;23 the second one depends a lot on detector pixels design,

but it holds reasonably well for the Coenell-SLAC Pixel Array
Detectors (CSPAD) used at the CXI end station24.

Both nki and λki are experimentally determined from the data
(see Methods).

We calculate a score for each event—by means of multivariate
analysis—in the form of a log-likelihood ratio25:

si ¼
X

k
nki log

nki
λki

ð1Þ

Under the two hypotheses stated above, by taking advantage of
the central limit theorem, we expect our si score distribution to be

Aerosol injector

X-ray beam

Interaction
region

Beamstop

CSPAD-140k detector

CSPAD-2.3M detector

Fig. 1 Typical experiment setup for flash X-ray imaging (FXI) at the coherent X-ray Imaging (CXI) end station. The sample is injected in aerosol form by an
injector. When the aerosol reaches the vacuum chamber, it is hit by the beam pulse in the interaction region. As the explosion time (~ 10−12 s) is believed
to be longer than the beam pulse (~ 10−15 s), diffraction before destruction is possible: the scattered photons are recorded in the front (high resolution)
detector and in the back (low resolution) detector. A beamstop is interposed between the two detectors to avoid the full intensity of the direct beam hitting
and damaging the center of the 140,000 pixels Cornell-SLAC Pixel Array Detector (CSPAD-140k)
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Fig. 2 Sample data as a time series. The vertical lines denote the different runs (from 399 to 423) used in our analysis. Those were collected in an
experiment performed in May 2013, whose main object of study was RNA polymerase II. Although some background variations are present, the
distribution is far more stable than, e.g., raw photon counts. The green line represents the threshold used to identify hits

COMMUNICATIONS PHYSICS | DOI: 10.1038/s42005-018-0092-6 ARTICLE

COMMUNICATIONS PHYSICS |            (2018) 1:92 | DOI: 10.1038/s42005-018-0092-6 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


normal. Owing to non-ideality in the data, we could not use the
theoretical properties of the distribution directly to define
reasonable test thresholds. Rather, we noted that the distribution
of such scores for a stable background as a function of the
expected photon count for each event gives a linear relationship.
By fitting the log-likelihood scores, we obtain average expected
scores for the same as it was pure background (Fig. 4a). We then
subtract these values from our scores, (Fig. 4b), making the
resulting distribution independent of the pulse energy. For this
transformed distribution, we can express our hit threshold as μ+
4σ (μ being the mean of the new distribution and σ the
corresponding standard deviation). The choice of a 4σ threshold
ensures a theoretical false positive rate of 3.16 × 105. When
analyzing background data from a June 2015 experiment26, the
actual rate of false positives retrieved is consistent with this
theoretical result: 2.83 × 105 (Supplementary Note 1 and
Supplementary Fig. 1). A photon count threshold can also be
similarly defined, by performing normalization in the photon
count space (Fig. 4c, d).

Sometimes significant changes were made between experi-
mental runs without recording new background data. Those can
affect the reliability of the determination of μ and σ. Therefore, in
order to characterize the parameters, we decided to select events
in the sample runs that are unlikely to be hits (called “preliminary
misses”) by using the photon count distribution as described in
Methods. We are essentially using a crude identification method
for non-hits to seed the method for identifying proper hits. This
filtering ensures that the background statistics is not influenced
by a small amount of very strong hits when calculating the rate
parameters (λki). When hit rates are low ( < 5%), some
contamination of the background statistics with weak hits should
not influence our detection power adversely. High pixel photon
counts, on the other hand, can strongly bias the λki outcomes and
so alter the background model, especially reducing the detection
power arising from those areas of the detector where the
background signal is very clean. Again, one should also note
that when using a narrow focus, like the 100 nm focus in our
study, current injection techniques tend to only allow hit rates of
single-digit percentages or less. This is in contrast to hit rates of

over 20% in ideal conditions at, e.g., the AMO end station27, with
a much wider focus. However, a small concentrated focus and the
shorter wavelengths possible at CXI are critical for proper
imaging of small samples. Although the filter could be considered
somewhat coarse, it also allows an online mode28 for our hit-
finding methodology, where the background model would be
adjusted in real time while data are being collected.

