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Potts model solver based on hybrid physical and
digital architecture
Kensuke Inaba 1,6✉, Takahiro Inagaki 1,6✉, Koji Igarashi2, Shoko Utsunomiya3, Toshimori Honjo 1,

Takuya Ikuta 1, Koji Enbutsu4, Takeshi Umeki4, Ryoichi Kasahara4, Kyo Inoue2, Yoshihisa Yamamoto5 &

Hiroki Takesue1

The Potts model describes Ising-model-like interacting spin systems with multivalued spin

components, and ground-state search problems of the Potts model can be efficiently mapped

onto various integer optimization problems thanks to the rich expression of the multivalued

spins. Here, we demonstrate a solver of this model based on hybrid computation using

physical and digital architectures, wherein a digital computer updates the interaction matrices

in the iterative calculations of the physical Ising-model solvers. This update of interactions

corresponds to learning from the Ising solutions, which allows us to save resources when

embedding a problem in a physical system. We experimentally solved integer optimization

problems (graph coloring and graph clustering) with this hybrid architecture in which the

physical solver consisted of coupled degenerate optical parametric oscillators.
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The connection between searches for the ground states of
physical systems and optimization problems has activated
research and development into new types of computation1.

The realization of such architectures has been led off by Ising-
model solvers2–9. These physical-model-solver architectures have
solved certain problems much faster than conventional digital
architectures such as a CPU10–13. Here, embedding of problems
in a physical model sometimes requires an overhead of resources,
which can be large enough to be a computational bottleneck.
However, the embedding overhead can be reduced by choosing a
more appropriate physical model as a solver instead of the Ising
model14–18.

The Potts model is a fundamental model describing various
physical and mathematical problems19, such as those of perco-
lation theory20. This model is a generalization of the Ising model
to multivalued spins; its Hamiltonian is given by

HPotts ¼ ∑
ij
J ijδðSi; SjÞ; ð1Þ

where Si ¼ f0; 1; 2; ¼ ;M � 1g is an M-component spin on the
ith node of the model, where i ¼ 1; 2; 3; ¼ ;Nf g; and δ a; bð Þ is
the Kronecker delta function. Since multivalued spins naturally
express integers, various integer optimization problems can be
straightforwardly mapped onto ground-state search problems
based on this model19. For example, graph coloring can be
described as a Potts model with a smaller Hilbert space than that
of the standard Ising model21. In the standard Ising-model
mapping, M colors in each node are represented as M Ising
spins21; thus, the size of its Hilbert space is 2NM, which is larger
than that of the original M-color problem, i.e., MN ð¼ 2Nlog2MÞ:
The Ising Hamiltonian has constraint terms to reduce the size of
the enlarged space to that of the original problem, while the Potts
model without the constraint Hamiltonian has the same size as
that of the original. Thus, the Potts model mapping allows us to
avoid the embedding overhead (see Supplementary Note 1). On
the other hand, there are several challenges in realizing a physical
Potts solver, namely the implementations of multivalued spins
and interactions described by a Kronecker delta within physical
systems. Recently, it has been proposed that physical systems
based on a lattice of nonequilibrium Bose-Einstein condensates17

and a network of three-photon down-conversion oscillators18 can
be used to solve specific Potts problems.

In this study, we demonstrated a scheme to solve the Potts
problem using a hybrid architecture of a physical Ising-model
solver and digital processing (Fig. 1a). The Potts problem can be
approximately solved by iterative calculations of Ising problems
with updated interactions evaluated from one-way feedforward
connections. Hybrid computation enjoys the advantages of phy-
sical solvers through the aid of digital computers22,23. The phy-
sical solver obtains a low-energy solution of a complex Ising
problem (known to be NP1) quickly10–13, while the digital
computer can accurately handle input and output, such as
interactions and energy, and also run the learning logic (see
Fig. 1a). We implemented a Potts solver by using a coherent Ising
machine (CIM)5,10,24–26 and a standard CPU (Fig. 1b). The CIM
is a physical Ising-model solver based on coupled degenerate
optical parametric oscillators (DOPOs)24, in which Ising spins are
encoded by utilizing the bifurcation transition in each DOPO. We
experimentally solved two integer optimization problems—clus-
tering and coloring—on the same graph (see Fig. 2).

