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Characterizing cycle structure in complex networks
Tianlong Fan 1,2, Linyuan Lü 1,3✉, Dinghua Shi4✉ & Tao Zhou5✉

A cycle is the simplest structure that brings redundant paths in network connectivity and

feedback effects in network dynamics. An in-depth understanding of which cycles are

important and what role they play on network structure and dynamics, however, is still

lacking. In this paper, we define the cycle number matrix, a matrix enclosing the information

about cycles in a network, and the cycle ratio, an index that quantifies node importance.

Experiments on real networks suggest that cycle ratio contains rich information in addition to

well-known benchmark indices. For example, node rankings by cycle ratio are largely different

from rankings by degree, H-index, and coreness, which are very similar indices. Numerical

experiments on identifying vital nodes for network connectivity and synchronization and

maximizing the early reach of spreading show that the cycle ratio performs overall better than

other benchmarks. Finally, we highlight a significant difference between the distribution of

shorter cycles in real and model networks. We believe our in-depth analyses on cycle

structure may yield insights, metrics, models, and algorithms for network science.
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The last two decades have witnessed extensive development
in network science (NS)1, with research focuses being
shifted from discovering macroscopic properties2–4 to

uncovering the functional roles played by microscopic structures,
or even individual nodes and links5–7. Scientists have pieced an
increasingly clear picture about the functions of specific struc-
tures in disparate dynamical processes, such as the roles of dif-
ferent motifs in biological and communication networks5, how
information and behaviors propagate along a contacting chain8,
and how a local star structure self-sustains an epidemic spreading
process9,10.

Besides extensively studied chain and star structures, cycle is
another ubiquitously observed structure11, which plays sig-
nificant roles in both structural organization and functional
implementation. A cycle, also called loop in literature, can be
simply defined as a closed path with the same starting and
ending node. Recent studies have uncovered the topological
properties of cycles, including the distribution of cycles of dif-
ferent sizes in real and artificial networks12–16, the effect of
degree correlations on the loops of scale-free networks17, as well
as the significant roles of the cycles in network functions related
to storage18, synchronizability19, and controllability20. Cycles
are also used as a tool to measure the extent of network being
close to tree networks, and thus a significant difference between
model networks and real networks is found, that is, the former
can’t accurately reproduce the cycle structure in the latter21. In
addition, the organization of cycles can be utilized to char-
acterize individual nodes and links. For example, a measure
called clustering coefficient (also called local clustering
coefficient)2 is based on counting the number of associated
triangles (triangle is the cycle with smallest size), which recently
considered the associated cycles with larger sizes11,22,23, and was
extended to the higher order cases22 and the weighted cases24,25.
The edge multiplicity measures the number of triangles passing
through an edge26. The effect of the addition of a none-observed
link on the local organization of cycles can be used to estimate
the likelihood of the existence of this link27, and the probability
a self-avoid random walker returns to the target node through a
cycle (cycles with different lengths are assigned to different
weights) can be used to quantify the importance of the target
node28.

Considering a simple network where direction and weight of a
link are ignored and self-loops are not allowed, then a cycle is the
simplest structure providing redundant paths to all involved node
pairs. That is to say, if two nodes belong to a cycle, there are at
least two independent paths connecting them. Such redundancy
also brings complicated feedbacks in interacting dynamics.
Therefore, the in-depth understanding of cycle structure may
provide insights and methods on how to maintain the network
connectivity under attacks29, how to regulate interacting
dynamics toward predesigned states30 and how to maximize the
early reach of spreading in short time31.

In this paper, according to the cycle-based statistics, we pro-
pose a matrix (named cycle number matrix) to represent cycle
information of network, and an index (named cycle ratio) to
quantify the importance of individual nodes. This index is
essentially different from well-known indices and methods7,
producing a much different ranking of nodes comparing with
degree3, H-index32, and coreness10. Extensive experiments on real
networks in identifying the most vulnerable nodes under inten-
tional attacks33,34, the most efficient nodes in pinning
control35–37 and the most influential nodes in the early stage of
epidemic spreading31,38 show that cycle ratio performs overall
better than other benchmarks including degree, H-index, and
coreness. Finally, we highlight a significant difference between the
distribution of shorter cycles in real and model networks.