The plot in Fig. 5a illustrates how to perform hit-identification
using this method: the density plot represents all the events
collected, darker blue indicating higher density. A threshold
(green line) is defined as described above, and the subset of events
identified as hits by our statistical approach (blue circle outlines)
are reported. The red circles represent the hits found via the
independent time-of-flight ion hit-finder.

RNA polymerase II as an application. To give a thorough
understanding of how the proposed method works, its application
on a specific FXI experiment is reported. The data examined are
diffraction patterns of RNA polymerase II collected on the
CSPAD-140k detector29,30 at the LCLS CXI end station (Fig. 1),
during an experiment in May 2013. The sample studied is a
molecular machinery involved in DNA transcription21. An
improved understanding of the in vivo structure and dynamics of
this complex could improve the modeling of gene regulation.

The sample buffer consisted of water and ammonium acetate
and the sample itself was labeled with gold spherical nanopar-
ticles to increase its scattering power.

As shown in Fig. 5a, when a 4σ outlier threshold is applied, the
bulk of the background is clearly separated from hits. We
identified 1165 hits of varying strength over a total of 402,296
non-blank events considered over 25 runs (418,153 events in
total). Furthermore, 828 hits were identified by another
independent hit-finder: a ToF detector. Thus, we could prove
that our hits are not spurious by noticing that most hits are
shared between the ToF hit-finder (red circles) and our statistical
model (blue circle outlines). The total fraction of ToF hits that are
above our defined threshold is 94% (771 ToF hits); the remaining
57 belong to background (Fig. 5a). By looking at the average
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Fig. 3 Model structure based on independent pixels adhering to Poisson statistics. a A pixel-based detector and how each pixel in a background frame is
provided with the observed photon count nki and its mean photon count λki ; b histogram plot (semi-logscale) showing the distribution of a certain pixel in
the background run collected during the June 2015 experiment, having an overall mean photon count equal to 0.022 (red), compared with a simulated
Poisson distribution (blue), based on the same mean photon count and the same pulse energies per event as in the real case. The agreement is evident (in
the case of the two-photon count, the histograms differ only for two occurrences), thus proving the validity of the assumption
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integrated ToF trace of those hits not confirmed using our
method (Fig. 5b), as well as inspecting all of them separately
(Supplementary Fig. 2), it appears none or few of these are actual
hits, as the proton peak, which is the intended hit-finding
criterion, is visually absent in the traces. Fifty-seven events out of
402,296 amounts to ~ 0.013%, which is consistent with the
expected false positive rate for the ToF method of ~ 0.01%
previously reported15. One can also note that the distribution of
these non-matching ToF hits follows the overall distribution of
recorded events in terms of the likelihood scores (Supplementary
Fig. 3). If they were instead very weak hits not picked up by our
approach, one would expect them to cluster between the main
background “cloud” and the threshold.

The fact that the statistical hit-finder recovered a higher
number of hits in total is to be expected, as the ToF ion detector
was used in drift mode with an experiment geometry that meant
it only covered a small portion of the total solid angle. Therefore,
only a limited fraction of the ions emanating from sample
explosions could be picked up.

None of the hits found—both via our proposed method or ToF
hit-finder—can be unambiguously attributed to a single RNA
polymerase II complex, but they are hits indicating the presence
of organic matter in the interaction region of the X-ray pulse,

based on the combination of the diffraction patterns and ToF ion
traces (Supplementary Fig. 4a).

Below follows a more theoretical demonstration of the general
validity and reliability of our hit-finding method, where a
comparison with an idealized photon count threshold is shown
and detection limits are explored.

Statistical hit-finder efficiency on larger samples. As further
evidence of the effectiveness of the method, we tested our sta-
tistical approach on other datasets collected from larger particles
collected at the CXI end station: the Omono River virus (OmRV)
—same data set as presented in previous work5—and the bac-
teriophage PR772, the same sample used in an earlier experiment
at the AMO end station31.