Results and discussion
Theoretical framework. First, we explain how to map a Potts
problem on one involving iterative calculations of Ising models.
Given an integer L � ceil log2M

� �
, multivalued spin Si can be

written by a set of Ising spins σ lð Þ
i ¼ �1; 1f g l ¼ 1; 2; ¼ ; Lð Þ

with a standard binary representation as Si ¼ ∑L
l¼ 1

1þ σ lð Þ
i

2 2l� 1:
The Hamiltonian in Eq. 1 is rewritten as

HPotts ¼ ∑ijJ ij
QL

l¼ 1
1þ σ lð Þ

i σ lð Þ
j

2 , where the delta functional Potts
interaction is transformed into multibody Ising-spin interactions
QL

l¼ 1
1þ σ lð Þ

i σ lð Þ
j

2 : This complicated interaction can be simplified by

decomposing it into sets of two-body interactions σ lð Þ
i σ

lð Þ
j on L

Ising problems with one-way feedforward connections: HðlÞ
Ising ¼

∑ijJ
ðlÞ
ij σ

ðlÞ
i σ

ðlÞ
j : Here, l represents an iteration number and is called

a stage. Interaction matrix J ðlþ 1Þ
ij is determined recursively from

iteration J ðlÞij and solution sðlÞi of the previous stage:

J ðlþ 1Þ
ij ¼ 1 þ sðlÞi s

ðlÞ
j

2
J ðlÞij ;

ð2Þ
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Fig. 1 Schematic view of Potts model solver and experimental setup of coherent Ising machine (CIM). a Potts model solver composed of the hybrid
architecture of iterated physical Ising-model solver and digitally processed update of interaction matrix JðlÞij . The Ising solver sends a solution (set of up or
down spins) for digital processing to compute the next interactions Jðlþ 1Þ

ij . In each iterative stage, the graph is divided into disconnected subgraphs, and the
interaction matrix becomes block diagonal. The nodes in each subgraph belong to a certain group (color) described by a multivalued spin. Digital
processing can be used to implement various feedback algorithms to decrease Potts energy EðlÞPotts as discussed in the main text. b Experimental setup of a
CIM. 512 degenerate optical parametric oscillators (DOPOs) in a 1-km-long fiber ring cavity are mutually coupled with Jij through a measurement-feedback
scheme assisted by a field-programmable gate array (FPGA) module. The solution of the l-th CIM computation is transferred to the CPU, and the updated
Jðlþ 1Þ
ij is embedded in the CIM again. The CIM (CPU) computation takes 500 μs (at most 30 μs) in each stage. PPLN periodically poled lithium niobate. SHG
second-harmonic generation. PSA phase-sensitive amplifier. FS piezo-based fiber stretcher. PM-DSF polarization-maintained dispersion shifted fiber. BHD
balanced homodyne detection.
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where the initial Ising interactions are the same as the original
Potts interactions J ð1Þij ¼ Jij:

Figure 1a illustrates the framework of the Potts solver based on
hybrid computation. We repeat operation stages including two
parts, the Ising-solver part that obtains solution s lð Þ

j for input J lð Þ
ij ;

and the digital part that calculates J lþ1ð Þ
ij in Eq. 2. The digital part

also calculates the Potts energy defined by E lð Þ
Potts ¼ ∑ijJ ijδðS lð Þ

i ; S
lð Þ
j Þ;