Results
Definition of cycle ratio. Considering a simple network GðV ; EÞ,
where V and E are the sets of nodes and links, respectively. The
size of a cycle equals the number of links it contains. The cycles
containing node i with the smallest size are defined as node i’s
associated shortest cycles (also called i’s shortest cycles for sim-
plicity) and the corresponding size is called node i’s girth19.
Denote by Si the set of the shortest cycles associated with node i,
and S ¼ ∪ i2VSi the set of all shortest cycles of G, we define the

so-called cycle number matrix C ¼ cij
h i

N ´N
to characterize the

cycle structure of G, where N=|V| is the number of nodes in G,
and cij is the number of cycles in S that pass through both nodes i
and j if i≠j. If i ¼ j, cii is the number of cycles in S that contain
node i. Obviously, C is a symmetric matrix. Based on the cycle
number matrix, we propose an index, named cycle ratio, to
measure a node’s importance as

ri ¼
0; cii ¼ 0

∑j;cij > 0
cij
cjj
; cii > 0:

(
ð1Þ

According to the above definition, if a node i doesn’t belong to
any cycle in S, its cycle ratio is reasonably set to be zero. When
cii>0, all items in the summation are well defined since cjj>0 if
cij>0. The ratio estimates the importance of node i subject to its
participation to other nodes’ shortest cycles in S. Note that, in our
definition, only shortest cycles associated with each node are
considered since cycles with larger sizes are usually less relevant
to the network functions (we have also tested on longer cycles, see
details in Discussion) and to account for all cycles is infeasible for
most networks due to the tremendous computational
complexity27 (Supplementary Fig. 1 in Supplementary Note 1
shows the number of cycles with different lengths, indicating an
exponential growth). Figure 1a presents an example network, and
Fig. 1b shows the corresponding cycle number matrix. The
process to calculate the cycle ratio of an example node (i.e., node
1) is also shown in Fig. 1b. In Eq. 1, each term represents the
degree to which node i (i=1 for this example) participates in j’s
associated shortest cycles (j ¼ 1; 2; 3; 4 and 5 for this example) in
which denominator is the number of shortest cycles of node j, and
the numerator is the number of cycles associated with both node i
and node j. For example, the second term in the example equation
in Fig. 1b, 3/4, means that three of the four shortest cycles of node
2 ({2, 3, 1}, {2, 4, 1}, {2, 1, 5}, {2, 4, 3}) contain node 1. In a word,
r1 represents the degree to which node 1 participates in associated
shortest cycles of other nodes. The cycle ratios of all nodes are
presented in Fig. 1c. Three well-known node centralities, degree3,
H-index32, and coreness10 (see precise definitions of these indices
in Methods), are used as benchmarks for comparison. Their
values for this example network are also presented in Fig. 1c.

Data. We test the performance of cycle ratio in identifying vital
nodes subject to three well-studied dynamical processes, node
percolation33,34, synchronization30, and epidemic spreading38.
The first one considers nodes’ ability to maintain the network
connectivity, the second one accounts for nodes’ capacity to
regulate interacting dynamics toward a certain predesigned state,
and the last one concentrates on infected nodes’ reach in the early
stage of an epidemic outbreak. The experiments are carried out
on six real networks from disparate fields, including the neural
network of C. elegans (C. elegans)39, the email communication
network of the University at Rovira i Virgili in Spain (Email)40,
the collaboration network of jazz musicians (Jazz)41, the colla-
boration network of scientists working on NS42, the US air
transportation network (USAir)32, and the protein-protein
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interaction network of yeast (Yeast)43. Their basic topological
features are summarized in Table 1.

Correlation analysis. Before penetrating into each index’s ability
to identify vital nodes, we first see whether cycle ratio contains
rich information in addition to the three benchmarks. We apply
the Kendall’s Tau (τ)44,45 to measure the correlation between
pairs of indices (see the definition of τ in Methods). Given two
indices X and Y, if τðX;YÞ is close to 1, it indicates that X and Y
are highly correlated and less differential to each other. Figure 2
shows the average correlation matrix between all index pairs for
the six networks (the correlation matrix for each network is

shown in Supplementary Fig. 2 in Supplementary Note 2), one
can clearly observe that the correlations between degree, H-index,
and coreness are markedly high than the correlations between
cycle ratio and the other three, the average of τ over the six