These represented two icosahedral viruses, respectively, of 40
nm and 70 nm in diameter, studied during experiments in April
2014 and April 2016 (Supplementary Note 1). The experimental
setup was the same as described for the RNA polymerase
experiment; the CSPAD back detectors shared the same revision
(v. 1.6) as on May 2013. To reduce the total amount of incident
photon flux (and so the scattered background), more aggressive
aperturing of the beam was applied, reducing the background
scattering significantly, but also decreasing the scattered signal
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from the samples. OmRV was injected as described in a recent
study5. In the PR772 data set analyzed (Supplementary Note 1),
the specific run used was collected while the injection system
was being flushed with water, thus creating a slow elution of
remaining sample particles towards the end.

We found 870 hits for OmRV and 460 hits for PR772 (see
Supplementary Fig. 5a, b), meaning, respectively, 4.29% and
0.28% hit-rate. In Fig. 6a, b we show icosahedral patterns from

these hits: they are single hits, respectively, for OmRV virus and
bacteriophage PR772. The snapshots shows particles of different
sizes, as the size distribution is quite broad for both viruses with
the injection system used5,31.

In the previously published analysis on the OmRV data set5,
421 hits were found in the same run we analyzed (Supplementary
Note 1). Our set of 870 hits was a strict superset, thus including
all the 421 hits previously identified (Supplementary Fig. 5a).
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Moreover, we show that some of the additional hits are clearly
representative of single Omono River virus particles, albeit
weaker (Fig. 7).

Protein hits simulated on top of true background. We have also
evaluated the efficiency of our approach using computer simu-
lations. We compared the statistical hit-finder with one that
makes use of pure photon count statistics, by normalizing to the
expected photon count (Fig. 4c, d) and setting a threshold as
described for the log-likelihood scores. The ratio of correctly
identified hits given various photon beam intensities is reported
in Fig. 8, in the special cases of diameter size 8, 13, and 40 nm
spherical particles with protein-like scattering power. Focus-
centered spherical hits of protein material were simulated (using
Condor online32) at different intensities (4.46 × 109–4.46 × 1018

photons × pulse−1 × μm−2) for the three sizes. These were
superimposed on a background run for the CSPAD-140k detector
(from a June 2015 experiment).

In an actual FXI experiment, the hits are rarely perfectly
focused relative to the X-ray pulse. However, owing to broad tails
of the beam profile22, we still get detectable scattered signal.
Therefore, we also simulated particles hit by a Lorentzian and a
Gaussian beam (by multiplying the simulated patterns with scalar
intensities sampled from a Lorentzian and a Gaussian 2D
function—see Methods).

In the case of a particle hit perfectly in focus by a tophat beam
(Fig. 8a), perfect efficiency for larger 40 nm particles is reached
already around 1010 photons × pulse−1 × μm−2; for smaller 13
nm particles, 50% and 100% correct hit-identification are reached
at 5.00 × 1011 and 1012, respectively.

On the other hand, when looking at the case of non-centered
hits (Fig. 8b, c), we can see that at 1012 photons × pulse−1 × μm−2,
the efficiency of the implemented algorithm is not yet at 50% in
any case.

Provided greater beam intensity—e.g., >1013 photons × pulse−1 ×
μm−2—evealing hits of diameter size ~ 13 nm (or even smaller, ~
8 nm) become feasible ( >50% of correct identifications with the
proposed statistical approach).

A quick comparison of the two methods for the realistic cases
(Lorentzian and Gaussian beam profiles) shows that for hits of 13

nm our method can obtain a 50% recovery rate at less than a half
of the intensity. As a matter of fact, the statistical hit-finder
(straight lines) reaches this point, respectively, at 2.10 × 1013

photons/pulse/μm2 and 9.73 × 1013 photons/pulse/μm2, whereas
the photon count hit-finder (dash-dotted lines) achieves the same
result at 4.61 × 1013 photons/pulse/μm2 and 2.12 × 1014 photons/
pulse/μm2. As we kept the background signal constant in our
experiments, doubling the intensity corresponds to increasing the
signal-to-noise ratio by ~ 3 dB. At the intensity where the
statistical hit-finder recovers 50% of hits, the median shot
contains 244 sample photons on top of a background of 1486
photons, giving a SNR=−7.85 dB. The corresponding median
sample photon count for the photon threshold hit-finder was 442
photons. The average hit, on the other hand, contains a far higher
number of photons, owing to the presence of a smaller number of
well-focused hits. The average hit at the 50% recovery level for the
statistical hit-finder contains ~ 4500 photons, equivalent to
SNR= 4.89 dB, still at a level where the background component
is non-negligible.