where the Potts spin S lð Þ
i ¼ 0; 1; ¼ ;M lð Þ � 1

� �
, forMðlÞ ¼ 2l , is

given by

S lð Þ
i ¼ S l� 1ð Þ

i þ 1 þ s lð Þ
i

2
M l� 1ð Þ: ð3Þ

From Eq. 2, we can derive two other expressions of Potts

energy: EðlÞ
Potts ¼ ∑ijJ

lð Þ
ij

1þ sðlÞi sðlÞj
2 and EðlÞ

Potts ¼ ∑ijJ
lþ 1ð Þ
ij . When l= L

(final stage), we obtain solution S�i ð¼ S Lð Þ
i Þ and Potts energy

E�
Pottsð¼ EðLÞ

PottsÞ.
Let us discuss the convergence of the above approximation by

considering the energy improvement ΔEðlÞ
Potts � E lð Þ

Potts � E l� 1ð Þ
Potts :

From the above two expressions of E lð Þ
Potts; we can rewrite ΔEðlÞ

Potts

as 1
2 E lð Þ

Ising � F lð Þ
Ising

� �
; where E lð Þ

Ising ¼ ∑ijJ
lð Þ
ij s

ðlÞ
i s

ðlÞ
j is the Ising

energy of a solution in stage l, and F lð Þ
Ising ¼ ∑ijJ

lð Þ
ij is the energy of

ferromagnetic states in stage l (e.g., ferromagnetic means sðlÞi ¼
�1 for all i). We can conclude that EðlÞ

Potts decreases in an iteration
l if each stage yields a solution whose energy is lower than that of
the ferromagnetic states: E lð Þ

Ising < F lð Þ
Ising: Note that the ferromag-

netic states are trivially obtained for any J lð Þ
ij . Meanwhile,

convergence condition ΔEðlÞ
Potts ¼ 0 is satisfied when the obtained

solution is the same as the ferromagnetic state. Equation 3
indicates the convergence of a change in spins S lð Þ

i ¼ S l� 1ð Þ
i for

the ferromagnetic solutions (see Methods for details).
Low-energy solution S�i is, however, not assured to be the

ground state of the original Potts model. This problem is mainly
attributed to the one-way feedforward connection of J ðlÞij described
by Eq. 2. Namely, as l increases, the interaction matrix and graph
are divided up into more and more submatrices and subgraphs, as
illustrated in Fig. 1a. The loss of information from Jij and the

reduction of the graph degrade the solution accuracy. Such errors
can be circumvented by implementing two kinds of feedback.
One is recurrent Potts problem feedback with a new (learned)
interaction matrix Jnewij (long arrow in Fig. 1a). The other one is

digital feedback. Namely, in each digital operation, J ðlÞij and SðlÞi are

modified to improve Potts energy EðlÞ
Potts(rounded arrows in

Fig. 1a). The simplest example of digital feedback is filtering. For
ΔEðlÞ

Potts > 0; we can filter out a bad solution without additional
calculations by choosing a better solution in the previous stage. In
the next section, we experimentally demonstrate that heuristic
feedback algorithms clearly improve the performance of the Potts
solver.

Finally, we generalize J ðlÞij defined in Eq. 2 to use the feedback
algorithms. For convenience, we introduce weight matrix WðlÞ

ij

defined by Wðlþ 1Þ
ij ¼ δðS lð Þ

i ; S
lð Þ
j Þ, which is a more general form,

i.e., J ðlÞij ¼ WðlÞ
ij J ij, than Eq. 2. In summary, weights for

interactions J ðlÞij are “learned” from the solutions of the previous
Potts model computation so as to decrease the Potts energy. This
framework can be regarded as an artificial-neural-network-like
algorithm using a physical Ising solver, where a decrease in the
energy cost function (Potts energy) is assured if the solver can find
a low-energy Ising solution (see Supplementary Note 9). Note that
this property of convergence may allow us to utilize the advantages
of physical solvers that can find low-energy solutions quickly.

