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Computation of eigenfrequency sensitivities using
Riesz projections for efficient optimization of
nanophotonic resonators
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Resonances are omnipresent in physics and essential for the description of wave phenomena.
We present an approach for computing eigenfrequency sensitivities of resonances. The
theory is based on Riesz projections and the approach can be applied to compute partial
derivatives of the complex eigenfrequencies of any resonance problem. Here, the method is
derived for Maxwell's equations. Its numerical realization essentially relies on direct differ-
entiation of scattering problems. We use a numerical implementation to demonstrate the
performance of the approach compared to differentiation using finite differences. The method
is applied for the efficient optimization of the quality factor of a nanophotonic resonator.
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play an important role for tailoring light-matter

interactions!2. They are exploited in, e.g., single-photon
sources for quantum technology?®, biosensors*, nanolasers’, or
solar energy devices®”. All these applications rely on the highly
localized electromagnetic field energies in the vicinity of the
underlying nanoresonatorsS. A central figure of merit for the
description of resonance effects is the quality (Q) factor, which
quantifies, in the case of low-loss systems, the relation between
stored and radiated field energies of the resonances®. Nanores-
onators with low energy dissipation, i.e., with high Q-factors, have
been proposed to improve the efficiencies of nanophotonic
devices®!0. For example, high-Q resonators can boost the
brightness of quantum emitters, the sensitivity of sensors, or the
emission processes in plasmonic lasers!!. Designing devices with
numerical optimization is a time and cost-effective approach. The
resonances are numerically computed by solving the source-free
Maxwell’s equations equipped with open boundary conditions!2.
This yields non-Hermitian eigenproblems and the solutions are
eigenmodes with complex-valued eigenfrequencies. In this con-
text, the Q-factor is defined as the scaled ratio of the real and
imaginary parts of the eigenfrequency.

Nanoresonators with high Q-factors have been theoretically
presented, but fabrication of these resonators is a limiting task!!.
The sensitivity analysis of eigenfrequencies can show a way to
reduce the sensitivities of the Q-factors. This can support the
nanofabrication processes. Furthermore, the sensitivity analysis of
eigenfrequencies is essential for numerical simulation. For
example, the numerical accuracies of the calculated eigen-
frequencies are strongly influenced by the sensitivities of the
eigenfrequencies when the systems are subject to small
perturbations!>14. In particular, for high-Q resonators, the
accuracy requirements are demanding since the real and ima-
ginary parts of the eigenfrequencies differ by several orders of
magnitude. Sensitivities are also directly exploited in numerical
optimization algorithms using gradients!>, for gradient-enhanced
surrogate modeling!®, and for local sensitivity analyses!”. The
computation of eigenfrequency sensitivities is usually based on
perturbation theory!819, where the sensitivity of the underlying
operator, the left and the right eigenmodes, and a proper nor-
malization of the eigenmodes are required. The solution of the
perturbed systems, on the other hand, is not necessary. For
resonance problems, left and right eigenmodes are in general not
identical, which increases the computational effort, and normal-
ization requires additional attention. There are specialized
approaches that, e.g., exploit magnetic fields for extracting the left
eigenmodes?’, introduce an adjoint system for computing
sensitivities?!, or that rely on internal and external electric fields
at the boundaries of the nanoresonators22. It is also possible to
completely omit the use of eigenmodes for sensitivity analysis?3.
A further approach is the straightforward application of finite
differences. However, this also includes the solution of the per-
turbed resonance problems, which increases the computational
effort.

In this work, we present an approach for computing eigen-
frequency sensitivities that completely avoids solving resonance
problems. The approach is based on Riesz projections given by
contour integrals in the complex frequency plane. The contour
integrals are numerically accessed by solving Maxwell’s equa-
tions with a source term enabling an efficient numerical reali-
zation using direct differentiation. The numerical experiments
show a significant reduction in computational effort compared
to applying finite differences. A Bayesian optimization algo-
rithm with the incorporation of eigenfrequency sensitivities
is used to optimize a resonator hosting a resonance with a high
Q-factor.

