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Bloch oscillations and matter-wave localization of a
dipolar quantum gas in a one-dimensional lattice
Gabriele Natale 1,2, Thomas Bland 2, Simon Gschwendtner2, Louis Lafforgue2, Daniel S. Grün2,

Alexander Patscheider2, Manfred J. Mark 1,2 & Francesca Ferlaino 1,2✉

Three-dimensional quantum gases of strongly dipolar atoms can undergo a crossover from a

dilute gas to a dense macrodroplet, stabilized by quantum fluctuations. Adding a one-

dimensional optical lattice creates a platform where quantum fluctuations are still unex-

plored, and a rich variety of phases may be observable. We employ Bloch oscillations as an

interferometric tool to assess the role quantum fluctuations play in an array of quasi-two-

dimensional Bose-Einstein condensates. Long-lived oscillations are observed when the che-

mical potential is balanced between sites, in a region where a macrodroplet is extended over

several lattice sites. Further, we observe a transition to a state that is localized to a single

lattice plane–driven purely by interactions–marked by the disappearance of the interference

pattern in the momentum distribution. To describe our observations, we develop a discrete

one-dimensional extended Gross-Pitaevskii theory, including quantum fluctuations and a

variational approach for the on-site wavefunction. This model is in quantitative agreement

with the experiment, revealing the existence of single and multisite macrodroplets, and

signatures of a two-dimensional bright soliton.
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The dipole-dipole interaction (DDI) between magnetic
atoms in an ultracold quantum gas has been key to the
discovery of supersolids1–3 and macrodroplets4,5, states of

matter with extremely intriguing and counter-intuitive
properties6,7. Macrodroplets are macroscopic quantum states
that behave in many ways like liquid droplets4,5,8,9. They are at
least an order of magnitude denser than normal Bose–Einstein
condensates (BECs), and can be self-bound. They exist in a
parameter regime in which mean-field theories predict the col-
lapse of the entire system when the attractive dipolar interactions
overcome the repulsive contact interactions. Instead, the system
remains stable thanks to the so-called quantum fluctuations, thus
providing one of the rare examples where beyond-mean-field
interactions substantially change the ground state of the
system10,11. Although the functional form of the beyond-mean-
field term, otherwise known as the Lee-Huang-Yang (LHY)
correction12, is still subject to intense study and debate13,14, its
importance is now undoubted. Isolating beyond-mean-field
effects may be crucial to settle disputes on its validity, particu-
larly in dipole dominated systems; however, it is very difficult to
have access to individual interaction contributions. Though, the
differing atom number scaling between mean-field and LHY
contributions provide a promising method to differentiate
between them.

Optical lattices enable powerful interferometric approaches to,
e.g., measure with high precision the zero-crossing of the scat-
tering length or of the mean-field interaction with the so-called
Bloch oscillation (BO) technique15–18, and to achieve an accurate
determination of the background scattering length via lattice
spectroscopy in Hubbard models4,19,20. Moreover, the presence of
the lattice itself may change completely the phase diagram of the
system, as shown in seminal experiments with contact interacting
gases21–23. Unique phenomena are predicted with the addition of
long-range DDIs24,25. Experiments with lattice-confined atomic
dipolar gases have already shown important results, e.g., the
realization of extended Bose–Hubbard models26 and spin
models27–30 in three-dimensional (3D) lattices. In 2D lattices,
forming quasi-1D tubes, suppression of dipolar relaxation31 and
the controlled breakdown of integrability32 have been observed.
Instead, up to now, 1D lattices, forming an array of quasi-2D
layers, have been used with large wavelengths to load a single
pancake trap33, or multi-layer traps to study the role of DDI in
the stability against collapse34. Further, theoretical proposals have
suggested that the DDI between layers not only can lead to
modifications within each layer35–38 but also to inter-layer bound
states39–41. Other works predict the existence of bright-soliton
structures along the lattice42 or anisotropic on-site solitons43,44.
However, those proposals lack the important stabilization
mechanism given by the LHY term, which is known to provide
many intriguing phases in continuous systems (e.g., harmonically
trapped), opening up many questions: What is the ground state of
an attractive dipolar gas in a 1D lattice potential? Can droplets be
delocalized over many lattice planes? Will solitonic solutions
continue to exist?

