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Dipolar spin-waves and tunable band gap at the
Dirac points in the 2D magnet ErBr3
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Hans B. Braun3 & Michel Kenzelmann 1,2

Topological magnon insulators constitute a growing field of research for their potential use as

information carriers without heat dissipation. We report an experimental and theoretical

study of the magnetic ground-state and excitations in the van der Waals two-dimensional

honeycomb magnet ErBr3. We show that the magnetic properties of this compound are

entirely governed by the dipolar interactions which generate a continuously degenerate non-

collinear ground-state on the honeycomb lattice with spins confined in the plane. We find

that the magnon dispersion exhibits Dirac-like cones when the magnetic moments in the

ground-state are related by time-reversal and inversion symmetries associated with a Berry

phase π as in single-layer graphene. A magnon band gap opens when the dipoles are rotated

away from this state, entailing a finite Berry curvature in the vicinity of the K and K’ Dirac

points. Our results illustrate that the spin-wave dispersion of dipoles on the honeycomb

lattice can be reversibly controlled from a magnetic phase with Dirac cones to a topological

antiferromagnetic insulator with non-trivial valley Chern number.
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Modern electronics makes use of the electronic charge to
transport information. Because of electron scattering in
metals and semiconductors, electronic devices experi-

ence resistance which results in significant energy loss. Due to
Joule heating and dissipation miniaturization of transistors and
integrated circuits is about to reach its technological limit. One
way of overcoming these limitations is the use of the electron spin
to store and process information. Research in the fast-developing
field of spintronics mainly focuses on the development of tech-
nologies based on spin-polarized currents like spin valves that in
the past have revolutionized the capacity of hard disk drives1,2.
These efforts led to the emergence of the field of “magnonics” that
promises low energy consumption. This technology uses spin
waves (“magnons”) to process and store information and exploits
the advantage that magnon-based devices can be easily tuned by
an external magnetic field3,4. Among candidate materials for
magnonic applications, magnetic van der Waals crystals are of
special interest since a single layer can be exfoliated that allows us
to build complex heterostructures5,6. One example is MnPS3 that
is considered for magnon transport7 and detection of anti-
ferromagnetic states8. A key issue in developing magnonic
materials is to control the direction of propagation of the spin
waves at the surface of artificial nanostructures. The discovery of
magnetic crystals where spin waves are robust at the surface and
can propagate only along a single direction, because they are
topologically protected, has prompted new ideas for future
magnonic applications9. Non-trivial topological states can result
from spin-orbit interactions that open a gap in the magnon Dirac
cone10,11. The spin-orbit coupling is at the origin of the anti-
symmetric Dzyaloshinskii-Moriya (DM) interaction in magnetic
crystals12 that induces the magnon-Hall effect observed in fer-
romagnetic insulators13,14. Recently, it was proposed that dipolar
interactions have a similar effect as the DM interaction15,16 that
paves the way for the realization of topological artificial
nanostructures17,18.

Dipolar interactions are always present in magnetic solids.
They are direction dependent and long-range in contrast to
exchange interactions. This property induces frustration in the
lattice as in general it is not possible to satisfy all interactions
simultaneously. The problem of determining whether a lattice of
ordered magnetic dipoles can exist was addressed by Luttinger
and Tisza19. They demonstrated that the face-centered and body-
centered cubic lattices display ferromagnetism at low temperature
while for the simple cubic lattice the classical ground state is a
collinear antiferromagnet. The Mermin–Wagner theorem20 does
not apply in the case of long-range potentials and the absence of
order in two-dimensional (2D) magnets with dipolar interactions
does not generally apply. For a triangular lattice with solely
dipolar interactions21, indeed long-range order is predicted. For
both the square and honeycomb dipolar lattices, the classical
ground state exhibits a continuous degeneracy22,23. Finally, in the
geometrically frustrated Kagome lattice, no ground state satisfies
the condition that the spin length is constant on all lattice points
and long-range ferrimagnetic order is predicted with numerical
simulations24.

In this work, we report an analysis of the magnetic ground state
and excitations in the van der Waals magnet ErBr3 which was
shown to undergo a magnetic phase transition to a continuously
degenerate non-collinear 2D order below T= 280 mK25. We
show that the magnetic ground state in this crystal is explained by
dipolar interactions between the Er3+ moments. Calculation of
the dispersion of the magnetic excitations using the mean-field
random-phase approximation (MF-RPA), which includes dipolar
interactions and crystalline electric-field (CEF) anisotropy,
describes the inelastic neutron-scattering (INS) data. Using our
simulations of the magnetic excitations for the dipolar

honeycomb lattice, we show the presence of a Dirac cone at the
K-points of the Brillouin zone when the configuration of dipoles
possesses inversion (I) and time-reversal (T) symmetry. A gap
opens at the Dirac points between the acoustic and lowest optical
branch as the degeneracy angle between spins in the two sub-
lattices of the honeycomb structure is varied and the IT symmetry
of the magnetic structure is lifted.