Resonance phenomena are ubiquitous in nanophotonics and

Results

Theoretical background and numerical realization. We start
with an introduction of the theoretical background on resonance
phenomena occurring in nanophotonics. Based on this, Riesz
projections for computing eigenfrequency sensitivities and an
efficient approach for its numerical realization are presented.

Resonances in nanophotonics. In nanophotonics, in the steady-
state regime, light-matter interactions can be described by the
time-harmonic Maxwell’s equations in second-order form,

Vx gty 'V x E(r, w) — wle(r, wp)E(r, wy) = iwp)(x), (1)

where E(r, w,) € C? is the electric field, r € R? is the position,
w, € R is the angular frequency, and J(r) € C’ is the electric
current density corresponding to a light source. In the optical
regime, the permeability tensor y(r, w,) typically equals the vacuum
permeability po. The permittivity tensor e(r,wg) = €,(r, wy)eo,
where €,(r, wy) is the relative permittivity and ¢, the vacuum per-
mittivity, describes the spatial distribution of material and the
material dispersion. Solutions to Eq. (1) are called scattering
solutions as light from a source is scattered by a material system.

Resonances are solutions to Eq. (1) without a source term, i.e.,
J(r) =0, and with transparent boundary conditions. The
boundary conditions lead to non-Hermitian eigenproblems,
and, if material dispersion is also present, the eigenproblems
become nonlinear. The electric field distribution of an eigenmode
is denoted by E(r) € C’ and the corresponding complex-valued
eigenfrequency by @ € C. The Q-factor of a resonance is defined

by
Re(®)

= Hm@)

and describes its spectral confinement. In the limiting case of
vanishing losses, this definition agrees with the energy definition,
according to which the Q-factor quantifies the relation between
stored and dissipated electromagnetic field energy of a
resonance®.

In the following, a nanophotonic resonator supporting a
resonance with a high Q-factor is investigated. We compute the
eigenfrequency sensitivities with respect to various parameters to
optimize the Q-factor of the nanoresonator. Figure 1 sketches the
applied framework for an exemplary problem, a one-dimensional
resonator defined by layers with different permittivities. Changes
8p of the parameter p lead to changes in the eigenmode E and in
the corresponding eigenfrequency @, which describes the
sensitivity of E and @ with respect to the parameter p. To
compute the eigenfrequency sensitivity, we introduce a contour-
integral-based approach using Riesz projections, where physical
observables are extracted from scattering problems. Solving the
scattering problems, which are linear systems, can be regarded as
a blackbox?42.

Riesz projections for eigenfrequency sensitivities. To derive a Riesz-
projection-based approach for computing eigenfrequency sensi-
tivities, which are the partial derivatives of the eigenfrequency, we
consider the electric field E(r, w, € R) as a solution of Eq. (1) and
E(r,w € C) as an analytical continuation of E(r,w,) into the
complex frequency plane. The field E(r, w) is a meromorphic
function with resonance poles at the eigenfrequencies. To simplify
the notation, we omit the spatial and frequency dependency of
the electric field and write E when we mean E(r, w).

Let £(E) be a physical observable, where £: C’ — C is a
linear functional, and C be a contour enclosing the pole @ of the
order m and no other poles. Then, the Laurent expansion of L(E)
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Fig. 1 Schematic representation of computing eigenfrequency sensitivities of a resonator using contour integration. The system is defined by layers
with different permittivities ; and e, and is described by the one-dimensional Helmholtz equation —AE — @2¢E = 0. A solution to the resonance problem is
given by the eigenmode E and the corresponding complex-valued eigenfrequency @ € C. The real part of the electric field of the eigenmode is sketched
with the solid black curve. A perturbation &p of the middle layer width p leads to a perturbed electric field, represented by the dashed red curve, and to a
perturbation d@ of the eigenfrequency. Computing contour integrals by solving linear systems AE=f and d/dp[AE = f] in the complex frequency plane
yields the eigenfrequency sensitivity d@/dp. Solving the linear systems is considered as a blackbox.

about @ is given by
LE)= > aw— ), where
k=—m

L)
2m ) (w — @)
o

()