In all, our statistical approach needs less photon flux. When
considering the 8 nm particle, we can conclude that reliable
detection would require intensities that are unachievable at CXI22

so far.
Relying on a sound way to reveal sample hits is a first step

toward single-molecule imaging. Having a reliable set of hits and
models of the background component in those hits, further
analysis can be performed, such as size determination, classifica-
tion, and reconstruction4,5,17,33.

Discussion
In previous works, Poisson log-likelihood models have been used
for unmeasured backgrounds, as a concordant step during 3D
reconstruction of the sample. This is a highly computationally
intensive process, which would not easily lend itself to the pro-
cessing of huge data sets with single-digit hit rates34. Similar
schemes are still relevant as a later step, to filter out correct single-
particle hits.

Without need of making assumption regarding the nature of
the particles giving rise to diffraction, our statistical approach
addresses the hit-finding problem in a more sophisticated way
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Fig. 6 Diffraction patterns representing two icosahedral viruses. a and b show, respectively, four single OmRV and PR772 hits (downsampled at 4 × 4
pixels). These patterns represent hits of different sizes, as the size distribution for those viruses is quite broad using the injection methods in place at the
time
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than methods previously used, resulting in several improvements.
First, it gives us an unprecedented accuracy in hit-identification,
providing a large number of hits with a verified low false-positive
rate. Second, the direct comparison of each pattern with its
expected background is able to disentangle sample hits even in a
very low signal-to-noise regime: a necessary development to be
able to reveal sample hits in the ~ 13 nm size range. Thus, the
method has general validity, working in any signal-to-noise range
and allowing the identification of hits with diameters from 13 nm
and up. Moreover, it is resilient to different backgrounds, as
shown by testing it on different data sets. For all those reasons the
statistical hit-finding approach constitutes a step towards realistic
FXI experiments for protein imaging, providing new insights in
the hit-finding problem and background signal treatment in
general. Improvements in detectors, injection, intensity and
background would make detection possible even for smaller
particles (diameter < 8 nm). For larger particles, it is clear that our
method is able to recover a higher number of relevant hits,

including the subset of single-particle hits of actual interest in
downstream analysis.

Furthermore, the background model developed for the hit-
finding algorithm can be used for other crucial steps: size deter-
mination of the hits retrieved, classification and EMC recon-
struction: all essential for an eventual recovering of the 3D
electronic density5,17,33. We believe that renewed experiments at
CXI, with current advances in detector performance as well as
hit-finding technology, could succeed in single-protein complex
imaging. The use of a background model is essential, since the
majority of hits will be weak: most of the photons identified (even
after some masking) arise from the background noise, not the
sample itself.

For our main sample, the RNA polymerase II data, we iden-
tified 1165 hits from 402,296 events, meaning a ~ 0.3% hit-rate.
Low-resolution 3D reconstruction is possible already with 200
single-particle diffraction patterns33. Considering a five shifts
(12 h each) experiment—a quite standard allocation time at the
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Fig. 7 Downsampled patterns belonging to the OmRV data set. Row a and b show events identified as hits by our hit-finder—in the score range
4000–6000 (a) and in the range 2000–4000 (b)—that are not identified by a simpler hit-identification scheme (such as the one used by Cheetah
software); c shows three blank events (belonging to background), to be used as a reference to the eye for discerning hits/misses. In particular, a shows that
our hit-finder can find particle hits from a single OmRV virus that were excluded by a standard hit-finder
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LCLS—and the 120 Hz acquisition rate at the CXI end station,
and given even our low 0.3% hit-rate achieved in May 2013, that
would mean collecting >72,000 particle hits. If we manage to
improve sample injection and tune it so to increase the chance of
having single-particle hits, we could have enough single RNA
polymerase II hits to reconstruct its 3D structure at 5 Å resolution
or better. The most critical improvement of injection would be to
reduce the initial size of the aerosol droplets by using an elec-
trospray injector35. At that point, the ongoing research efforts in
extending existing 3D reconstruction methods to model the full
conformational landscape of the sample becomes even more
pressing, a concern that so far has remained largely theoretical in
FXI applications.