Results
Crystal and magnetic structure of ErBr3. ErBr3 crystallizes in the
BiI3 structure26 with the rhombohedral space group R-3 (no. 148)
and lattice parameters a= b= 7.005Å and c= 18.89Å at
T= 1.5 K25, as shown in Fig. 1a. In this layer-type structure the Br−

ions adopt a hexagonal densest packing (AB) and Er3+ ions occupy
in an ordered way 2/3 of the octahedral voids between every other
layer (2/3c). The layer stacking along the c-axis results in a
sequence A2/3cBA2/3cBA2/3cB with three Er3+ honeycomb layers
per unit cell. The Er3+ ions are located on site (6c) at (0, 0, ±z),
(0, 0, ±z)+ (2/3, 1/3, 1/3), and (0, 0, ±z)+ (1/3, 2/3, 2/3). In this
crystal z= 1/6 and the rare-earth ions form a perfect honeycomb
lattice. The magnetic structure of ErBr3 was determined by powder
neutron diffraction25. Magnetic order sets in below T= 280mK
and down to T= 50mK only 2D order is observed. The magnetic
ordering vector k0= (1/3,1/3,0) triples the volume of the magnetic
unit cell to

ffiffiffi
3

p
a ´

ffiffiffi
3

p
a ´ c with axes rotated by 30° from the

crystallographic cell, see Fig. 1b. The ordered magnetic moments
are located in the honeycomb plane and amount to μ= 4.7 μB at
T= 50mK. The honeycomb lattice is composed of two trigonal
sublattices. The Er3+ ions on each sublattice exhibit a 120° anti-
ferromagnetic order with opposite chirality, see Fig. 1b. The
magnetic ground state has an infinite degeneracy with respect to in-
plane rotation of the orderedmoments by an arbitrary angleΨ with
opposite signs for the two sublattices25, see Fig. 1c.

In the mean-field approximation, the magnetic ground state is
determined by the eigenvector of the largest eigenvalue of the
Fourier transform of the exchange interaction tensor27. The
Hamiltonian with purely dipolar interactions is written

H ¼ �ðgμBÞ2μ0
8π

∑
i;j
Ji � DðijÞ � Jj ð1Þ

and

Dα;βðijÞ ¼
3ðRi � RjÞαðRi � RjÞβ

jRi � Rjj5
� δα;β

jRi � Rjj3
: ð2Þ

α, β= a, b, c are the crystal directions in Cartesian coordinates and
Ri is the position vector of the i magnetic ion. The dispersion of the
eigenvalues of the Fourier transform of the dipolar tensor along
κ= (q, q, 0) for the ErBr3 crystal with six Er-ions in the chemical cell
is shown in Supplementary Fig. 1 of Supplementary Note 1. The
largest eigenvalue has a maximum at k0= (1/3, 1/3, 0) in agreement
with the propagation vector of the magnetic structure measured in
ErBr3. This particular non-collinear magnetic ordering cannot be
reproduced by frustrated Heisenberg interactions28. The temperature
of the magnetic phase transition calculated with mean-field theory29

TMF ¼ maxfλk0=kBg=3 � 0:3K is close to the ordering temperature
of the Er moments measured by neutron diffraction. Mean-field
theory predicts the same magnetic ground state that is observed in
ErBr3 and agrees with the spin order obtained by Rozenbaum23 for
magnetic dipoles on the bipartite honeycomb lattice. The magnetic
ground state is continuously degenerate and the equivalent spin
structures are defined in terms of an arbitrary angle Ψ, as shown in
Fig. 1c. Supplementary Fig. 2 shows the dependence of the ground
state energy upon the lattice parameter c of the crystal structure of
ErBr3. The dipolar energy is constant for a lattice parameter c > 10Å
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that indicates that interlayer interactions become negligibly small
above that value. With a lattice parameter c= 18.89Å and an
interlayer distance of c/3= 6.3Å the 2D limit is reached in ErBr3.