Graph clustering. We solved a graph clustering problem, which is
a task to find the best grouping of nodes. This problem is widely
used in various fields, such as community detection in social27 and
biological networks28,29. Modularity Q is a good measure for graph
clustering problems30, and a task to maximize Q can be directly
mapped onto a search for the ground state of the Potts model in
Eq. 131. Multivalued spin Si identifies a group number to which the
ith node belongs. The interaction matrix for this problem is
defined as Jij � BiBj � CAij; where Aij is the adjacency matrix,

Bi ¼ ∑jAij, and C ¼ ∑iBi. The Potts energy is related to Q ¼
� EPotts

C2 : There is room to study on the definition of Jij32, but it is
beyond the scope of this paper. Competition between anti-
ferromagnetic and ferromagnetic correlations (namely, a positive
BiBj and negative �CAij in Jij, respectively) is the intrinsic

Fig. 2 Graph structure of problem solved in this study and best solutions found in each stage of experiments. a Graph of prefectures in Japan, where the
number of nodes and edges are 47 and 92, respectively. b One of the solutions obtained in each stage of graph clustering based on modularity. The dotted
lines are the reduced edges in each stage. In the third stage, prefectures in Japan are grouped into five regions with a modularity of 0.646, which is the
same as the best solution obtained by the other algorithms. c One of the successful solutions of the four-color map problem. In stage two, there are no
adjacent same-color nodes.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-022-00908-0 ARTICLE

COMMUNICATIONS PHYSICS |           (2022) 5:137 | https://doi.org/10.1038/s42005-022-00908-0 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


difficulty of this problem. Although the number of groups is not
given, optimized M is spontaneously obtained through such
ferromagnetic–antiferromagnetic competition as discussed below.

We solved a clustering problem on the graph shown in Fig. 2,
compiled from the prefectures of Japan and has N= 47 nodes and
Nedge ¼ 92 edges. The physical solver used here was a CIM
implemented with 512 fully connectable nodes (see Methods and
Fig. 1b), in which 470 nodes were used in parallel. It has been
demonstrated that, if Jij is a dense matrix, a CIM shows better
performance than the standard CPU with simulated annealing10

and the D-wave system33. This suggests that a CIM is appropriate
for clustering problems in which Jij is dense owing to the term of
BiBj with Bi ≠ 0:

Each CIM calculation took 500 μs (100 5-μs steps), and each
digital part took about 30 μs or less. However, the current setup
used a slow serial communications interface, and the data transfer

of J ðlÞij between the CIM and CPU took a few seconds. This
bottleneck can be removed by coding the Jij-update logic in field-
programmable gate array (FPGA) modules (see Methods).

Figure 3a–d shows the evolutions of 47 DOPOs during 100
operation steps (circulations in a cavity) in four stages (l= 1, 2, 3,
and 4). Positive (negative) DOPO amplitudes represent up
(down) Ising spins. The black lines in Fig. 3e show the change in
modularity Q and the number of groups M in the same operation
steps as those in Fig. 3a–d. For l= 1 and 2, the DOPO amplitudes
show that antiferromagnetic states appear after several tens of
steps (Fig. 3a, b). As a result, each group split in two, and M
doubled in value (Fig. 3e). At l= 3, down-spin DOPOs were the
majority (Fig. 3c), indicating that ferromagnetic correlations were
dominant, and M converged to an optimized value of 5 (Fig. 3e).
At the beginning of the steps in each stage, Q decreased
drastically, while at the end of steps, a CIM selected a higher value

