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Optical analogues to the equatorial Kerr–Newman
black hole
R. A. Tinguely 1✉ & Andrew P. Turner 2✉

Optical analogues to black holes allow the investigation of general relativity in a laboratory

setting. Previous works have considered analogues to Schwarzschild black holes in an iso-

tropic coordinate system; the major drawback is that required material properties diverge at

the horizon. We present the dielectric permittivity and permeability tensors that exactly

reproduce the equatorial Kerr–Newman metric, as well as the gradient-index material that

reproduces equatorial Kerr–Newman null geodesics. Importantly, the radial profile of the

scalar refractive index is finite along all trajectories except at the point of rotation reversal for

counter-rotating geodesics. Construction of these analogues is feasible with available

ordinary materials. A finite-difference frequency-domain solver of Maxwell’s equations is

used to simulate light trajectories around a variety of Kerr–Newman black holes. For rea-

sonably sized experimental systems, ray tracing confirms that null geodesics can be well-

approximated in the lab, even when allowing for imperfect construction and

experimental error.
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In recent years, there has been a great amount of interest in
precisely controlling the electromagnetic response of artificial
materials. By introducing subwavelength structural features,

the permittivity and permeability tensors of the medium can be
tuned to exhibit a wide range of interesting and useful phe-
nomena, such as cloaking1–7, negative refraction1,8,9, and sub-
wavelength microscopy with superlenses10–13.

Analogue spacetimes1,2,14–19 use optical materials to imple-
ment coordinate transformations between a physical space and a
virtual “electromagnetic space”, via the formal equivalence
between Maxwell’s equations in curved spacetime and those in
flat spacetime within a corresponding bianisotropic medium19–23.
This allows one to build optical analogues to gravitational sys-
tems24–44. In particular, there has been a fair amount of interest
in reproducing the metrics of black holes45–50. The null geodesics
and polarizations of light moving in the spacetime metric can be
reproduced exactly within a fully bianisotropic material; if one
simply wishes to reproduce the null geodesics of the metric,
however, it is much simpler to use an appropriately designed
gradient-index material that is easier to construct experimentally.

In this paper, we discuss the bianisotropic and gradient-index
materials that imitate the exterior equatorial Kerr–Newman black
hole solution. We first carry out the analysis for optical systems
reproducing the null geodesics of the Schwarzschild black hole.
We recover the familiar results for the permittivity and perme-
ability tensors and scalar refractive index reproducing the metric
in isotropic coordinates, as well as the permittivity and perme-
ability tensors reproducing the metric in the Schwarzschild
coordinates20,46,47,51. We then present the scalar index that
reproduces the null geodesics for Schwarzschild coordinates,
which, by comparison with the isotropic result, has the significant
experimental benefit of remaining finite all the way to the hor-
izon. We then carry out these same analyses for the equatorial
Kerr–Newman metric in Boyer–Lindquist coordinates, reprodu-
cing the metric within a fully bianisotropic material23, and
finding the scalar index required to reproduce the null geodesics.
We use finite-difference frequency-domain simulations of sys-
tems that approximate the gradient-index solutions of the
Schwarzschild and Kerr–Newman black holes with concentric
circular shells of constant index, and use ray tracing to perform
an analysis of the error sensitivity of such systems. These analyses
demonstrate that these approximate gradient-index systems,
which are far simpler to construct than true gradient-index sys-
tems or full bianisotropic media, can adequately reproduce null
geodesics and are forgiving to fabrication and experimental error
for reasonable geodesics. As such, they are practical tabletop
analogues for charged and/or rotating black holes.

Results
Throughout this paper we use Gaussian Planck units, with c= ℏ
=G= 4πϵ0= 1. Greek indices range over temporal and spatial
coordinates, e.g., μ= 0, …, 3, while Roman indices range over
only spatial coordinates, e.g., i= 1,…, 3. We use uppercase Greek
and Roman letters to indicate variables related to the optical
system, while we use lowercase letters to indicate variables related
to the spacetime metric that it is replicating. We refer to these
respectively as “real space” and “spacetime” variables. We typi-
cally use hats to indicate the dimensionless versions of variables.
When we map spacetime coordinates onto real space coordinates,
we always do so by equating the dimensionless coordinates.
Spacetime variables are dedimensionalized via multiplication by
the appropriate power of the black hole mass M. Real space
dimensionless variables are then dimensionalized by a convenient
length scale for construction. Using this matching of coordinates

allows one to more easily keep track of the relationship between
real space coordinates and the spacetime coordinates they
represent.

The Schwarzschild black hole. We will begin by studying the
Schwarzschild black hole and various optical analogues thereof.
The Schwarzschild metric describes the spacetime geometry of a
static, uncharged black hole of mass M, and is given in dimen-
sionless Schwarzschild coordinates ŝ; t̂; ρ; θ; ϕ (related to the usual
dimensionful quantities via s ¼ Mŝ, t ¼ Mt̂, r=Mρ) by ref. 52

d̂s2 ¼ � 1� 2
ρ

� �
d̂t

2 þ 1� 2
ρ

� ��1

dρ2 þ ρ2 dθ2 þ sin2 θ dϕ2
� �

:

ð1Þ
Making the coordinate transformation ρ ¼ ~ρ ð1þ 1

2~ρÞ
2, the

Schwarzschild metric (1) can be written in the form52

d̂s2 ¼ �
1� 1

2~ρ

� �2

1þ 1
2~ρ

� �2 d̂t
2 þ 1þ 1

2~ρ

� �4

dx̂2 þ dŷ2 þ dẑ2
� �

; ð2Þ

where the spacetime isotropic coordinates x̂; ŷ; ẑð Þ are related to
the transformed Schwarzschild coordinates ~ρ; θ; ϕð Þ via the
transformation from Cartesian to spherical coordinates.