Spin waves. To calculate the dispersion of the magnetic excita-
tions we used the MF-RPA method that treats the single-ion
interactions (crystal-field and mean-field Hamiltonians) exactly
while the interactions between the magnetic ions are considered
in the random-phase approximation30. The INS measurements of
the crystal-field splitting of ErBr3 are presented in Supplementary
Note 2 and the analysis of the data explains the temperature
dependence of the single-ion susceptibility shown in Supple-
mentary Fig. 5. In ErBr3, the first crystal-field level is located at
1.5 meV (see Supplementary Fig. 5), much higher than the energy
scale of the dipolar interactions; the spin system can be
approximated by a S= 1/2 doublet with effective anisotropic g-
factors as detailed in Supplementary Note 3. For ErBr3, we
obtained a large easy-plane anisotropy with gx= gy= 9.4 and
gz= 0.1.

In MF-RPA the spin-wave excitations appear as poles in the
dynamical susceptibility tensor χðq; EÞ,

χðq; EÞ ¼ 1� χ0ðEÞDðqÞ
h i�1

χ0ðEÞ; ð3Þ

where χ0ðEÞ is the single-ion susceptibility and DðqÞ the Fourier
transform of the dipolar interactions. Because the magnetic
moments of ErBr3 in the 2D phase form a non-collinear structure,
it is convenient to introduce local coordinates for each spin in the
magnetic cell with the quantization axis pointing along the spin
direction, so that after transformation the single-ion susceptibility
is the same for every magnetic site in the unit cell30. The inelastic
neutron cross-section S(κ, E) is then proportional to the
imaginary part of the dynamical susceptibility

Sðκ; EÞ ¼ 1
π

1
1� expð�E=kBTÞ

1
N
∑
α;β

∑
u;v

δα;β �
κακβ
jκj2

� �
=χα;βu;v ðκ; EÞ

ð4Þ

with κ= τ+ q the scattering vector and τ a reciprocal lattice
vector; u, v number the N Er-ions in the magnetic cell and
α, β= a, b, c. Equation (4) is given in the crystal frame and hence,
the =χu;vðκ;EÞ matrices are evaluated in the rotated local
coordinate system.

For the spin-wave calculations, only interactions within a single
honeycomb layer were considered as the dipolar interactions
between the planes are negligibly small. The spin-wave dispersion
is shown in Supplementary Fig. 7. For scattering vectors along
(0, q, 0) an acoustic mode and three optic branches are well
observable, while the other two spin-wave branches have a
considerably lower intensity. Along this direction in reciprocal
space S(κ, E) does not change appreciably when Ψ is varied for
the optical branches above E≃ 0.1 meV and no crossing of the
acoustic mode with an optical branch occurs.

The INS measurements in ErBr3 were performed with an
energy resolution of about 70 μeV and the spin waves that have
an energy E < 0.1 meV are hidden by the incoherent scattering at
the elastic position. Fig. 2a shows representative INS measure-
ments along (0, q, 0) at T= 80 mK together with the result of MF-
RPA. Additional INS measurements are shown in Supplementary
Fig. 6 together with a plot of the magnetic Brillouin zone where
the scan directions are indicated. Only an overall scale factor is
used to adjust the INS intensity with the MF-RPA calculations.
The peaks in the INS spectrum at ~0.2 meV correspond to the
dispersion of the highest visible magnon branch. Both the
dispersion of the spin waves and the intensity of the INS are well
reproduced. In Fig. 2b, we compare the dispersion of the spin
waves in ErBr3 with the MF-RPA calculations. It can be observed
that the calculated spectrum of S(κ, E) is in agreement with the
INS data.

Discussion
The electronic band structure of materials with a honeycomb
structure, like graphene, exhibits Dirac points at the corners of
the Brillouin zone (the K-points in Supplementary Fig. 6c) where
the electronic bands cross. Close to the K-point the electronic

Fig. 1 Crystal and magnetic structure of ErBr3. a Crystal structure of ErBr3. Br− ions octahedrally coordinate Er3+ ions that form honeycomb layers stacked
along the c-axis. b Honeycomb layer of Er3+ ions at z= 1/6 with ordered magnetic moments of 4.7 μB (black arrows) for a spin configuration given by angle
Ψ= 0. The two trigonal sublattices of the honeycomb are shown as blue and red spheres. The crystallographic and magnetic unit cells are shown as black
and green lines, respectively. c The classical magnetic ground state is continuously degenerate and the magnetic moments can be rotated in opposite
direction by varying the angle Ψ. In panel c, Ψ= π/6.
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bands have a linear dispersion that corresponds to the dispersion
of a relativistic and massless particle31. It was shown that the spin
waves of a Heisenberg ferromagnet with a honeycomb structure
have Dirac cones32,33 around the K-point opening the possibility
of producing magnetic Dirac materials. In agreement with these
predictions topological magnons have been observed as Dirac
massless bosons in the ferromagnet CrBr334. The acoustic and
optical spin-wave branches cross at the K-point of the Brillouin
zone boundary and have a linear dispersion analogous to the
electronic band structure of graphene. Magnon Dirac cones are
not only found in ferromagnetic insulators and topological
magnons protected by symmetry have been observed in the 3D
antiferromagnets Cu3TeO6