(@) =

The coefficient a_,(@) is the so-called residue of L(E) at .
Using Eq. (2) with the assumption that @ has the order m =1 and
applying Cauchy’s integral formula yield

j{wz(E) dw = ]{w - —a_,(@)do = a)g{c(la) da,

C C

where, due to the closed integral in the complex plane, the regular
terms in the expansion vanish. With this, the eigenfrequency  is
given by

f wL(E)dw
‘ 3)

(Z):

§LE)dw
C

The contour integrals in this equation are essentially Riesz

projections for £(E) and C24. Partial differentiation with respect
to a parameter p directly gives the desired expression for the
eigenfrequency sensitivity,

d_ (o, a1
»_ \op’ “op) v

u= %wﬁ(E) dw,v = jﬁ(E) dw,

C
JE
c

ou oE ov
» f‘“ﬁ(@ o=
C

For the interchangeability of integral and derivative, E and oE/
dp are assumed to be continuously differentiable with respect to
the frequency w and the parameter p. The eigenmode E and its
sensitivity 9E/dp can be represented by the contour integrals

E:fEdwanda—E: a—E w,
aop J op
c

where

(4)

c
respectively, which are Riesz projections applied to Maxwell’s
equations given by Eq. (1). This approach can be generalized for
multiple eigenfrequencies inside a contour as well as for higher
order poles; cf. Binkowski et al.2%, Note that Riesz projections can
also be used to compute modal expansions of physical

observables, where scattering solutions are expanded into
weighted sums of eigenmodes?®.

Numerical realization and direct differentiation. For the numer-
ical realization of the presented approach, the finite element
method (FEM) is applied. Scattering problems are solved by
applying the solver JCMSUITE?”. The FEM discretization of Eq.
(1) leads to the linear system of equations AE = f, where A €
C™" is the system matrix, E € C" is the scattered electric field in
a finite-dimensional FEM basis, and f € C" contains the source
term. The solver employs adaptive meshing and higher order
polynomial ansatz functions. In all subsequent simulations, it is
ensured that sufficient accuracies are achieved with respect to the
FEM discretization parameters. Note that also other methods can
be used for numerical discretization. In the field of nanopho-
tonics, common approaches are, e.g., the finite-difference time-
domain method, the Fourier modal method, or the boundary
element method!?28.

In order to calculate eigenfrequencies @ and their sensitivities
0w/dp; with respect to parameters p;, the electric fields E and
their sensitivities dE/dp; are computed for complex frequencies
w € C on the contours given in Egs. (3) and (4). For the
calculation of 0E/dp;, we apply an approach based on directly
using the FEM system matrix2%30, With this direct differentiation
method, the sensitivities of scattering solutions can be computed

(L%
op;

by
' o, E) '

In a first step, instead of directly computing A~!, an LU-
decomposition of A, which can be seen as the matrix variant of
Gaussian elimination, is computed to efficiently solve the linear
system AE=f In the FEM context, this step is usually a
computationally expensive step in solving scattering problems, so
reusing an LU-decomposition can significantly reduce computa-
tional costs. In a second step, the partial derivatives of the system
matrix, 0A/dp;, and of the source term, df/dp;, are obtained quasi
analytically, i.e., with negligible computational effort. Then, A = LU,
E, 0A/dp;, and df/dp; are used to compute 0E/dp; in Eq. (5). The LU-
decomposition can be used to obtain both E and oE/dp;.

For the calculation of the contour integrals, a numerical
integration with a circular integration contour and a trapezoidal
rule is used, which leads to an exponential convergence behavior
with respect to the integration points3!. At each integration point,
we calculate E and 0E/dp; by solving Eq. (1) with oblique incident
plane waves as source terms. The linear functional L(E)
corresponds to a spatial point evaluation of one component of
the electric field, which can be understood as physical observable.
Note that, with Eqs. (3) and (4), an eigenfrequency @ and its

(©)
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Fig. 2 Numerical investigation of the high-Q resonance of a nanophotonic resonator. a Nanoresonator on a three-layer substrate. The substrate is
infinitely extended in x and y direction. The geometrical parameters ps, p,, ..., ps are the reference values from Koshelev et al.32. b Calculated eigenfrequency
@ = (1.17309 — 0.00296i)x 10" s~ corresponding to the high-Q resonance. The other red crosses shown are the two eigenfrequencies which are closest
to @. The circular integration contour C with the center wg = 272¢/(1600 nm) and the radius ro = wo x 102 is used for computing Riesz projections.