We first replicate the metric in isotropic coordinates, given in
Eq. (2), in order to make contact with existing literature. As
discussed in refs. 15,19, there is a formal equivalence between the
equations of electrodynamics in a curved spacetime and those in
flat space in a macroscopic medium. Specifically, the behavior of
light in a curved spacetime background described by metric gμν is
reproduced in flat space within an impedance-matched bianiso-
tropic medium with permittivity ϵij, permeability μij, and
magnetoelectric coupling αi given by

ϵij ¼ μij ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi� det g

p
g00

ffiffiffiffiffiffiffiffiffiffi
det γ

p gij ; αi ¼
g0i

g00
ffiffiffiffiffiffiffiffiffiffi
det γ

p ; ð3Þ

where γij is the three-dimensional metric tensor of the real space
coordinate system in which we construct the medium, onto which
we map the spatial components gij. Here, g and γ denote the
determinants of gμν and γij, respectively. The macroscopic fields
D, H are related to the microscopic fields E, B via

D ¼ ϵEþ α ´ H ; B ¼ μH� α ´ E : ð4Þ
As discussed in ref. 53, this choice of identification between the

spacetime geometry and the electromagnetic analogue, elaborated
first in ref. 19, is not unique, and cannot reproduce all measurable
properties of light moving in the spacetime metric. However, it is
sufficient to reproduce both the null geodesic trajectory and the
polarizations of light moving along these geodesics, which makes
analogues produced with this identification worthy subjects
of study.

Using Eq. (3) to map the dimensionless spacetime isotropic
coordinates x̂; ŷ; ẑð Þ onto the corresponding dimensionless real
space Cartesian coordinates X̂; Ŷ ; Ẑ

� �
(and thus mapping the

dimensionless spacetime isotropic radial coordinate ~ρ onto the
dimensionless real space radial coordinate P), we find that the
behavior of light in the Schwarzschild metric (2) is reproduced in
flat space within a medium described by

ϵij ¼ μij ¼ ð2P þ 1Þ3
4P2ð2P � 1Þ1

ij ; i; j 2 X̂; Ŷ; Ẑ
	 


: ð5Þ
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In this case, the medium is isotropic, and the scalar index can
be read off immediately from Eq. (5) as

nðPÞ ¼ ð2P þ 1Þ3
4P2ð2P � 1Þ : ð6Þ

Note that the results of Eqs. (5) and (6) are well-established in
the literature20,46,47,51. Equation (6) has the benefit that there is a
single scalar index that reproduces all null geodesics and the
polarization of light moving along these geodesics, and as the
material is isotropic (though still inhomogeneous) it is thus easier
to construct experimentally. However, this refractive index
diverges approaching the horizon, i.e., as P ! 1

2, so it is not
useful for investigating geodesics in the vicinity of the horizon.

Another approach is to instead use the Schwarzschild
coordinates (1), which produces an anisotropic medium distinct
from Eq. (5). As before, we use Eq. (3) to map the dimensionless
spacetime Schwarzschild coordinates ρ; θ; ϕð Þ (now with the
Schwarzschild radial coordinate ρ rather than the isotropic radial
coordinate ~ρ) onto the corresponding dimensionless real space
spherical coordinates P;Θ;Φð Þ, yielding

ϵij ¼ μij ¼
1 0 0

0 1
PðP�2Þ 0

0 0 csc2Θ
PðP�2Þ

0
BB@

1
CCA ; i; j 2 P;Θ;Φf g: ð7Þ

This same system is described in dimensionless real space
Cartesian coordinates X̂; Ŷ ; Ẑ

� �
by

ϵij ¼ μij ¼ 1
P2ð2� PÞ

2X̂
2 � P3 2X̂Ŷ 2X̂Ẑ

2X̂Ŷ 2Ŷ
2 � P3 2ŶẐ

2X̂Ẑ 2ŶẐ 2Ẑ
2 � P3

0
B@

1
CA

¼ 2PiPj � P31ij

P2ð2� PÞ ; i; j 2 X̂; Ŷ; Ẑ
	 


;

ð8Þ
where Pi ¼ X̂; Ŷ; Ẑ

� �
and the dimensionless real space Cartesian

coordinates X̂; Ŷ ; Ẑ
� �

are related to the real space spherical
coordinates P;Θ;Φð Þ in the usual way. This result matches those
presented in refs. 46,47.

If we only wish to reproduce the trajectories of light in the
Schwarzschild metric (and not the proper polarizations), then a
radially varying scalar index n(P) is sufficient. In Schwarzschild
coordinates, we will find that the radial profile depends on the
initial conditions defining the geodesic. We consider null
geodesics of the metric (1); all such geodesics are planar, and
so the spherical symmetry allows us to take θ= π/2 without loss
of generality. Such null geodesics of the Schwarzschild metric are
parametrized by a conserved energy at infinity, ε ¼ 1� 2M

r

� �
dt
dσ,

and the conserved angular momentum, ‘ ¼ r2 dϕ
dσ, with σ the affine

parameter of the geodesic. Dedimensionalizing these parameters
via ‘ ¼ M‘̂ and σ ¼ Mσ̂ (note that the energy is already
dimensionless, ε̂ ¼ ε), null geodesics satisfy the geodesic equa-
tion52