Fig. 1 Cycle ratios of nodes in an example network. a An example network with cycle ratios of nodes. Here the number in each node is its label, the value
next to it is its cycle ratio and nodes of the same color have the same cycle ratio. b The cycle number matrix of example network in (a) and how to calculate
the cycle ratio of node 1. Here the element cij in cycle number matrix is the number of shortest cycles that pass through both nodes i and j if i≠ j. If i ¼ j, cii is
the number of shortest cycles that contain node i. For node 1 the non-zero elements in the green square in the matrix are neighbors with common shortest
cycles with node 1, and each value (c1j, where j ¼ 1; 2; 3;4 and 5) represents the number of these cycles. The elements in the red square (cjj, where
j ¼ 1; 2; 3;4 and 5) are the number of shortest cycles of each neighbor. The sum of the ratios of c1j and cjj is the cycle ratio of node 1. c Every node’s
associated cycles in S, degree, H-index, coreness10 and cycle ratio. Here S is the set of all shortest cycles of example network in (a) and
S ¼ ff1; 2; 3g; f1; 2;4g; f1; 2; 5g; f1; 3;4g; f2; 3;4g; f3; 6; 7; 8gg.

Table 1 Basic topological features of the six real-world
networks considered in this work.

Network N M 〈k〉 〈L〉 C

C. elegans 297 2148 14.46 2.46 0.29
Email 1133 5451 9.62 3.61 0.22
Jazz 198 2742 27.70 2.24 0.62
NS 379 914 4.82 6.04 0.74
USAir 332 2126 12.81 2.74 0.63
Yeast 2375 11,693 9.85 5.10 0.31

Here N and M are the number of nodes and links, 〈k〉 and 〈L〉 are the mean degree and mean
shortest distance, and C is the mean clustering coefficient2.

Fig. 2 The average correlation matrix for the four indices of node
importance over six real-world networks. Here D, H, C and R represent
degree, H-index, coreness, and cycle ratio, respectively. Details of the six
networks are shown in Table 1. Each element is the averaged value of the
correlation τ between the two indices corresponding to its position over the
six networks, and the value is visualized by the color. See detailed
calculation of the correlation τ in Methods.
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networks is 0.89 for the former and 0.61 for the latter. That is to
say, the resulted node rankings produced by degree, H-index, and
coreness are very similar to each other. Therefore, although the
performance of H-index or coreness in some specific tasks is
better than degree10,32, the node rankings produced by H-index
and coreness contain less information in addition to the one
produced by degree, and vice versa. In contrast, as suggested by
the lower correlations, the node rankings produced by cycle ratio
have rich information in addition to these produced by degree, H-
index, and coreness. This is a very important yet easy-to-be-
ignored marker about the potential value of the proposed index
since the lower correlations between the proposed index and
known indices indicate a higher possibility that the proposed
index will provide insights beyond known indices. Besides, Sup-
plementary Note 3 shows the distributions of the four indices for
the six real networks under consideration. One can observe that
the distinguishability of cycle ratio with most fractions is good
while the distinguishability of coreness is poor.

We are interested in comparing the difference between cycle
ratio and local clustering coefficient which is the simplest index
based on the neighborhood cycles. The local clustering coefficient
of a node in network is the fraction of triangles that actually exist
over all possible triangles in its neighborhood. In despite of the
conceptual overlap, cycle ratio is largely different from local
clustering coefficient in three aspects: (i) the considered shortest
cycles (i.e., cycles in S) are not necessarily to be triangles; (ii) cycle

ratio is not a local index since even node i and node j are distant
in a network, the value of cij can be nonzero; (iii) cycle ratio is not
a ratio but the sum of ratios, and thus its value can be greater than
1. Supplementary Note 4 compares the difference between cycle
ratio and clustering coefficient in detail and shows that the
correlations between clustering coefficient and the other four
indices are the lowest. Although clustering coefficient can reflect
the local connection, it cannot reflect the importance of a node.
Notice that, due to the sparsity and hierarchical organization of
many real networks, the local clustering coefficient is usually
negatively correlated with degree (typically, local clustering
coefficient scales as k�1)46,47, and thus not a good index for
influential nodes. Similarly, Supplementary Fig. 12 in Supple-
mentary Note 5 shows that the correlations between eigenvector
centrality48 and the other four indices are low.