Fig. 3 Experimental results for graph clustering and illustration of feedback algorithms. a–d Amplitudes of degenerate optical parametric oscillator
(DOPO) of 47 nodes as a function of operation step at stage l ¼ 1; 2; 3;4: Each color represents a different node. Positive (negative) amplitudes represent
up (down) Ising spins. Crossover from antiferromagnetic to ferromagnetic solutions is found as l increases. e Modularity Q and number of groups M
without feedback (w/o FB) (thick and thin black lines, respectively) and those with domain separation (DS) algorithm (red lines) and both the group
reunion (GR) and DS algorithms (blue lines). f Success rate of reaching the highest Qð¼ 0:646Þ as estimated by sampling 1000 trials. g, h Schematic view
of DS and GR feedback algorithms.
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of Q than that in the former stage. At l= 4, the complete
ferromagnetic state prevailed finally (Fig. 3d), meaning that the
stationary condition was satisfied. As mentioned in Methods, the
obtained grouping with Q of 0.646 (see Fig. 2) is the same as the
best solution obtained by reliable algorithms, such as the Louvain
greedy34 and Infomap algorithms35. Figure 3f shows that the rate
of reaching the highest Q of 1000 trials is about 20%. We can
conclude that the ferromagnetic–antiferromagnetic competition
solved by the CIM provided good groupings with high modularity
(see Methods and Supplementary Note 6).

We found that two digital feedback algorithms—domain
separation and group reunion—improved the performance of
our Potts solver. Figure 3e, f (red and blue lines) reveal that they
almost doubled the rate of reaching the highest Q. In addition, the
highest Q was reached at early stages, so the calculation time was
shortened. The digital processing including both the domain
separation and group reunion algorithms takes at most 30 μs;
they were on the order of OðN2Þ (or OðNedgeÞ for sparse Aij).

Domain separation. By detecting magnetic domains (small regions
in which spins are in the same), we can recalculate S lð Þ

i to decrease
Potts energy. As illustrated in Fig. 3g, an Ising solver sometimes
yields a solution consisting of two or more separated magnetic
domains (see Supplementary Notes 3, 4, and also ref. 25). Nodes in
separated domains should be in different groups owing to the lack
of ferromagnetic correlations (�Aij). Note that the anti-
ferromagnetic connections (BiBj) still remain. Namely, the sub-
graph consisting of red nodes in Fig. 3g is separated, while the
corresponding matrix (red square) is not block diagonal because of
the antiferromagnetic interactions (see Supplementary Note 4). As
depicted in Fig. 3g, by removing the antiferromagnetic elements

from J ðlÞij , this domain separation feedback yields a new J lð Þ0
ij . As a

result, the Potts energy decreases in proportion to the sum of

removed antiferromagnetic elements, i.e., ∑ij J
lð Þ0
ij � J lð Þ

ij

h i
.

Detecting domains and numbering them require a calculation

time of OðN2Þ or OðNedgeÞ: The updated S lð Þ0
i is determined from

the domain number. Now, the number of groups is unlimited,
while it was limited to at most 2l in the case without feedback. As
shown in Fig. 3e, f (red lines), domain separation feedback allows
us to reach the best solution with M= 5 in the early stages l < 3:
Thus, the calculation time can be shortened by up to half.

Group reunion. The group reunion feedback algorithm is sche-
matically shown in Fig. 3h. On the basis of the obtained grouping
described by SðlÞi ; we can calculate the group–group interactions
Jgg 0 � ∑ijJ ijδðS lð Þ

i ; gÞδðS lð Þ
j ; g

0Þ: As shown in Fig. 3h, this interac-

tion matrix is defined on a new graph with MðlÞ nodes. The new
Potts Hamiltonian HPotts ¼ ∑gg 0 Jgg 0δðSg ; Sg0 Þ describes the task of
finding the best way of decreasing the Potts energy by executing
reunions of groups. Ferromagnetic group–group interaction
Jgg 0 < 0 requires reunion. Group reunion feedback can restore the
information lost due to the approximation: Namely, Jgg 0 includes

information about the original Jij, whereas a block diagonal J ðlÞij
loses it.