�ε̂2 þ dρ
dσ̂

� �2

þ 1� 2
ρ

� �
‘̂
2

ρ2
¼ 0 : ð9Þ

Combining this equation with dϕ
dσ̂

� �2
¼ ‘̂

2
=ρ4 yields

dϕ
dρ

¼ ±
ε̂2

‘̂
2 ρ

4 � ρ2 þ 2ρ

� ��1=2

: ð10Þ

We then make use of the spacetime impact parameter
b̂ðρÞ ¼ ρ sin β, where β is defined by the relation

ρ
dϕ
dρ

¼ � tan β : ð11Þ

Plugging this relation into Eq. (10) and making the sign choice
consistent with our definition of β, we find that

b̂ðρÞ ¼ b̂�2
1 þ 2ρ�3

� ��1=2
; ð12Þ

where we have defined b̂1 ¼ ‘̂=ε̂. Fermat’s principle relates the
real space impact parameter and index of refraction by

nðPÞ / B̂ðPÞ�1 : ð13Þ
Equation (12) is then taken as input to Eq. (13) by equating the

spacetime coordinates ρ; ϕð Þ with the real space coordinates
P;Φð Þ, which also equates the dimensionless spacetime impact
parameter b̂ with the dimensionless real space impact parameter
B̂. This yields

nðPÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂�21 þ 2P�3

q
: ð14Þ

This solution has a number of noteworthy features. First, we
reiterate that Eq. (14) only reproduces the geodesic trajectories of
light moving in the Schwarzschild metric (1), but does not
faithfully reproduce its polarizations. The radial profile depends
on the initial condition b̂1, which is related to initial angle β and
initial radius P0 by

b̂21 ¼ P2
0

csc2β0 � 2P�1
0

: ð15Þ

This is somewhat inconvenient for experimental application,
as it means that a different apparatus must be constructed for
each family of geodesics; to address this, one could in principle
construct a cylinder, where b̂1 varies along the cylinder axis
and each 2D slice recreates the corresponding family of null
geodesics. A significant benefit of this coordinate system,
however, is that n(P) approaches a finite value as P → 2 so long
as b̂1 ≠ 0, which means that geodesics can be studied in the
vicinity of the event horizon, in contrast to the solution (6). The
constant of proportionality in Eq. (14) allows us to tune the
scalar index at the initial P0 to the most feasible value for
construction.

Finally, note that we can relate conserved quantities ε, ‘ in
spacetime to E; L in real space in the following way: in flat space, a
photon with frequency f and wavelength λ has energy E ¼ 2πf
and angular momentum L= 2πB/λ, with B the dimensionful real
space impact parameter. Thus, L=ERS ¼ nB̂=2 ¼ constant. Set-
ting n= 1 at P → ∞ in Eq. (14) and equating the real space and
spacetime dimensionless impact parameters, B̂ ¼ b̂, yields
L=ERS ¼ ‘=εrS. Here, rS= 2M, and RS is the real space radius
onto which rS is mapped.

The Kerr–Newman black hole. We now apply the same
approaches to investigate optical analogues of the Kerr–Newman
black hole, of which the Kerr, Reissner–Nordström, and
Schwarzschild results are special cases. We will restrict our
attention to equatorial null geodesics.

The Kerr–Newman metric describes the spacetime geometry
surrounding a black hole of mass M, angular momentum per unit
mass a= J/M, electric charge Q, and magnetic charge Qm.
Dedimensionalizing the quantities via a ¼ Mâ, Q ¼ MQ̂,
Qm ¼ MQ̂m, the metric is given in dimensionless
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Boyer–Lindquist coordinates by52

d̂s2 ¼ Σ̂
dρ2

Δ̂
þ dθ2

� �
� Δ̂

Σ̂
dt̂ � â sin2 θ dϕ
� �2

þ sin2θ

Σ̂
ρ2 þ â2
� �

dϕ� â dt̂
� �2

;

ð16Þ

where

Σ̂ ¼ ρ2 þ â2cos2θ ;

Δ̂ ¼ ρ2 � 2ρþ â2 þ ρ2Q ;

ρ2Q ¼ Q̂
2 þ Q̂2

m :

ð17Þ

Here, M is the total mass-equivalent, which contains contribu-
tions from the irreducible mass, the rotational energy, and the
Coulomb energy of the black hole54.

After setting θ= π/2 and dθ= 0 to restrict to the equatorial
case, we use Eq. (3) to map the dimensionless spacetime
coordinates (ρ, θ, ϕ) onto the dimensionless real space
coordinates (P, Θ, Φ), as before, yielding

ϵij ¼ μij ¼
Δ̂

Δ̂�â2
0 0

0 1
Δ̂�â2

0

0 0 1
Δ̂

0
BB@

1
CCA ; αi ¼

0

0

â 1
Δ̂�â2

� 1
P2

� �
0
B@

1
CA ;

ð18Þ
where Δ̂ should now be interpreted as a function of P. The
derivation is given in full in the “Methods” section. The equatorial
geodesics and polarizations of the Kerr–Newman metric are
exactly reproduced in flat space within a medium with these
properties23. There is a subtlety here—although the radial and
azimuthal components P, Θ appear to diverge at the ergosphere
Δ̂ ¼ â2, this is a spurious divergence. As discussed in refs. 23,55,56,
the physically relevant covariant quantity is the tensor χ defined
therein, which relates the macroscopic and microscopic fields.
This quantity diverges only at the horizon Δ̂ ¼ 0.