¢ Electric field intensity |E|? corresponding to the high-Q resonance. d Convergence of the eigenfrequency sensitivities dw/dp; with respect to the
polynomial degree d of the FEM ansatz functions. The sensitivities are computed at the parameter reference values given in (a). Relative errors

erfeali = |Re(§—g” (d) —g—g(dref))/Re(@ (def))l, Where d.e = 6. @ Relative errors errim,g,; for the imaginary parts of the sensitivities; cf. (d).

Ip;

sensitivity d@/dp, can be calculated without solving resonance
problems Vx u~'VxE — @*E = 0 directly. Instead, scattering
problems, where Eq. (5) can be exploited, are solved. We call the
described approach, which combines Riesz projections and direct
differentiation (DD), the Riesz projection DD method. Equation
(4) and its numerical implementation exploiting Eq. (5) are the
main results of this work and represent the difference from
previous works on Riesz projections; cf. Zschiedrich et al.26.

Note that the Riesz projection DD method is not limited to the
field of nanophotonics, but can be applied to other eigenproblems
as well. Maxwell’s equations can be replaced by another partial
differential equation, and then instead of the analytical continua-
tion of the electric field E, the analytical continuation of another
quantity is evaluated for the contour integration.

Application

Eigenfrequency sensitivities of a nanophotonic resonator. We
investigate an example from the literature, a dielectric nanores-
onator of cylindrical shape placed on a three-layer substrate,
where constructive and destructive eigenmode interference has
been used to engineer a bound state in the continuum (BIC)32.
The nanoresonator has been designed taking into account various
parameters to suppress radiation losses: The radius, the layer
thicknesses, and the layer materials have been chosen to obtain a
high-Q resonance. The nanoresonator is made of the high-index
material aluminum gallium arsenide (AlGaAs) with 20% alumi-
num. A silicon dioxide (SiO,) spacer is placed between the
nanoresonator and a film of indium tin oxide (ITO) on a SiO,
substrate. A sketch of the designed system is shown in Fig. 2a. For
this specific configuration, a high-Q resonance with a Q-factor of
Q=188+5 has been experimentally observed, and numerical
simulations have resulted in Q =197, where the real part of the
resonance wavelength is in the telecommunication wavelength

regime, close to 1600 nm. The nanophotonic resonator has been
exploited as a nanoantenna for nonlinear nanophotonics32.

In the following simulations, we consider the constant relative
permittivities €, = 10.81 and €, = 2.084 for AlGaAs and for SiO,,
respectively, which are extracted from experimental data3>33, For
the ITO layer, the Drude model €,(wg) = €;,¢ — @3 /(wj + iwyy) is
chosen, where e = 3.8813, w,=3.0305x10°s7!, and y=
1.2781 x 1014 s~ 1, This Drude model is obtained by a rational fit>*
to experimental data3? and describes the material dispersion of
the system. We further exploit the rotational symmetry of the
geometry. On the one hand, this reduces the computational effort
and, on the other hand, the eigenmodes can be -easily
distinguished by their azimuthal quantum numbers m, which
correspond to the number of oscillations in the radial and axial
directions. When the light sources used for computing Riesz
projections are not rotationally symmetric, such as oblique
incident plane waves, the source fields can be expanded into
Fourier modes in the angular direction. Considering Fourier
modes with certain quantum numbers, only the eigenmodes,
eigenfrequencies, and corresponding sensitivities associated with
these quantum numbers are accessed.

We start with computing a Riesz projection to obtain the
eigenfrequency @ of the high-Q resonance. Figure 2b shows the
complex frequency plane with the calculated eigenfrequency,
@ = (1.17309 — 0.00296i)x 1015 s, and the corresponding cir-
cular integration contour C for the computation of the Riesz
projection. The center and the radius of the contour are selected
based on a-priori knowledge from Koshelev et al.32. Alternatively,
without a-priori knowledge, a larger integration contour can be
used?®. The simulations are performed using eight integration
points on the contour C, where a sufficient accuracy with respect
to the integration points is ensured. The computations are based
on a FEM mesh consisting of 306 triangles. To compare the size
of the contour with the distances between the eigenfrequencies
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Table 1 Computed eigenfrequency sensitivities.