The Potts problem for a group reunion task can be efficiently
solved by making the following approximation. We unify two
groups, ga and gb, for a negative and minimum Jgagb without
considering the other negative elements, and repeat the same
calculations by updating Jgg 0 . In each step, the Potts energy is
reduced by 2Jgagb . This approximation works very well for small
M (see Supplementary Note 5). The calculation takes OðN2Þ or

OðNedgeÞ time. Group reunion feedback combined with domain
separation feedback improves the rate of reaching the highest Q
as shown in Fig. 3e, f.

In spite of the improvement with the domain separation and
group reunion feedback schemes, experimental results indicated
that the success probability of our machine is still not better than
those of the Informap and Metropolis algorithms (See Methods
and Supplementary Note 6). We consider that one main reason
for the relatively low success probability is instability in the
optical system, which resulted in the fluctuation of the
operational condition in each computation trial. This includes
the instability of the optical parametric oscillation caused by the
thermal fluctuation for the long-distance fiber in the cavity, and
the instability of the relative phase between the DOPO and the
injected lights. The optical stability can be improved by
implementing precise temperature control of the long-distance
fiber in the cavity and by suppressing the phase noise of the pump
laser for the second-harmonic generation (see Fig. 1b).

Graph coloring. Graph coloring is the task of coloring connected
nodes19. We experimentally solved a four-color problem on the
graph in Fig. 2a. We set L= 2 for M= 4. The interaction matrix
was totally antiferromagnetic Jij � Aij > 0; requiring that adja-
cent nodes be different colors. The four-color theorem36 assures
the existence of a ground state with E�

Potts ¼ 0: The CIM oper-
ated under the same conditions as described above (see Supple-
mentary Note 7).

Figure 4a shows the conditional success rates for 50 instances
of J 2ð Þ

ij;k k ¼ 1; 2; ¼ ; 50ð Þ, which were obtained as follows:
Identical Ising models with J ij in stage one were solved 50 times,

and 50 solutions sð1Þi;k and 50 Ising models in stage two J 2ð Þ
ij;k were

obtained, where J 2ð Þ
ij;k ¼ Wð1Þ

ij;kJij and Wð1Þ
ij;k ¼ δðs 1ð Þ

i;k ; s
ð1Þ
j;k Þ. Then, the

conditional success rate was estimated by solving the 50 Ising
models with J 2ð Þ

ij;k 100 times. The total success rate averaged over k

is about 50%. Figure 4a shows the energy in stage one, Eð1Þ
Potts; k, for

each sð1Þi;k . Successful and failed instances in stage two are clearly
separated irrespective of the energy in stage one. This result can
be understood from the reduction of the graph in stage two
described by Wð1Þ

ij;kAij (see Supplementary Note 3). Coloring fails
with 100% probability regardless of the energy in stage one if the
reduced graph in stage two has geometrical frustrations, such as a
triangular structure (see Supplementary Note 8).

Such frustrations can be dissolved by implementing recurrent
Potts problem feedback based on a “learning by mistake”
approach. We iteratively execute the Potts solver with Jnewij ¼
Joldij þ wLij and J initialij ¼ w0Aij; where w and w0 are weights to

control the learning. A feedback matrix is defined by Lij �
Wð2Þ

ij Aijð¼ 0; 1f gÞ and related to the Potts energy as E�
Potts ¼

∑ijLij: Here, Lij ¼ 1 represents adjacent nodes in the same color,
while Lij ¼ 0 represents those having different colors (or not
adjacent). Thus, a finite Lij directly represents a mistake. In the
new (learned) Potts problem with Jnewij ; interactions on the
“mistaken edges” are enlarged, and then the pair of nodes on
these edges are correctly colored with high priority in stage one.
As a result, frustrations caused by the reduction of the graph in
stage two are eliminated by learning.

Figure 4b shows how learning affects the success rate for w ¼
5; 10; 20; and 40 with w0 ¼ 40: Each success rate was obtained
by performing 50 trials in a two-stage experiment. In each
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learning step, Lij is determined from the worst-case instance with
the largest E�

potts in 50 trials. As shown in Fig. 4b, success rates
improved from 50% to over 80% after few learning steps,
eventually reaching nearly 100%. A larger w provides fast but
unstable improvements (see Supplementary Note 10).