As before, we can also replicate equatorial null geodesics of the
Kerr–Newman metric using only a scalar index. As in the
Schwarzschild case, these geodesics are parametrized by the
dimensionless conserved energy at infinity and conserved angular
momentum, given in this case by

ε̂ ¼ 1� 2
ρ þ

ρ2Q
ρ2

� �
dt̂
dσ̂ þ 2â

ρ � ρ2Qâ
ρ2

� �
dϕ
dσ̂ ;

‘̂ ¼ � 2â
ρ � ρ2Qâ

ρ2

� �
dt̂
dσ̂ þ ρ2 þ â2 þ 2â2

ρ � ρ2Qâ
2

ρ2

� �
dϕ
dσ̂ :

ð19Þ

The geodesic equations describing the equatorial motion are

dϕ
dσ̂ ¼ 1

Δ̂
1� 2

ρ þ
ρ2Q
ρ2

� �
‘̂þ 2â

ρ � ρ2Qâ
ρ2

� �
ε

h i
;

dρ
dσ̂

� �2
¼ ρ2þâ2ð Þ2�â2Δ̂

� �
‘̂
2

ρ4 b̂�1
1 � V̂þ

� �
b̂�1
1 � V̂�

� �
;

ð20Þ

where

V̂ ± ¼
â 2ρ� ρ2Q

� �
± sgnð‘̂Þρ2

ffiffiffiffî
Δ

p

ρ2 þ â2
� �2 � â2Δ̂

: ð21Þ

As before, we find the impact parameter b̂ðρÞ ¼ ρ sin β by
plugging Eq. (11) into dϕ

dρ ¼ dϕ=dσ̂
dρ=dσ̂ , which yields

b̂ðρÞ ¼
ρ2 Δ̂� â2

� �þ 2ρ� ρ2Q

� �
âb̂�1

1
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 Δ̂� â2

� �þ 2ρ� ρ2Q

� �
âb̂�11

h i2
þ Δ̂

2
ρ2 þ â2
� �2 � â2Δ̂
h i

b̂�11 � V̂þ
� �

b̂�11 � V̂�
� �r :

ð22Þ

We proceed by equating spacetime coordinates (ρ, θ, ϕ) and
real space coordinates (P, Θ, Φ), which sets B̂ðPÞ ¼ b̂ðρ ¼ PÞ.
The scalar index for an optical Kerr–Newman black hole is again
given by

nðPÞ / B̂ðPÞ�1 : ð23Þ
An optical system with this scalar index reproduces the equatorial
null geodesic trajectories of the Kerr–Newman metric.

Unlike the Schwarzschild case, this scalar index is not always
sufficient to fully reproduce the given family of Kerr–Newman
geodesics. This can be seen immediately by noting that initially
counter-rotating geodesics (those with ‘̂ of opposite sign to â)
must turn around and become co-rotating before crossing into
the ergosphere; such a reversal of the sign of dϕ

dρ is not possible
with a finite (and positive) scalar index. This shortcoming
manifests itself as a divergence of the scalar index; the outermost
divergence occurs at radius

P� ¼ 1� âb̂�1
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� âb̂�11

� �
1� âb̂�11 � ρ2Q

� �r
: ð24Þ

This is a removable pole in the Schwarzschild and
Reissner–Nordström cases. For rotating black holes, the diver-
gence occurs at the point in the trajectory where the direction of
rotation reverses, consistent with the above observation that a
finite radially varying scalar index is insufficient to implement
such a reversal. Thus, the pole only affects initially counter-
rotating geodesics that enter the ergosphere.

Simulations of constructible optical black holes. Optical ana-
logues to black holes are particularly useful if their constructions
are realizable. In the following sections, we model optical black
holes with radially varying scalar refractive indices n(P), as given
by Eqs. (14) and (23). For Schwarzschild (and many
Kerr–Newman) black holes, n(P) is maximal at the horizon.
Because the impact parameter of light on the optical black hole
must be less than or equal to the radius of the “edge” of the
system, i.e., B̂≤ P0, it is found that n(P) ≤ c0n0P0, where c0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

31=108
p � 0:54 and n0= n(P0). Thus, the construction of an
optical Schwarzschild black hole with n0= 1 and moderate P0 ≤ 6
is plausible and achievable with indices of refraction in the range
of ordinary materials, such as water, glass, and plastic. (As will be
seen, many optical Kerr–Newman black holes are also con-
structible.) True gradient-index profiles of the form (14) could
perhaps be achieved with metamaterials; however, it is not clear
how easily realizable such systems are, so in this work we
approximate the profiles with concentric annuli of constant
scalar index.

For a system size in which the wavelength of the source light is
much smaller than the gradient length scale of the scalar-index
profile, i.e., λ � n= ∇nk k, a highly localized and highly directional
light source, like a laser, would nearly approximate the geodesics
of Eqs. (10) and (20). Simulating these trajectories amounts to ray
tracing, which we pursue in the following section. Specifically, we
investigate the number of annuli needed to sufficiently mimic the
true scalar-index profile and explore the impact of imperfect
construction and experimental error on the deviation of the ray
trajectory from the geodesic. However, in the following section,
we will first consider the case in which the source wavelength is
similar to the size of the optical black hole, i.e., M/λ ~ O(10). This
is done to demonstrate the strengths and limitations of this
study’s approach, as well as to be consistent with previous studies
such as refs. 28,29,31,32,38,41,46,47,57.
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In this study, all optical black holes are modeled with
dimensionless outer radius P0= 6. The system comprises either
16 or 21 concentric annuli, with the number depending on
acceptable annulus thickness (i.e., greater than the wavelength)
and the minimum modeled radius Pmin. The innermost and
outermost annuli each have half the width of each interior
annulus. The scalar index of each annulus is uniform, so that the
simulated n(P) profiles are piecewise functions, as shown in
Figs. 1 and 2. The values of n for the innermost and outermost
annuli are taken as n(P) at the minimum and maximum radii,
respectively; the refractive index of an inner annulus is taken as
the value of n(P) at its center.