Figure 3 presents visualized Yeast network corresponding to
the resulted rankings by the four indices. Very intuitively, the
vital nodes selected by degree, H-index, and coreness are densely
connected with each other and clustered in a certain region, in
consistent to the so-called rich-club phenomenon49,50. As a
contrast, the vital nodes selected by cycle ratio are scattered in the
whole network with sparser connections among them. This is a
significant advantage of cycle ratio if one would like to find out a
set of vital nodes, because if the selected vital nodes tend to be
clustered to each other, their influential areas will be highly
overlapped and thus their collective influences are probably
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Fig. 3 Visualization of the rankings of nodes produced by degree, H-index, coreness, and cycle ratio. The Yeast network is taken for example. In each
plot, the sizes and colors of nodes are proportional to their relative values of the corresponding indices normalized by their respective maximum values.
The position of each node in the four plots is fixed. For example, in (a), a node i’s relative value is ki=kmax where ki is i’s degree and kmax is the maximum
degree of Yeast. Analogously, (b–d) show the results of H-index, coreness and cycle ratio, respectively. In (a–c), the vital nodes are densely connected with
each other and clustered in several certain regions, and this effect increases in turn. In (d), however, the situation is completely different where the vital
nodes scattered throughout the whole network.
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weaker10,51,52. Therefore, we believe the in-depth analyses of cycle
ratio may uncover insights that cannot be directly obtained by
other benchmark centralities.

Percolation. To evaluate the importance of nodes in maintaining
the network connectivity, we study the node percolation
dynamics33,34. Given a network, we remove one node at each
time step and calculate the size of the largest component of the
remaining network until the remaining network is empty. The
metric called Robustness53 is used to measure the performance,
defined as

R ¼ 1
N
∑N

n¼1 g nð Þ; ð2Þ

where the relative size gðnÞ is the number of nodes in the largest
component divided by N after removing n nodes. The normal-
ization factor 1/N ensures that the values of R of networks with
different sizes can be compared. For each index, we compute once
to get a fixed ranking of nodes. The node with largest index value
is removed preferentially. Obviously, a smaller R means a quicker
collapse and thus a better performance. Figure 4a shows the
collapsing processes in the six real networks, resulted from the
node removal by cycle ratio and the other three indices. For the
majority of the considered networks, cycle ratio leads to much
faster collapse than other indices. Figure 4b exhibits the
Robustness R, from which one can see that the cycle ratio is
overall the best index in identifying the most vital nodes in

maintaining the network connectivity. In addition, Supplemen-
tary Figs. 10 and 13 in Supplementary Note 4 and Supplementary
Note 5 respectively show the results of clustering coefficient and
eigenvector centrality, respectively, and the same conclusion can
be obtained.

Pinning control. We next evaluate the importance of nodes by
measuring the effect caused by pinning these nodes in a syn-
chronizing process35,36. Considering a general case where a
simple connected network G V ; Eð Þ is consisted of N linearly and
diffusively coupled nodes, with an interacting dynamics as

_xi ¼ f ðxiÞ þ σ∑N
j¼1 lijΓðxjÞ þ Uiðxi; ¼ ; xNÞ; ð3Þ

where the vector xi 2 Rn is the state of node i, the function f ð�Þ
describes the self-dynamics of a node, the positive constant σ
denotes the coupling strength, Ui is the controller applied at node
i, and the inner coupling matrix Γ : Rn ! Rn is positive semi-
definite. The Laplacian matrix L ¼ ½lij�N ´N of G is defined as
follows. If ði; jÞ 2 E, then lij ¼ �1; if ði; jÞ =2 E and i≠ j, then lij ¼ 0;
if i ¼ j, then lii ¼ �∑j≠1 lij. The goal of pinning control is to
drive the system from any initial state to the target state in finite
time by pinning some selected nodes. Analogous to the node
percolation, all nodes are ranked in the descending order by a
given index. Then, we successively pin nodes one by one
according to the ranking and quantify the synchronizability of the
pinned networks, which can be measured by the reciprocal of the

g

a)