Figure 4c represents the sum of Lij, corresponding to total
counts of mistakes, for four independent learning processes. In
each learning process, there was no more than one mistake on the
same edge; thus, there was at most four mistakes. The red-colored
edges and nodes in Fig. 4c are frequently involved in these
mistakes: they can be regarded as the intrinsic origins of
frustrations in the graph. By detecting such nodes and edges,
the learning process increased the success rate to over 80%.

The present Potts solver can be applied to general coloring
problems with M colors37. For instance, simple scheduling
problems38 and number puzzles such as Sudoku39 can be
described by graph colorings. It is straightforward to apply the
present solver to cases with M ¼ 2L; while a small number of
additional nodes (at most N) are required to deal with cases in
which M ≠ 2L (see Supplementary Note 2). For comparison, the
usual Ising mapping21 requires MN nodes (up to N2). Thus, the
Potts solver can save node resources, which will be a benefit for
physical solvers having the limitation of node resources.

Conclusions
We demonstrated a Potts model solver based on a hybrid
architecture composed of physical Ising solvers and digital pro-
cessing. The Potts problem is mapped onto iterative Ising pro-
blems with learning of weights for interactions, where
convergence is assured if a physical solver can find a low-energy
Ising solution. We experimentally realized it with a CIM and a
standard CPU (Intel(R) Xeon(R)). We showed that graph col-
oring and clustering problems can be solved by using simple Ising

models (no magnetic fields were used to introduce constraints
and there was no need for a large number of spins). The resource
overhead for embedding the problem is significantly suppressed.
As a tradeoff, iterative calculations with learning (namely, addi-
tional computational time) are required. We expect that this
additional time is insignificant if the physical solver is fast
enough. The cost of the communication between physical and
digital systems is an essential problem of hybrid computation, but
it can be significantly suppressed by directly coding the learning
logic in CIM’s measurement-feedback systems.

The proposed method approximates an M-state Potts problem
with L (= log2M) Ising problems, which means that the method
does not guarantee that the ground state of the given Potts pro-
blem will be obtained. Although the heuristic feedback schemes
that we call domain separation and group reunion significantly
improved the solution accuracies, presumably the feedback will
not completely compensate for the information lost in dividing a
Potts problem into Ising problems for general instances. Never-
theless, we consider that the method is important as a scheme to
obtain approximate, but useful solutions to integer optimization
problems in a short time, by utilizing very fast computation speed
of physical-system based Ising machines and also related algo-
rithms on non-CPU digital devices40,41.

Methods
Ferromagnetic solutions as a sign of convergence. By considering ΔEðlÞ

Potts; we
can find a convergence condition characterized by ferromagnetic solutions. Note
that there are degenerate ferromagnetic solutions due to spin inversion symmetry,
and the degeneracy dFM increases as dFM ¼ 2l (or dFM ¼ 2M lð Þ to put it more
precisely) because of the reduction of the graph and interaction matrix. Equation 3
indicates that these ferromagnetic solutions, except for the complete-down state
(sðlÞi ¼ �1 for all i), cause a (trivial) change in the multivalued spins, which can be

reduced to steady spin states S lþ 1ð Þ
i ¼ S lð Þ

i . Accordingly, we can find another

expression for the convergence condition J ðlþ 1Þ
ij ¼ J ðlÞij :