It is important to note here that this geometry was chosen for
simplicity in the finite-difference frequency-domain simulations
of the next section, in which dimensions are constrained by the
wavelength. For consistency, the same geometry is scaled linearly
for the ray tracing analyses that follow. In practice, non-uniform
annulus thicknesses could be used to minimize steps Δn in
regions of high dn

dR and to reduce light scattering at each boundary,
but this is left for future work.

Finite-difference frequency-domain simulations. In this section,
the trajectory of light around an optical black hole is modeled
using a finite-difference frequency-domain (FDFD) solver58,59 of
Maxwell’s equations. Simulation details are provided in the
“Methods” section. Figure 1 shows the profiles n(P) used when
modeling light incident on an optical Schwarzschild black hole
with four different impact parameters, b̂1 ¼ 2, 3, 4, and 5; the
resulting FDFD simulations are shown in Fig. 3, with the wave-
length of light λ= 0.5 μm and optical Schwarzschild radius RS=
2M= 5 μm.

Consider the simulation shown in Fig. 3a, for which the
dedimensionalized impact parameter at infinity is b̂1 ¼ 2. The
peak of the electric field normalized to its maximum, Ej j=max Ej j,
follows the path of the geodesic quite closely. Here, Ej j ¼ ffiffiffiffiffiffiffiffi

EE�p
,

with E* the complex conjugate of E. Time-averaged Poynting
vectors are calculated as Re 1

2E ´H
�� �

and scaled by ∝ 1/R in the
figures. Those with largest magnitude point mostly along the
geodesic, and much of the energy flux is directed into the optical
black hole. The same spatial trend is seen in Fig. 3b, for which
b̂1 ¼ 3. Note in Fig. 1 how the profile of scalar index n(P)
increases in amplitude as the initial impact parameter increases,
in order to further bend light toward the horizon.

For b̂1 ¼ 4 and 5, seen in Fig. 3c, d, respectively, the brightest
regions of Ej j=max Ej j (and longest Poynting vectors) predomi-
nantly follow the geodesics. This is actually seen more clearly in
the energy contained in the electric field (/ Ej j2); however, only
the electric field amplitude is shown here for better visualization
of both small and large amplitude features. Agreement between
the simulated light path and actual geodesic is expected to
improve as the wavelength and beam width decrease relative to
the size of the optical black hole, as described in the following
section.

Another interesting effect is observed in Fig. 3d: the FDFD
simulation does not show light following the geodesic all the way
to the horizon. Instead, light begins to orbit at the photon sphere,
R= 3M= 7.5 μm. This results because the impact parameter is
nearly equal to that at which light becomes trapped,
b̂1 ¼ 3

ffiffiffi
3

p � 5:2. Only traces of the photon “ring” are resolved
in Fig. 3d. Higher fidelity simulations, with the optical black hole
comprising many more annuli, would likely be required to
properly simulate and study this phenomenon. This is left to
future work.

Several optical Kerr–Newman black holes are also simulated,
with profiles n(P) in Fig. 2 corresponding to the FDFD solutions
in Fig. 4. For each case, the impact parameter is b̂1 ¼ 3, and the
outer edge of the optical black hole is again at radius P0= 6.
These can be compared to the optical Schwarzschild black hole of
Fig. 3b. The innermost modeled radius varies for each simulation,
depending on whether n(P) diverges outside of the horizon. Each
simulation is described in detail below.

An extremal Kerr black hole (â ¼ 1; ρQ ¼ 0), with beam
trajectory co-rotating with the black hole spin, is shown in Fig. 4a.
Here, n(P) diverges at P*= 4/3; however, the true geodesic
escapes the black hole with dr

dσ ¼ 0 at P= 2. Therefore, though the
horizon is at Ph= 1, the system is modeled with innermost radius

Fig. 1 Scalar refractive index of simulated optical Schwarzschild black
holes. Radial profiles of the scalar refractive index used for simulations of
optical Schwarzschild black holes with impact parameters b̂1 ¼ a 2, b 3,
c 4, and d 5. The outer radius is R0/M= 6 withM the black hole mass. Note
the logarithmic scale of the vertical axis.

Fig. 2 Scalar refractive index of simulated optical Kerr–Newman black
holes. Radial profiles of the scalar refractive index n used for simulations of
optical Kerr–Newman black holes: a maximally co-rotating (â ¼ 1; ρQ ¼ 0);
b maximally charged (â ¼ 0; ρQ ¼ 1); c charged and co-rotating ðâ ¼ 2=5;
ρQ ¼ 4=5Þ; and d charged and counter-rotating ðâ ¼ �2=5; ρQ ¼ 4=5Þ. The
impact parameter is b̂1 ¼ 3, and outer radius is R0/M= 6, with M the black
hole mass. Note the logarithmic scales and limits of the vertical axes.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-0384-5 ARTICLE

COMMUNICATIONS PHYSICS |           (2020) 3:120 | https://doi.org/10.1038/s42005-020-0384-5 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


P= 1.4. Comparing to the Schwarzschild case in Fig. 3b, we see
that light is “dragged” further around the co-rotating black hole,
as expected. In addition, more light “escapes”, although not all is
directed along the geodesic. Inevitably, some energy flux is
directed into the optical black hole, as indicated by the Poynting
vectors; this is partially due to the finite width of the beam, and
partially to the discrete annular approximation of the true
gradient-index profile.

In contrast to Fig. 4a, an extremal Reissner–Nordström black
hole (â ¼ 0; ρQ ¼ 1) is simulated, with FDFD results depicted in
Fig. 4b. Here, the optical black hole could be modeled completely
to the horizon at Rh= 2.5 μm. In general, the peak of Ej j=max Ej j
follows the geodesic to the horizon. Little difference is seen when
comparing to the Schwarzschild case of Fig. 3b, except that light
now propagates within RS= 5 μm.