35–37 and CoTiO3
38. In contrast, a

magnon band gap is observed at the zone boundary in CrI3. The
origin of the gap is still debated and has been associated either
with the DM interaction between next-nearest neighbors on the
honeycomb lattice39 or magnon-phonon coupling40. In magnetic
insulators, the DM interaction plays the role of the spin-orbit
interaction present in graphene and leads to avoided
band crossing of magnons. According to the bulk-edge
correspondence41, magnons, in the gapped phase, can propa-
gate uni-directionally along the surface or edges which opens the
possibility of producing magnetic counterparts of topological
insulators.

Figure 3a shows the dispersion of the spin waves for ErBr3
along the (q, q, 0) direction. As the magnetic ground state is
degenerate, we have performed the calculations for different
values of Ψ for the magnetic moments of the Er-sublattices. The
dispersion of the spin waves for the dipolar honeycomb lattice
shows a Dirac cone at the K-point when the spins in ErBr3 form a
periodic vortex structure with Ψ= 0 (Fig. 3a). When Ψ is varied
an anti-crossing of the lowest optical branch with the acoustic
branch appears at the K-point of the magnetic Brillouin zone. The
size of the energy gap between the two branches depends on Ψ as
shown in Fig. 3b and reaches a maximum for Ψ= π/6. The
splitting between the acoustic and optic branch decreases again
for values of Ψ larger than π/6; finally, the two branches form a
Dirac cone again when the arrangement of the Er moments
corresponds to a periodic vortex structure with Ψ= π/3 (Fig. 3a).

Furthermore, the variation of Ψ from 0 to 2π produces six distinct
spin structures on the honeycomb net corresponding to three
vortex positions with opposite chiralities where the Dirac cones
are present in the spin-wave spectrum at the K and K’ points.

For Ψ= n × π/3 (n an integer), the acoustic and the lowest
optical spin-wave branch cross at the K-point with a linear slope,
and a Dirac cone is found at an energy of E ≈ 0.083 meV, as
shown in Fig. 3c. We calculated a Berry phase γ= ±π (see Fig. 4a
and Supplementary Note 4) that reflects the degeneracy of the
two magnon branches at the Dirac points and shows that the
topology of the magnon dispersion in ErBr3 mimics the topology
of the electronic band structure in graphene. Our results
demonstrate that Dirac cones are not only present in honeycomb
magnets with Heisenberg interactions, but also in van der Waals
crystals like ErBr3, where long-range dipolar forces are the pri-
mary magnetic interaction.

As in Cu3TeO6, Dirac points are present in the spectrum of
magnetic excitations due to the invariance of the magnetic
structure under combined inversion and time-reversal symmetry
operations35–37. When Ψ ≠ n × π/3 (n an integer), the symmetry
of the spin structure is broken which generates a finite Berry
curvature as shown in Fig. 4b. In Fig. 4c and Supplementary
Fig. 8, we show the evolution of the Berry curvature calculated for
the magnon acoustic branch which is well separated from the
other branches. The Berry curvatures at the K and K’ points have
the same magnitude but opposite signs as is the case in
graphene42. For degeneracy angles close to Ψ= 0, the Berry
curvature Ω(k) is peaked around the K and K’ points and diverges
when Ψ→ 0. With increasing values of Ψ we observe that Ω(k)
continuously broadens and weakens but remains centered around
the K and K’ points. The Berry curvature finally disappears at
Ψ= π/6 when the gap between the acoustic and optical branch
has its maximum value. Upon increasing the angle Ψ further, the
Berry curvature reappears close to the K and K’ points albeit with
opposite signs. The Berry curvature of the dipolar honeycomb
magnet hence depends on the size of the spin gap and can be
manipulated by varying the angle Ψ. The Chern number C is
equal to 0 when the Berry curvature is integrated over the entire
Brillouin zone. Although C= 0 indicates a topologically trivial