Fig. 4 Experimental results for map coloring problem with four colors. a Conditional success rates for 50 instances of Jð2Þij;k in stage two with
k ¼ 1; 2; ¼ ; 50, and the Potts energy in stage one Eð1ÞPotts; k . Total success rate averaged over k is about 50%. b Change in success rates caused by learning
defined as Jnewij ¼ Joldij þ wLij for weights w= 5, 10, 20, and 40 with initial weight w0 ¼ 40. Matrix Lij characterizes the edges that failed in coloring as
detailed in the main text. c Total number of mistakes (sum of Lij) in independent learning processes with w= 5, 10, 20, and 40. Red nodes and edges were
frequently involved in the mistakes. Success rates can be improved by learning such frequently incorrect edges.
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Experimental setup of CIM. As shown in Fig. 1b, the CIM contains a phase-
sensitive amplifier (PSA), 1-km fiber ring cavity, and an FPGA module. We employ a
periodically poled lithium niobate (PPLN) waveguide as the PSA, which amplifies
lights with only the 0 or π phase components relative to the pump phase as a result of
signal-idler degenerate optical parametric amplification42,43. These two amplified
components express two of the Ising spins. Because the cavity round-trip time is 5 μs
and the pump pulse interval is 1 ns, over 5000 DOPO pulses are generated inside the
1-km cavity, from which 512 DOPO pulses are used as artificial Ising spins. The 512
DOPO pulses are mutually coupled by using the measurement and feedback scheme
with the FPGA module10,26. We can encode interaction matrix Jij in the FPGA
module with eight-bit integers ranging from −128 to 128. For solving the clustering
problem,maxjJijj � C ¼ 2Nedge ¼ 184 exceeds the maximum range of the FPGA
module. Thus, Jij in the CIM is rounded off as RðBiBj � CAijÞ with R ¼ 1=2: By
performing simulated annealing44 calculations without round off, we confirmed that
an error caused by this rounding is not critical to the ground-state search.

Actual computational time. The Ising-solver process of the CIM is completed in
500 μs, which is the time for 100 round trips of DOPO pulses in the 1-km cavity.
The obtained spin configurations are stored in the FPGA module and transferred
to the CPU to update the interaction matrix of the next stage. The calculations in
the digital part take at most 30 μs when both the domain separation and group
reunion algorithms are used simultaneously. Since the current FPGA module uses a
slow serial communications interface (RS-232C), it takes a few seconds to transfer
the annealing results and the updated matrix between the FPGA module and CPU.
Although this technical issue is beyond the current scope, it is important to discuss
how much we can shorten the transfer time.

For example, by using 10 Gigabit Ethernet (10 Gbps), the transfer time for JðlÞij
consisting of 8 ´ 5122 bits is estimated to be 0.2 ms ideally. Note that JðlÞij can be

written as J ðlÞij ¼ WðlÞ
ij J ij with Wðlþ 1Þ

ij � δðSðlÞi ; SðlÞj Þ. Except for the first stage, it is

enough to transfer SðlÞi of log2M ´ 512 bits in a few microseconds. Furthermore, we

can directly write the JðlÞij -update logic in an FPGA module, which does not take any
time for data transfer, except for the first input and final output. System-on-chip
FPGA devices may be used to implement rather complicated feedback algorithms.

Comparison with other algorithms. We compared our experimental clustering
results with other algorithms running on a standard CPU. We used reliable
algorithms45,46, namely the Louvain greedy34 and Infomap algorithms35. The greedy
algorithm reached the same best solution of Q ¼ 0:646 with a small rate (about 2%),
and it frequently reached the second and third best solution with Q � 0:643 (over
70%). The Infomap algorithm reached the best solution with highest probability of
about 60% (see Supplementary Note 6). Louvain ran in about a few milliseconds,
while Infomap took about a few seconds on an Intel(R) Xeon(R) CPU E5-2697 v2 @
2.70 GHz. However, the number of nodes was too small to evaluate the run times of
these algorithms. A further benchmark study like the one in ref. 45 will be left to future
work, because the number of nodes is strictly limited in the current setup.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the corresponding authors upon reasonable request.

Code availability
The modeling is described in the Supplementary Information and the code is available
from the corresponding authors upon reasonable request.
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