Two non-extremal Kerr–Newman black holes, with the same
charge (ρQ= 4/5) but opposite spins (â ¼ ±2=5), are also
simulated and shown in Fig. 4c, d. The co-rotating black hole is
modeled to the horizon at Ph ¼ 1þ ffiffiffiffiffiffiffiffi

1=5
p � 1:45. Compared to

the extremal Kerr black hole in Fig. 4a, light is not dragged as far
around the black hole.

For the counter-rotating Kerr–Newman black hole, the profile
n(P) diverges at P� ≈ 1.88; this is the radius at which the geodesic
begins co-rotating with the black hole spin, i.e., where dϕ

dσ ¼ 0.
Thus, the system is modeled only to P= 1.96, where n(P=

1.96) ≈ 6. Comparing the co- and counter-rotating black holes, we
see that light travels further in the Φ-direction for the former
system, as expected.

As described in this section, a variety of optical Schwarzschild
and Kerr–Newman black holes can be constructed feasibly with
low indices of refraction. If such systems are built at a small scale,
FDFD simulations show that the trajectories of light behave as
expected, mostly following the true geodesics despite the discrete
approximation to the proper gradient-index profile. The benefits
of building larger systems are discussed in the next section.

Ray tracing calculations. In principle, the optical black holes of
the previous section could be scaled in size from micrometer to
centimeter or larger. This would simplify not only the construc-
tion of the optical black hole but also the calculation of light
propagation, since the wavelength and width of the light source
would be much smaller than the system size and related gradient
length scales. The minimum gradient scale length of the scalar-
index profiles in Figs. 1 and 2 is n= ∇nk k � 0:6 μm, so
λ<n= ∇nk k is valid for the above FDFD simulations. If visible
light, λ ≈ 0.3− 0.7 μm, is used, scaling the system size by even a
factor of 103, i.e., from micrometer to millimeter, or greater
would be appropriate for the validity of the ray tracing approx-
imation made in this section.

Fig. 3 Numerical simulations of optical Schwarzschild black holes. Finite-difference frequency-domain simulations of light incident on an optical
Schwarzschild black hole with impact parameters b̂1 ¼ a 2, b 3, c 4, and d 5. True geodesics are plotted as thick lines. Poynting vectors (white arrows) are
scaled by ∝1/R. Edge radii and Schwarzschild radii (RS) are solid circles. Each interior annulus's edge is marked. Color scales for the normalized electric
field amplitude Ej j=max Ej j are the same for each subplot.
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It is of interest to calculate the deviation of a ray trajectory
around the optical black hole from the true geodesic. These
deviations could occur for a number of reasons: for instance, the
discretization of n(R) due to the finite number of annuli;
manufacturing error, leading to an offset Δn of the desired scalar
index; or experimental error, resulting in a deviation ΔB0 from
the desired initial impact parameter B0. We explore the impacts of
these below for light incident on an optical Schwarzschild black
hole with outer radius P0= 6.

First, we investigate the number of annuli (with uniform
thicknesses) needed to sufficiently approximate the scalar-index
profile for a range of initial impact parameters. We define our
performance metric as the deviation of the ray trajectory from the
geodesic, quantified by the difference in azimuthal angle ΔΦ=
Φray−Φgeo. Note that this performance metric is design-specific
and does not account for scattering, whereas the semi-classical
calculations of refs. 29,32 do. However, as there is no analytic
solution to the wave equation for the system under consideration,
the pursuit of a more appropriate metric is left to future work.
Here, we are concerned with the deviation at the horizon. This
value is shown in Fig. 5 for b̂1 2 ½0; 5� and the number of annuli
ranging 1–50. We see that only 25 annuli are needed to reproduce
trajectories with b̂1 ≤ 3 to within ΔΦ= 3∘. As expected, ΔΦ
increases rapidly for large b̂1 and fixed annulus number.

However, even the trajectory with b̂1 ¼ 5 can achieve ΔΦ ≤ 3∘

with 1000 annuli.
Next, we consider the scenario in which the scalar-index profile

is imperfect, offset by a constant Δn due to some manufacturing

Fig. 4 Numerical simulations of optical Kerr–Newman black holes. Finite-difference frequency-domain simulations of light incident ðb̂1 ¼ 3Þ on four
optical Kerr–Newman black holes, which are a maximally co-rotating (â ¼ 1; ρQ ¼ 0); b maximally charged (â ¼ 0; ρQ ¼ 1); c charged and co-rotating
(â ¼ 2=5; ρQ ¼ 4=5); and d charged and counter-rotating (â ¼ �2=5; ρQ ¼ 4=5). True geodesics are plotted as thick lines. Poynting vectors (white arrows)
are scaled by ∝1/R. Maximum and minimum radii are solid circles; radii of interest, such as the horizon radius (Rh) or Schwarzschild radius (RS), are also
plotted and labeled. Each annulus's edge is marked. Color scales for the normalized electric field amplitude Ej j=max Ej j are the same for each subplot.
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Fig. 5 Impact of annulus number on ray trajectories. The angular deviation
of the ray trajectory (Φray) from the geodesic (Φgeo) at the horizon for an
optical Schwarzschild black hole with outer radius P0= 6, as a function of
the initial impact parameter b̂1 and number of annuli used in the
construction.
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error. We choose a specific trajectory with impact parameter
b̂1 ¼ 3 to connect with the FDFD simulations of the previous
section. The range spans Δn ∈ [0, 0.5] in Fig. 6; this is a
significant percent change compared to profile b in Fig. 1. In
Fig. 6a, we see that the ray trajectory skews radially outward as Δn
increases. We are again interested in the deviation of the ray
trajectory from the geodesic, ΔΦ =Φray−Φgeo, shown in Fig. 6b
as a function of radius P= R/M. Most trajectories follow the
geodesic closely, within ΔΦ ≤ 2∘, for P > 3; however, within P < 3,
ΔΦ grows rapidly. The small gray region, near P ≈ 2 and Δn ≈ 0.5,
indicates that the ray trajectory escapes the black hole, so that ΔΦ
diverges. In this case, if errors of ΔΦ ≤ 5∘ were allowable, then
n(R) must be constrained with Δn ≤ 0.1.