The need for robust hit-finding solutions is of increasing
relevance given the current developments at XEFL sources, which
focus on higher repetition rate, rather than stronger individual
pulses. For example, the AGIPD detector at the European XFEL
allows the readout of ~ 3500 patterns/second36 and similar kHz
readout rates of diffraction data are also expected for LCLS-II37.
Being able to identify shots containing weak diffraction patterns
will be crucial in order to be able to fully leverage the properties of
these sources for single-particle imaging. Filtering out >90% of all
shots rapidly will allow more sophisticated classification and
reconstruction schemes to be applied to the remaining subset.

Methods
Experimental setup. The experiment was performed at the CXI Instrument at the
LCLS XEFL facility. Here, two X-ray detectors were available: CSPAD-2.3 M (to
study high-resolution features) and CSPAD-140k (to study low-resolution fea-
tures). The sample was injected in an aerosol form into the vacuum chamber,
where it is hit by the XFEL beam pulse. The resulting scattering is then recorded as
a diffraction pattern on the pixelated detector.

Sample preparation. The sample studied was the RNA polymerase II, an enzyme
involved in DNA transcription. The sample was labeled with gold nanoparticles,
using clusters of Au102(p-MBA)44 covalently attached to specific sites on the
molecule. The sample buffer was exchanged to 25 mM ammonium acetate by

dialysis. The other samples (OmRV and PR772) included in the analysis have been
treated as described in5,31.

Data processing. Raw data as recorded by the detector pixels consist of electronic
signals, which are acquired by means of a 14-bit clock counter for the number of
ticks until pixel voltage matches a reference voltage ramp25, and so the output is
expressed as arbitrary digital units (ADU) values ranging from 0 to 214= 16384.
They are stored in the XTC format, which is then converted into the CXIDB
format38 (a specific HDF5-based schema for X-ray Coherent Diffraction Imaging
data) using the Cheetah software39 and Hummingbird software28. In our analysis,
most preprocessing steps in Cheetah (for RNA polymerase II data) and in Hum-
mingbird (for Omono River virus and bacteriophage PR772 data) were disabled
and we carried out our own. Going from raw data to photon count and log-
likelihood score data, requires the following: (i) per-column common mode sub-
traction (as described in previous work40); (ii) gainmap: the ADU count corre-
sponding to the 1-photon peak is estimated by merging the values over all the
frames in the sample runs for each pixel separately. Gaussian distributions are
fitted to the resulting data: the 0-photon peak is identified, followed by the 1-
photon peak. The 0-photon peak fitting is constrained to be in the region where the
ADU count x satisfies x < 12, and 1-photon peak is searched in the range u0+ 4s0
< x < 50 (u0 being the mean fitted value of the 0-photon Gaussian—usually ranging
between −3 and 3—and s0 its standard deviation—typically < 6). These constraints
stabilized our fits, especially for pixels with relatively low, or relatively high, photon
counts in the background distribution; (iii) photon count: the photon count is
obtained by dividing the frame ADU data corrected through step i, by the gainmap
and then rounding this value to the closest integer, truncating negative numbers to
0; (iv) rate parameters: see later section—mean photon count per pixel per frame;
(v) pixel mask: we used a mask to exclude the most aberrant pixels from our
calculations. Such problems can arise from detector damage or fabrication issues,
signal levels where the detector linearity is compromised, or simply from regions
where the beamline background is spatially unstable. We consider a “good” pixel to
be one meeting our null hypothesis (as described in the first paragraph of Results
section). The set of rate parameters (λki) as calculated above are sampled according
to Poisson statistics. The scalar product of the normalized vectors obtained from
the histogram counts for the two different sets (binned in the same range) was
taken:

S ¼ a � b
kakkbk ð2Þ

a represents the photon counts, obtained dividing the ADU vector (after
applying step i)) by the gain for that pixel (obtained in step ii)); b represents instead
the expected photon counts (calculated as for a) of the same pixel.
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Fig. 8 Hit-finding performance of simulated hits superimposed on real background. Three representative spherical particle sizes (8, 13, 40 nm) were
simulated for varying pulse intensities, particle sizes, focal properties, and hit-finding methods. We present our hit-finding method and a simpler scheme
using our derived pixel mask and the total expected photon count given the pulse energy. Hit-finding was also performed in three distinct beam settings:
particles hit perfectly on focus by a tophat beam (a) and the more realistic cases of a Lorentzian or a Gaussian beam hitting the particle (b and c). In all the
plots, normalized scores are shown as a solid line, whereas photon count based detection is dash-dotted. For the most interesting cases of a 13 nm particle
hit by a Lorentzian and Gaussian beam, we found a 50% recovery, respectively, at intensities of 2.10 × 1013 photons × pulse−1 × μm−2 and 9.73 × 1013

photons × pulse−1 × μm−2 with our statistical hit-finder; at 4.61 × 1013 photons × pulse−1 × μm−2 and 2.12 × 1014 photons × pulse−1 × μm−2 with the pure
photon-based one
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The resulting scalar S ranges between 0 and 1: the closer S is to one the more
equal the two histograms are and the better they fulfill our null hypothesis. The
threshold we recommend for this purpose is 0.9999 for those data sets; (vi) log-
likelihood ratio: observed photon counts in the events are compared with the
expected photon count for that specific event under an assumption of pure
background, as in the formula shown in the main body (Eq. 1). To some extent, the
estimates in Eq. 1 will also account for deviations or errors owing to rounding
effects or mismatches in the gainmap, as long as those effects influence background
and sample shots identically.

The execution order of steps (i–v) is shown graphically in Supplementary Fig. 6.

Pulse energy detection. Located after the exit slit of the monochromator, the Gas
Monitoring Detector (GMD) uses a rarified gas ionization system to record the
energy of each beam pulse: the pulse intensity ionizes the gas, thus producing an
ion drift current proportional to the energy of the shot. The proportionality factor
is known and so pulse energy values are retrieved. These are associated to each
frame collected by the data acquisition system, and are expressed in mJ. Pulse
energy is expected to be linearly proportional to the number of photons N in each
recorded pattern, as beam pulse energy is equal NEphoton. Instead, the trend in our
data is roughly polynomial with a higher degree than 1 (third order has been tried
out—see Supplementary Fig. 7). Inquiries with LCLS staff indicates that this effect
can be owing to a lack of GMD calibration during the experiment in question. To
account for this, re-fitted pulse energy values are used in the computation of the
mean photon count per pixel (see Mean photon count per pixel). If we denote the
pulse energy of the ith shot xi , and Φi the expected photon count, we have:

Φi ¼ p0xi
3 þ p1xi

2 þ p2xi þ p3 ð3Þ

where p0;1;2;3are the fitted parameters of a third order polynomial fit.
Usually, a quick look to the “photon count vs pulse energy” plot is necessary in

order to remove extreme outliers (when present) in the background distribution,
otherwise those will strongly affect the fit. This can include shots where the beam
path was actually obstructed between the beam energy detector and the experiment
chamber. Furthermore, also events with very low pulse energy values are removed
for the same reason. All these events have in common that they do not represent
stable operation of pulses being transmitted all the way to the end station.

Preliminary misses. In order to construct a list of preliminary misses, the photon
count distribution is chronologically ordered and binned. Each bin contains at least
100 events, in order to provide reasonably stable estimates of the mean (μ{bin}) and
standard deviation (σ{bin}) of that specific bin. The expected photon counts in each
bin are fitted as explained in the section above and are then subtracted from the
original photon counts of the events. μ{bin} and σ{bin} are then calculated and the
elements of the bin are selected in the interval (μ{bin} − 4σ{bin}, μ{bin}+ 4σ{bin}),
calculated with the method of moments estimation41, which works well as long as
the true background distribution is Gaussian. This operation is performed itera-
tively, reworking the fit of all parameters based on the current set of shots within
the range, as long as the bin contains >100 elements or until σ{bin} does not change
anymore.