Network Cycle Ratio

C. elegans
Email
Jazz
NS

USAir
Yeast

0.3167
0.2597
0.4190
0.0536
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0.2511
0.4394
0.0539
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Degree
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Coreness

b)

g

Fig. 4 The performance of the four indices of node importance on node percolation on the six real-world networks. a The x-axis denotes the ratio of
removed nodes and the y-axis shows the relative size of the largest component after node removal. For each index, the node with the largest index value is
removed each time and calculate the size of the largest component of the remaining network. b The robustness R of the four indices for the six real
networks. For each network, best performed index with minimum robustness R is emphasized in bold.
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smallest nonzero eigenvalue of the principal submatrix54,55 (a
smaller value corresponds to a higher synchronizability), namely
1=μ1ðL�QÞ, where Q is the number of pinned nodes, L�Q is the
principal submatrix, obtained by deleting the Q rows and col-
umns corresponding to the Q pinned nodes from the original
Laplacian matrix L, and μ1ðL�QÞ is the smallest nonzero eigen-
value of L�Q. Inspired by the metric Robustness, we propose a
similar metric named pinning efficiency to characterize the per-
formance of an index subject to pinning control, as

P ¼ 1
Qmax

∑Qmax
Q¼1

1
μ1ðL�QÞ

; ð4Þ

where Qmax is the maximum number of pinned nodes under
simulation. Here we set Qmax ¼ 0:3N , and we have checked that
the choices of Qmax will not affect the conclusion. Figure 5a shows
how 1=μ1ðL�QÞ decays with increasing number of pinned nodes.
Obviously, a faster decay corresponds to a better performance.
Figure 5b compares the pinning efficiency of the four indices.
Similar to the result of the node percolation, cycle ratio is overall
the best index in identifying the most efficient nodes in pinning
control. In addition, Supplementary Tables 1 and 2 in Supple-
mentary Note 4 and Supplementary Note 5 respectively show the
results of clustering coefficient and eigenvector centrality and the
same conclusion can be obtained.

Epidemic spreading. Lastly, we consider the spreading dynamics.
Since in viral marketing and online information transmission,
people are more interested in maximizing the reach in short time,
and in epidemiological control, the most critical issue is the
spreading range and control measures in the early stage of out-
break (e.g., see the discussion of the efficacy of early control
measures for COVID-1956,57, we concentrate on the fast influ-
encers that play the dominant role in the early stage31. To
quantify the influence of a set of selected nodes, we simulate the
standard susceptible-infected-recovered (SIR) spreading
dynamics38, where at each time step, each susceptible node will be
infected by an infected neighbor with probability β, and each
infected node will be recovered with probability γ. Initially, the
top-0.1N nodes selected by each index are set to be infected and
others are susceptible. The indices are ranked by cumulative
infected nodes at a certain time step t, the more the better. We
consider the case at β ¼ βc and γ ¼ 1, where

βc ¼ hki= hk2i � hki� � ð5Þ

is the spreading threshold9,38 when γ ¼ 1. Here hki and hk2i are
the average degree and the average squared degree, respectively.
Figure 6 reports the rankings of the four indices at time steps
t ¼ 1, t ¼ 2, t ¼ 4 and t ¼ 8, where the values are averaged over
2000 independent runs. The best-performed index is ranked No.
1, the runner up is ranked No. 2, …, and the worst one is ranked
No. 4. Among the 24 matches (i.e., 6 networks and 4 time steps),
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Fig. 5 The performance of the four indices of node importance on pinning control. a The x-axis denotes the ratio of pinned nodes and the y-axis shows
network synchronizability after pinning the fraction of nodes. For each index, the nodes are pinned one by one in descending order of the index and quantify
the synchronizability of the pinned networks each time. b The pinning efficiency P of the four indices for the six real-world networks. For each network, best
performed index with minimum pinning efficiency P is emphasized in bold.
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cycle ratio gets ranked No. 1 for 23 times and No. 2 for 1 time, it
dramatically outperforms other indices. In addition, Supple-
mentary Figs. 11 and 14 in Supplementary Note 4 and Supple-
mentary Note 5 respectively show the results of clustering
coefficient and eigenvector centrality and the same conclusion
can be obtained. The results for more β; t

� �
parameter sets are

presented in Supplementary Note 6. In fact, the spreading capa-
city of cycle ratio is superior to coreness for both single-source
and multiple-source cases, including fast spreading (considering
the performance at the early stage) and complete spreading (see
Supplementary Note 7).