In addition, a scan in initial impact parameter is performed to
assess how experimental error would affect the ray trajectory. The
ratio ΔB0/B0 is varied within ±10%, with results shown in Fig. 6.
The ray trajectories (Fig. 6c) vary as expected: as ΔB0j j increases, the
ray path moves farther from the true geodesic, but keeps the same
general shape. Again, the deviation in azimuthal angle is shown in
Fig. 6d. For large ΔB0j j=B0, ΔΦ increases rapidly as the trajectory
approaches the horizon. The deviation can be as large as ΔΦ= 30∘

at P= 2 when ΔB0/B0 ≈ 10%. Interestingly, the contours of ΔΦ
versus P and ΔB0/B0 are not symmetric about ΔB0/B0= 0 in Fig. 6d.
This results from the discretization of n(R). Therefore, if the
number of annuli cannot be increased, it could actually be beneficial
to purposefully shift the impact parameter (ΔB0/B0 < 0, in this case)
to better match the light trajectory with the true geodesic.

Discussion
The application of analogue spacetimes to the study of general
relativity has seen a resurgence in theory, simulation, and
experiment in the past two decades. Many recent works have
focused on optical analogues to static, uncharged (Schwarzschild)

black holes in an isotropic coordinate system. In this paper, we
have calculated the dielectric permittivity and permeability ten-
sors ϵ, μ that reproduce the equatorial null geodesics and polar-
izations of light moving in the metric of spinning, charged
(Kerr–Newman) black holes. Furthermore, we have conceived,
for the first time, a gradient-index material that exactly repro-
duces families of equatorial Kerr–Newman null geodesics in
almost all cases. Importantly, the radial profile of the scalar
refractive index n(R) is finite along the entire trajectory (even to
the horizon, if applicable), except at the point of rotation reversal
for initially counter-rotating null geodesics. Values of n≲ 6 can
be achieved for many trajectories of interest, meaning that such
gradient-index optical analogues could be constructed with con-
ventional materials and metamaterials.

Simulations of a variety of optical black holes were performed,
each with n(R) approximated by concentric circular annuli of
constant scalar index. First, a FDFD solver of Maxwell’s equations
was used to simulate the path of light incident on a Schwarzschild
black hole with varying impact parameter b̂1 ¼ b1=M. Good
agreement was observed between the light trajectory (indicated by
maximum values of the electric field and Poynting vectors) and
geodesic for low impact parameters b̂1 = 2–3, but the discrepancy
grew for b̂1 = 4–5. Interestingly, for b̂1 ¼ 5, some features of light
orbiting at the photon sphere were observed. Utilizing the same
FDFD framework, several optical Kerr–Newman black holes were
simulated: extremal Kerr, extremal Reissner–Nordström, and non-
extremal Kerr–Newman with initially co- and counter-rotating
trajectories. Each of these optical systems was simulated within the
Schwarzschild radius, some even to the horizon. While there exist
some discrepancies between the simulated light trajectories and true
geodesics, the qualitative feature of light “dragged” in the direction
of the black hole’s spin was observed. The three co-rotating cases
require n≲ 3, meaning that constructions of these optical

Fig. 6 Effects of construction and experimenter errors on ray trajectories. a, b A uniform offset Δn from the true scalar refractive index profile n(R). c, d A
deviation ΔB0 from the desired impact parameter B0. a, c Ray trajectories in real space, computed from Eq. (25), compared to the true geodesic (gray
dashed). b, d Angular deviation of the ray trajectory (Φray) from the geodesic (Φgeo) versus radius R normalized to the black hole mass M. Both scans use
the optical Schwarzschild black hole with b̂1 ¼ 3. The scale of the color bar of subplot a is the same as the scale of the vertical axis of subplot b; the same
is true for subplots c and d.
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Kerr–Newman black holes are feasible; the counter-rotating case
requires n≲ 6, which might be realized with more exotic materials
like metamaterials.

Finally, we have investigated the number of annuli used in
construction as well as the effects of fabrication and experimental
errors on these optical black holes. The results demonstrate that
with a modest number of annuli, the approximate gradient-index
systems adequately reproduce null geodesics and are robust to
small variations in refractive index and impact parameter. As
these systems are far easier to manufacture than true gradient-
index or bianisotropic media, they are thus practical tabletop
analogues for equatorial Kerr–Newman black holes.

Methods
Numerical simulations. The trajectories of light around optical black holes are
modeled using a FDFD solver of Maxwell’s equations58,59. The wavelength of light
is chosen to be λ= 0.5 μm. The 2D simulation domain is modeled as a vacuum,
with scalar properties ϵ= μ= n= 1 and size 60λ × 60λ; a perfectly matching layer
of width λ/5 is applied at its boundary. A Gaussian beam of light is approximated
as an array of line sources, each of width λ/25= 20 nm and electric field amplitude
calculated from a Gaussian envelope of the form expð�ðX � B0Þ2=2δ2Þ. Here, B0 is
the dimensionful real space impact parameter at P0, and δ= λ/2 so that the beam
satisfies the paraxial approximation60. The total width of the beam is truncated at
2λ by imposing two absorbing (ϵ= 1− iπ) boundaries as vertically aligned
“waveguides” of the light from the edge of the domain to the edge of the optical
black hole. These restrict the beam to travel along a straight path in free space, as a
directional light source would in the laboratory. Note that the factor of −π is
arbitrarily chosen for the imaginary (damping) component.