Re(d@/op;)x 107° Im(3@/ap;)x 10~°

i

1 —128.750 (s nm)~! —0.324 (snm)~!
2 —84.568 (snm)~! 2.660 (s nm)™!
3 —7.192 (s nm)~" —1.955 (s nm)~"
4 —0.065 (s nm)~! 0.208 (s nm)~!
5 15.047 (s deg) ! 0.039 (s deg) "

The sensitivities d@/dp; correspond to the high-Q resonance of the nanoresonator shown in Fig.
2a and are computed at the shown parameter reference values.

within the spectrum of the nanoresonator, the two eigenfrequen-
cies which are closest to @ are also shown. We obtain a Q-factor
of Q =198 for the high-Q resonance, which is in good agreement
with the experimental and numerical results from Koshelev
et al.>2, The corresponding electric field intensity |E|? is shown in
Fig. 2c. The eigenmode E has the quantum number m = 0 and is
strongly localized in the vicinity of the nanoresonator.

Next, the eigenfrequency sensitivities di/dp; with respect to the
parameters py, pa, ..., ps sketched in Fig. 2a are computed. In order to
validate the approach, a convergence study for the polynomial degree
d of the FEM ansatz functions is performed. Figure 2d, e shows the
relative errors for the real and imaginary parts, respectively.
Exponential convergence can be observed for all sensitivities with
increasing d. The computed sensitivities for d =5 are shown in
Table 1. Exemplary source code for the Riesz projection DD method
and simulation results are presented in Binkowski et al.3°.

Performance benchmark. The computational effort of the
numerical realization of the Riesz projection DD method is
compared with the computational effort of the finite difference
method. We choose the central difference scheme d@/dp; ~
(@(p; + 8p;) — @w(p; — 6p;))/(28p;) for the comparison. Com-
puting central differences is more computationally expensive than
computing forward or backward differences. However, more
accurate results can be achieved as the error decreases with ((Spi)z.
To achieve an adequate accuracy, sufficiently small step sizes &p;
are selected. For example, for the radius of the nanoresonator, we
choose dp; =0.1 nm. Note that, also for the finite difference
method, we compute the eigenfrequencies by using the contour-
integral-based formula in Eq. (3).

We increase the degrees of freedom of the system shown in
Fig. 2a by deforming the cylindrical nanoresonator to an
ellipsoidal nanoresonator. This breaks the rotational symmetry
yielding a full three-dimensional system with new parameters, the
radius of the nanoresonator in x direction and the radius in y
direction. Figure 3 shows, for the three-dimensional implementa-
tion and for the rotational symmetric implementation, the
normalized computational effort for different numbers of
computed sensitivities. We compute the eigenfrequency @ and
then we add the sensitivities, starting with dw/dp,, one after the
other. It can be observed that the Riesz projection DD method
requires less computational effort than the finite difference
method, for any number of computed sensitivities, i.e., for all
N2=1. In the case of using finite differences, the computational
effort has a slope of about 200% because for each sensitivity two
additional problems with typically the same dimension as the
unperturbed problem have to be solved. In the three-dimensional
case, a linear regression for the computational effort gives a slope
of about 4% for the Riesz projection DD method. The
computational effort needed for the LU-decomposition is
significant compared to the matrix assembly and to the other
solution steps, so the possibility of exploiting Eq. (5) gives a great
benefit for the Riesz projection DD method. For N = 5, the CPU

14 T T T .
2 3D System
12+ i
-
3
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H 1ol| * System -4 ]
fg 8+ <@ //’ 4
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Fig. 3 Performance of the Riesz projection DD method. The normalized
computational effort over the number N of computed sensitivities d@/dp;
with respect to parameters py, py, ..., py is shown. The sensitivities are
computed at the reference values shown in Fig. 2a. The computational
effort is the total CPU time normalized to the CPU time spent for
computing the eigenfrequency @, which corresponds to N = 0. The time is
measured with JCMSUITE using four threads on a machine with a 24-core
Intel Xeon Processor running at 3.3 GHz. For all calculations, to ensure high
accuracies, eight integration points at the integration contour C depicted in
Fig. 2b are used. The degree of the FEM ansatz functions is fixed with d =5.
The mesh of the three-dimensional system consists of 4160 prisms and the
mesh of the rotational symmetric system consists of 306 triangles.