In addition to real networks, we have also analyzed two types
of synthetic networks, the Erdős–Rényi (ER) networks58 and
Barabási–Albert (BA) networks3. The overall performance of
cycle ratio is just in the middle of the four indices. The reason for
the not-so-good performance may be that the random networks
are less localized (as indicated by the very small clustering
coefficient) with lengths of shortest cycles (i.e., cycles in S) being
relatively longer than real networks with similar sizes and
densities (see Supplementary Note 8 and Supplementary Note 9),
and thus effects of cycles on dynamical processes are weaker6,59.

Discussion
To represent cycle information of a network, this paper defines a
matrix, called cycle number matrix, with which an index, called
cycle ratio, can be calculated to quantify the importance of an
individual node by simply measuring to which extent it is
involved in other nodes’ associated shortest cycles. The basic idea
underlying such an index is that if cycles are important in
maintaining connectivity and interacting dynamics, then a node
involved in many cycles should be vital. Experiments on real
networks show that cycle ratio outperforms the other indices in
identifying vital nodes that are critical in maintaining the network
connectivity, efficient in pinning control and influential in epi-
demic spreading. In node percolation, it should be noted that the

performance will be affected by dynamics itself in the way of
greedy removal, so the removal order here is fixed as the result of
the first calculation. Our finding thus has potential applicability in
practice. For the node percolation, the top-ranked nodes should
be firstly protected to maintain the network connectivity if there
is a risk of functional loss of nodes. Reversely, if one would like to
initiate an intentional attack, the top-ranked nodes are considered
to be the primary targets. Such scenario is relevant to power
grids60, air transportation networks, financial networks61, Inter-
net, and so on62. Note that, when we consider an attack to an
airport in the modern society, it does not mean we need to
physically destroy it but disturb its information systems and
signal systems. The critical nodes in pinning control can be
pinned to efficiently approach the consensus of multiple agents63

and to ensure the coordination of unmanned aerial vehicles64 and
mobile sensor networks65. Lastly, we proved cycle ratio is an
efficient index for finding the susceptible individuals that need to
be vaccinated in the early stage of epidemic spreading26,31.

It’s worth noting that the performance of cycle ratio is not
necessarily better if longer cycles are considered. This is because
when the longer cycles are counted, the difference in local cycle
structure might be depressed. That is to say, the sets of associated
cycles of many nodes will become more similar (i.e., with larger
overlap), which may eventually lead to the decrease of the dis-
criminability and thus the accuracy of the cycle ratio (see Sup-
plementary Note 10).

An obvious insufficiency of cycle ratio is that it cannot be
applied for trees or tree-like networks. Even for normal networks,
a fraction of nodes may be not associated with any cycles. These
nodes’ influences may be different but they are all assigned the
same cycle ratio zero. One straightforward way to solve this issue
is to combine cycle ratio with some other indices, for example, a
mixed index could be r* ¼ ri þ εki with ε being a tunable para-
meter, hence all nodes with zero cycle ratio can be ranked by their
degrees. Since cycle ratio and degree will produce markedly dif-
ferent rankings, a subtly designed combination of cycle ratio and
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R
an

ki
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Fig. 6 The performance of the four indices for characterizing spreading dynamics on real world networks. Each matrix presents the results of the
comparison of the four indices in a given time step of the spreading process. D, H, C and R represent degree, H-index, coreness, and cycle ratio,
respectively. CE is the abbreviation of C. elegans. The elements in each matrix are the rankings of four indices at the corresponding time step, which is
determined by cumulative infected nodes of each index in the SIR model simulation. The index with the largest number of infected nodes is ranked No. 1,
and the others are ranked No. 2, 3, and 4 successively. Each ranking is averaged over 2000 independent runs and they are visualized by the color: the
better the deeper. The infection probability is set as β= βc. for each network.
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degree has the potential to generate much better results than the
single index. Similar improvement could also be achieved by
combining cycle ratio with H-index or coreness. In contrast, the
expected improvement by combining degree, H-index and core-
ness is lower since they are already very similar to each other. We
leave this detailed problem for future study.