Fig. 2 Spin-wave measurements in ErBr3. a Representative inelastic neutron scattering measurements of the spin-wave excitations in ErBr3 compared with the
result of mean-field random-phase approximation (blue lines). The red line is a fit of the incoherent scattering measured at momentum transfer κ= (2/3, –4/3, 0)
and at T= 6 K, which is well above the temperature of the phase transition T= 280mK and in the paramagnetic phase where there are no propagating coherent
spin waves. The sum of both contributions is shown by the black line. Error bars are standard deviations given by the square root of the neutron counts. b False color
plot of the inelastic neutron cross-section S(κ, E) along κ= (0, q, 0). In the calculations, we used a linewidth Γ=0.07meV in the single-ion susceptibility to
approximate the energy resolution of the spectrometer (see Supplementary Note 3). The points represent the spin-wave dispersion in ErBr3 obtained from a fit with
a single Gaussian. Magnetic excitations below the energy E=0.1meV were not accessible in the experiment. The error bars are a result of the Gaussian fit.
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Fig. 3 Magnon gap in the dipolar honeycomb lattice. a Simulation of the inelastic neutron cross-section S(κ, E) along the momentum transfer κ= (q, q, 0)
for selected Ψ. Note the opening of a gap at κ= (2/3, 2/3, 0) between the acoustic and the lowest optical mode at the energy E≈ 0.083meV when the
spin configuration given by angle Ψ is varied. The color bar represents the calculated intensity of the inelastic neutron cross-section. b Dependence of the
magnon band gap as a function Ψ at κ= (2/3, 2/3, 0). c Calculation of the spin-wave dispersion close to the Dirac point for Ψ=−5.6 × 10−4 π, 0, and
+5.6 × 10−4 π, respectively.
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magnon insulator phase, when the integration of Ω(k) is
restricted around a single Dirac point we numerically obtain for
Ψ= 1. 5° CV ≈ ±1/2 at the K and K’ points that is a prerequisite
for the quantum valley Hall effect43,44. A non-trivial Berry cur-
vature is also at the origin of the magnon valley transports that
were recently reported in refs. 45,46. For the dipolar honeycomb
lattice, a topological phase transition occurs at Ψ= 0 where the
spin gap closes at the Dirac points and CV changes sign. As the
Berry curvature is antisymmetric with respect to the transition
point, a topological magnon can propagate along the interface of
two spin-domains located on opposite sides of the phase
boundary47. It is worth restating that these considerations hold
for purely dipolar interactions. If exchange interactions are pre-
sent, long-range ordering will occur with the moments normal to
the plane48.

In conclusion, we have shown that ErBr3 serves as a model
crystal for the dipolar antiferromagnet on the honeycomb lattice.
The classical magnetic ground state forms a degenerate non-
collinear vortex structure and we have found that the lowest
magnon bands evolve from Dirac magnon excitations to a
topological phase with non-trivial Berry curvature by varying the
phase Ψ that defines the spin configuration. The application of an
external magnetic field lifts the degeneracy of the ground state
and can be used to select a particular spin configuration by
varying the direction of the magnetic field22. As van der Waals

magnets can be cleaved this could be relevant for future investi-
gations of magnon currents in honeycomb lattices. Our results
suggest that if artificial dipolar honeycomb lattices can be built, it
would have the potential to be extremely useful for magnonic
devices since the energy at which the magnon band crossing
occurs can be adapted by varying the size of the magnetic
moment or the lattice spacing that allows us to engineer the
magnon band structure49,50.

Methods
Single crystal of ErBr3 and characterization. The single crystal of ErBr3 was
synthesized according to the method described previously in ref. 25. The magnetic
susceptibility was measured with an MPMS-5XL SQUID system (Quantum
Design).

Neutron experimental setup. The CEF splitting was determined with the thermal-
neutron spectrometer Eiger at the SINQ spallation source. The spectrometer was
operated in the constant final energy mode with kf= 2.662Å−1. To maximize the
intensity the monochromator was double focused and the analyzer was horizon-
tally focused. With this configuration the energy resolution is about ΔE= 0.8 meV
at the elastic position. Contamination by higher-order neutron wavelengths was
eliminated by a PG002-filter installed in the scattered beam. The dispersion of the
magnetic excitations was measured with the cold-neutron three-axis spectrometer
IN14 at the Institut Laue-Langevin. The spectrometer was operated in a similar
configuration as for the previous measurements albeit with kf= 1.15Å−1 that
resulted in an improved energy resolution of 70 μeV. A cold Be-filter, which
scatters off neutrons with wavevectors longer than kf= 1.55Å−1, was used to
reduce the background and avoid spurious scattering. For these measurements, a
single crystal of approximately 0.5 cm3 was mounted inside a dilution refrigerator
and cooled down to the base temperature of T= 80 mK that is well below the
ordering temperature of the Er3+ moments at T= 280 mK.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or
the Supplementary information. Additional data related to this paper may be requested
from the authors.
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