time required to solve the linear system of equations, which
includes the LU-decomposition, takes 81% of the accumulated
CPU time. In the rotational symmetric case, the time for solving
the linear system is negligible. However, the trend is the same for
the three-dimensional and for the computationally cheaper
rotational symmetric case: The advantage of using Riesz
projections significantly increases with an increasing number of
computed sensitivities.

Note that contour integral methods are well suited for
parallelization because the scattering problems can be solved in
parallel on the integration contour. However, as total CPU times
are considered for Fig. 3, this is not reflected by the time
measurements.

Q-factor optimization. The Riesz projection DD method is
applied to further optimize the Q-factor of the high-Q resonance
of the nanophotonic resonator from Koshelev et al.32 shown in
Fig. 2a. A rotational symmetric nanoresonator is considered
because simulations show that an ellipsoidal shape does not lead
to a significant increase of the Q-factor. We use a Bayesian
optimization algorithm3® with the incorporation of sensitivity
information. This global optimization algorithm is well suited for
problems with computationally expensive objective functions and
benchmarks show that providing sensitivities can significantly
reduce computational effort’”. However, other optimization
approaches could be used as well.

For the optimization, we choose the parameter ranges 435 nm
<p1<495nm, 575nm<p,<695nm, 150 nm < p; <550 nm,
100 nm < py <500 nm, and 60°<ps<90°. To ensure that the
optimized nanoresonator can also be used as nanoantenna in the
telecommunication wavelength regime, like the original system,
we add the constraint that the optimized eigenfrequency must lie
in the circular contour with the center wy, = 27¢/(1600 nm) and
the radius r, =4 x 1013 s~1. In each optimization step, the Riesz
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Fig. 4 Optimization of a nanophotonic resonator. The optimized
nanophotonic resonator with a sketch of the electric field intensity |E|?
corresponding to the high-Q resonance is shown. The high-Q resonance
has a Q-factor of Q = 292. The materials of the nanoresonator are the same
as for the reference structure in Fig. 2a.

projection DD method is used to compute the eigenfrequency
with a quantum number of m = 0 lying inside the contour and to
calculate the corresponding sensitivities.

A nanoresonator with a Q-factor of Q =292 is obtained after
61 iterations of the optimizer yielding an increase of about 47.5%
over the original resonator. More iterations yield only a negligible
increase of the Q-factor. The optimized nanoresonator with a
sketch of the electric field intensity of its high-Q resonance and
the values for all underlying parameters are shown in Fig. 4. The
corresponding eigenfrequency is given by @, = (1.176897—
0.0020157) x 10 s~1. Note that, in the optimization domain, the
average sensitivity of the Q-factor with respect to the ITO layer
thickness p, is negligible.

Conclusions
An approach for computing eigenfrequency sensitivities of reso-
nance problems was presented. The numerical realization of the
Riesz projection DD method relies on computing scattering
solutions and their sensitivities by solving Maxwell’s equations
with a source term, i.e., solving linear systems of equations. This
enables direct differentiation for the efficient calculation of
eigenfrequency sensitivities. Although sensitivities of resonances
are computed, no eigenproblems have to be solved directly. The
performance of the approach was demonstrated by a comparison
with the finite difference method. The Riesz projection DD
method was incorporated into a gradient-based optimization
algorithm to maximize the Q-factor of a nanophotonic resonator.
The savings in computational effort are particularly significant
for optimization with respect to several parameters, which is a
common task in nanophotonics. Therefore, we expect the approach
to prove especially useful when many sensitivities are to be calcu-
lated. The Riesz projection DD method can not only be applied to
problems in nanophotonics, but to any resonance problem.

Data availability
All relevant data generated or analyzed during this study are included in this published
article. Tabulated data files are included in a corresponding data publication3>.

Code availability

Source code for performing the numerical experiments can be found in Binkowski et al.3>.
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