In addition, the method used to characterize the cycle structure
can be extended to deal with hypernetworks66, where a hyperedge
represents the interaction between multiple nodes. Treating
hyperedges as the cycles in the set S and denoting Ω the incidence
matrix, whose element Ωie indicates whether node i belongs to
hyperedge e (Ωie ¼ 1 indicates the belongness and Ωie ¼ 0
otherwise), then we can obtain a matrix similar to the cycle
number matrix by multiplying the incidence matrix by its
transposed matrix, say ΩΩT , where the diagonal element [ΩΩT]ii
represents the number of hyperedges involving node i and
[ΩΩT]ij indicates the number of hyperedges that involving both
node i and node j. Therefore, we can quantify a node’s impor-
tance in a hypernetwork by its participation to other nodes’
hyperedges.

We end this paper by presenting two open issues. Firstly,
analogous to cycle ratio, one may also design cycle-based indices
to quantify the likelihood of the existence of any unobserved link,
which can find applications in solving the link prediction pro-
blem. Secondly, the good performance of cycle ratio, as well as the
lower correlations between cycle ratio and other benchmark
centralities, encourages the in-depth studies on cycle structure. In
terms of global statistics, the model networks have lower average
clustering coefficient and lower proximity to tree networks than
real networks21; in terms of the distribution of shorter cycles, as
shown in Supplementary Note 9, none of degree-preserved null
model67, Watts–Strogatz model2 and Barabasi–Albert model3 can
well reproduce the cycle-based statistics of real networks, indi-
cating that the understanding about how cycles are formed may
deepen our knowledge on the mechanisms underlying network
organization. In addition to the shortest cycles, higher-order
cycles also play important roles in network structure and
functions68,69. Thus we expect to find more insights from spectral
analysis of the cycle number matrix and analyzing longer and
higher-order cycles in the future with the help of methodologies
from algebraic topology69,70 and sufficient computational
resource, and extend the findings and scope of applications
reported in this paper.

Methods
Degree, H-index and Coreness. Degree of a node is the number of its immediate
neighbors. H-index of a node i is the maximum integer h such that there are at least
h neighbors of node i with degrees no less than h. Coreness is obtained by the
k-core decomposition10. The k-core decomposition process starts by removing all
nodes with degree k ¼ 1. This may cause new nodes with degree k≤ 1 to appear.
These are also removed and the process stops when all remaining nodes are of
degree k > 1. The removed nodes and their associated links form the 1-shell, and
the nodes in the 1-shell are assigned a coreness value 1. This pruning process is
repeated to extract the two-shell, that is, in each step the nodes with degree k≤ 2
are removed. Nodes in the two-shell are assigned a coreness value 2. The process is
continued until all higher-layer shells have been identified and all nodes have been
removed. In the literature, coreness is also referred to as k-shell index10.

Kendall’s Tau. We consider any two indices associated with all N nodes, X ¼
ðx1; x2; ¼ ; xN Þ and Y ¼ ðy1; y2; ¼ ; yN Þ, as well as the N two-tuples
ðx1; y1Þ; ðx2; y2Þ; ¼ ; ðxN ; yN Þ. Any pair ðxi; yiÞ and ðxj; yjÞ are concordant if the
ranks for both elements agree, namely if both xi > xj and yi>yj or if both xi<xj and
yi<yj . They are discordant if xi>xj and yi<yj or if xi<xj and yi>yj . Here nþ and n�
are used to represent the number of concordant and discordant pairs, respectively.
In addition, tX is the number of the pairs in which xi ¼ xj and yi≠yj , and tY is the
number of the pairs in which xi ≠ xj and yi ¼ yj . Notice that if xi ¼ xj and yi ¼ yj ,
the pair is not added to either tX or tY . Comparing all NðN � 1Þ=2 pairs of two-

tuples, the Kendall’s Tau is defined as44

τ ¼ nþ � n�
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ þ n� þ tX
� �q

´
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ þ n� þ tY
� �q : ð6Þ

If X and Y are independent, τ should be close to zero, and thus the extent to
which τ exceeds zero indicates the strength of correlation. The above definition of
Kendall’s Tau44 is an improved version of the original definition45, specifically
designed to deal with the case with many equivalent elements.

Data availability
The networks data that support the findings of this study are available through the
corresponding references32,39–43 or at the following github repository: https://
github.com/ftl129/CycleRatio.

Code availability
The custom code that supports the findings of this study is available at the following
github repository: https://github.com/ftl129/CycleRatio.
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