The preliminary misses based on this photon count criteria, as well as the
constraints on pulse energy and photon count that exclude blank outliers per bin,
are then combined to form the total set of preliminary misses. These are then used
as the background events in our approach, used to compute all parameters
(including the expected photon count polynomial) used for the remaining
processing steps.

Mean photon count per pixel per frame. The mean photon count of each pixel in
each frame can be affected both by systematic and statistical errors. We correct for
those, by considering the expected photon count given a specific pulse energy (and
thus a specific expected photon count Φi), as follows:

λki ¼ �Nk
Φi
�Φ

ð4Þ

where �Nk is the actual mean photon count per pixel calculated as

P
j
njk

N , with N and
njk being, respectively, the total number of frames and the observed photon count
in the background, whereas the subscripts jk indicate the kth pixel in the jth frame.

�Φ is the mean expected photon count per frame, calculated as

P
j
Φj

N .
In total, we have:

λki ¼
Φi

P
j njkP

j Φj
ð5Þ

ToF (time-of-flight) hit-finder. To validate our proof of concept method, another
independent hit-finder was used: a ToF detector, which consists of a Multi-Channel
Plate (MCP) detector at a distance of ~ 50 cm from the interaction region. The

MCP detector is a Z-gap triple plate detector with an active area of 40 mm. It was
used in “drift mode” with no potential field across the interaction point to accel-
erate ions in the direction of the detector. Thus, the recorded flight times reflects
directly the kinetic energy gained by the ions from the explosion of the sample
particle. The detector used can be equipped with a high-pass electrostatic filter on
the detector that would allow discrimination between specific ion species and
charge states42. In the present analysis, a ToF event is considered to come from
sample if more than 1 proton (~ 2 mV) signal is detected.

(For examples of ToF signals, see Fig. 5b and Supplementary Fig. 2 and 4).

Simulations—Condor online. We simulate three spherical hits (8, 13, and 40 nm
in diameter) of protein material at ~ 1011 photons × pulse–1 × μm–2 of intensity
and of 7 KeV in photon energy (Eph), by using Condor online. Then, for each size,
scaled versions are tested at 90 different intensities in the range 1010–1018 pho-
tons × pulse–1 × μm–2. Poisson samplings of the patterns are created and summed
on top-specific background photon count frame. The total number of hits simu-
lated for each size/intensity combination is identical to the total number of
background events. We can then apply our hit-finder to this data, and determine
the ratio between identified hits and the total number generated. As the back-
ground data are known, we can also estimate the false positive rate (Supplementary
Fig. 1), by applying our hit-finder to unmodified background data.

Lorentzian and Gaussian beam. We simulated sampling of small hits within a
Lorentzian beam, by using a 2D Lorentzian function 1

1þx2

a2ð Þ 1þy2

b2

� �; and a Gaussian

beam of 400 nm, using a 2D Gaussian function e�
x2

2a2
� y2

2b2 . For both functions
a=b=0.2 μm, and x, y sampled uniformly in [−0.5, 0.5] μm.

Computational time and computational environment. The data analysis repor-
ted was implemented in Python and run on a cluster private to the Uppsala LMB
group. Experiments used a variable number of nodes (1–8) and worker processes
(10–80) in parallel, taking advantage of the mpi4py and h5py modules. Obtaining
the log-likelihood scores (step vi) in Data processing section) for the RNA poly-
merase II sample runs (418,153 frames in total—370 × 388 pixels per frame) takes
~ 20,000 seconds on ~ 80 CPUs. This level of performance is adequate for online as
well as off-shift operation during a beamtime, given proper adaptations. For
consistent online operation, however, a reasonable pixel mask and a detector
gainmap for the specific beam energy will be required. The mean photon counts
per pixel per frame can be estimated online from incoming samples, as already
discussed.

Code availability. The code is available at https://github.com/albpi/
Statisticalhitfinder/.

Data availability
Sample data (including raw frames, photon counts, and hit-identification scores)
have been deposited into the CXIDB repository (entry 78).
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