Each simulated optical black hole is centered in the domain, with the
Schwarzschild radius always RS= 10λ = 5 μm (M= 2.5 μm) and edge at R0= 30λ
= 15 μm. The Gaussian light source propagates in the vertical direction toward the
black hole. For all simulations, the region within the minimum radius (oftentimes
the horizon radius Rh) is modeled as a disc with dielectric permittivity ϵ= ϵin− iπ.
Here, ϵin is the scalar permittivity (ϵ= n2) of the innermost annulus, and a factor
of −π is used for the imaginary (damping) component, as with the aforementioned
“waveguides.”

Ray tracing algorithm. Consider an optical system consisting of N concentric
annuli. Let the radii bounding each annulus i be Ri < Ri−1, so that the annuli are
numbered 1, 2, …, N from the outside in, and the outer edge of the system is at R0.
The scalar index of each annulus is n(Ri < R ≤ Ri−1)= ni, which monotonically
increases from annulus 1 → N, so ni < ni+1. Let the scalar index for R > R0 be n0.
For a light ray incident on annulus (i + 1) (propagating in the region Ri ≤ R ≤
Ri−1), let the impact parameter be Bi ¼ Ri sinΦi , where Φi is the azimuthal angle at
which the ray intersects the annulus at Ri. Then, the azimuthal angle at which the
light ray intersects the next annulus (i + 2) at Ri+1 is given by

Φiþ1 �Φi ¼ arcsin
Biþ1

Riþ1

� �
� arcsin

Biþ1

Ri

� �
; ð25Þ

provided that Bi+1 ≤ Ri+1. Note that the impact parameter always satisfies
niBi ¼ constant. Thus, given an optical system with a well-defined profile n(R) and
an initial impact parameter B0, the trajectory of a light ray can be iteratively
computed via Eq. (25) until the ray reaches its minimum radius. Note that only in-
going trajectories are considered here, so light escaping the optical black hole is not
modeled. Furthermore, it is assumed that all light is transmitted at each boundary;
absorption and reflection are left for future work.

Derivation of Kerr–Newman analogue material properties. Here, we derive
Eq. (18), beginning with Eqs. (3) and (16). Restricting our attention to equatorial
geodesics, we have θ= π/2 and dθ= 0 (as the motion will always remain equa-
torial). With this, the metric simplifies to

d̂s2 ¼ ρ2
dρ2

Δ̂
þ dθ2

� �
� Δ̂

ρ2
dt̂ � â dϕ
� �2 þ 1

ρ2
ρ2 þ â2
� �

dϕ� â d̂t
� �2

: ð26Þ

Expanding this, we find

gμν ¼

� Δ̂�â2

ρ2 0 0
â Δ̂�ρ2�â2ð Þ

ρ2

0 ρ2

Δ̂
0 0

0 0 ρ2 0

â Δ̂�ρ2�â2ð Þ
ρ2 0 0

ρ2þâ2ð Þ2�â2Δ̂

ρ2

0
BBBBBBB@

1
CCCCCCCA

; ð27Þ

where μ, ν run over t̂; ρ; θ; ϕ. This metric has inverse

gμν ¼

â2Δ̂� ρ2þâ2ð Þ2
ρ2Δ̂

0 0
â Δ̂�ρ2�â2ð Þ

ρ2Δ̂

0 Δ̂
ρ2 0 0

0 0 1
ρ2 0

â Δ̂�ρ2�â2ð Þ
ρ2Δ̂

0 0 Δ̂�â2

ρ2Δ̂

0
BBBBBBB@

1
CCCCCCCA

ð28Þ

and determinant det g ¼ �ρ4. We map the curved spacetime coordinates
ð̂t; ρ; θ; ϕÞ onto the flat spacetime spherical coordinates ðT̂; P;Θ;ΦÞ, so the flat
space coordinate metric is in this case

γij ¼
1 0 0

0 P2 0

0 0 P2sin2Θ

0
B@

1
CA ð29Þ

with determinant det γ ¼ P4sin2Θ. Because we have restricted our attention to
θ = π/2, we similarly have Θ= π/2, and so this simply becomes det γ ¼ P4. After
this coordinate matching, we have

gij ¼
Δ̂
P2 0 0

0 1
P2 0

0 0 Δ̂�â2

P2Δ̂

0
BB@

1
CCA ;

g00 ¼ � Δ̂� â2

P2 ;

g0i ¼ 0 0
â Δ̂�P2�â2ð Þ

P2

� �
;

det g ¼ �P4;

ð30Þ

where Δ̂ is now interpreted as a function of P, as opposed to ρ. Plugging these
values into Eq. (3), we arrive at

ϵij ¼ μij ¼
Δ̂

Δ̂�â2
0 0

0 1
Δ̂�â2

0

0 0 1
Δ̂

0
BB@

1
CCA ; αi ¼

0

0

â 1
Δ̂�â2

� 1
P2

� �
0
B@

1
CA : ð31Þ

Data availability
Data is available from the corresponding author upon request.

Code availability
Code for the simulations shown here is available from the corresponding author upon
request. The finite-difference frequency-domain solver used in this work is available at
https://github.com/wsshin/maxwellfdfd.
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