In the present work, we study an erbium dipolar gas in a 1D
optical lattice with dominantly attractive DDI. We employ BOs as
an interferometric tool to probe the interaction contributions of
the system, and to isolate the role of beyond-mean-field effects.
We find long-lived oscillations, associated with a minimum in the
dephasing rate, close to the cancellation point between mean-field
and beyond-mean-field interactions, and at scattering lengths
significantly shifted from the expected mean-field result. We
develop a discrete effective 1D extended Gross-Pitaevskii equa-
tion (eGPE) with variational transverse widths45,46. We find that
this minimum occurs when the chemical potentials on each site
are equal, not the energies–as has been employed successfully in

contact interaction dominated systems17,18–due to the difference
in density scaling between the interactions. The close corre-
spondence between theory and experiment shows the validity of
the LHY prediction, even while highly inhomogeneous densities
are expected to break the local density approximation12. More-
over, we see that for low scattering lengths the system undergoes a
structural transition to a single localized 2D plane, signifying an
interaction-driven approach to generate systems in reduced
geometries. Finally, using our theoretical model we produce a full
phase diagram of the system, revealing the impact of the LHY
contribution to the predicted 2D anisotropic soliton state43,
which is instead morphed into a droplet solution at high atom
numbers. Though, promisingly, we still find soliton-like
solutions exist.

Results and discussion
Setup and preparation. In the experiment, we prepare a degen-
erate dipolar gas of erbium atoms in a one-dimensional optical
lattice as follows. We start with a dipolar quantum gas of 5 × 104

spin-polarized 166Er atoms confined in a cigar-shaped optical
dipole trap47 elongated along y. Typical BEC fractions range from
60% to 80%. The dipolar length for 166Er is fixed at add= 66.5 a0,
where a0 is the Bohr radius. We change the contact interaction
between atoms and therefore the s-wave scattering length as, via
Feshbach tuning48 using a resonance located near zero magnetic
field20, as detailed in the “Methods” section. We fix the orienta-
tion of B to be along the weak axis (y) of the trap, making the
DDI dominantly attractive4,7.

Once the harmonically trapped cloud is prepared at the desired
as, we switch on a 1D optical lattice, aligned along the gravity
direction (z); see Fig. 1(a). The vertical lattice is created by retro-
reflecting a λ= 1064 nm laser beam. We load the planes by
exponentially increasing the lattice depth V0 to 8 Erec in 20 ms,
where Erec= ℏ2k2/2m= h × 10.5 kHz. Here, ℏ= h/2π is the
reduced Planck’s constant (h), m is the mass of 166Er atoms
and k= 2π/λ is the wave-vector of the lattice. The 1D lattice
forms an array of tightly confined quasi-2D planes with a trap
frequency along the tight direction ωz ≃ 2π × 6 kHz, correspond-
ing to an harmonic oscillator length zho= 100 nm. Due to the
transversal Gaussian profile of the lattice beam, we estimate a
residual trap of frequencies ωx;y ¼ 2π ´ ð4; 4ÞÞ Hz. The tunneling
rate, J, between planes is about h × 33 Hz. For these 1D lattice
parameters, ℏωz > kBT and the system is kinematically 2D49.

Bloch oscillations in a one-dimensional optical lattice. We first
aim at inducing Bloch oscillations to interferometrically assess the
role of beyond-mean-field effects and test the validity of the LHY
term. We thus suddenly switch off the dipole trap and let the
system evolve in the combined lattice and gravitational potential
for a variable hold time th. Finally, using standard absorption
imaging after 30 ms of time-of-flight (TOF), we record the evo-
lution of the momentum distribution and extract the position of
the main peak, qmax, as a function of th. Figure 1b shows an
exemplary set of absorption images during a single Bloch period
TBO. We observe the key paradigm of BOs, i.e., the linear increase
of the mean momentum due to the acceleration and the Bragg
reflection occurring at the border of the Brillouin zone50, well
described by fitting a sawtooth function to qmax.

The high sensitivity of BOs to interactions17,51 clearly appears
by tracing the evolution for two different as (see Fig. 1c, d), as the
interaction dependence is encoded into the dephasing rate. For a
contact-dominated gas (add < as= 90 a0, Fig. 1c), we see that the
BOs vanish within a few TBO. On the contrary, decreasing as, and
thereby going into the regime where contact interactions and DDI
nearly compensate each other (as= 60 a0, Fig. 1d), we observe
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persisting oscillations for more than 25 Bloch cycles, set by our
limited observation time (for details on the analysis of the
momentum distribution during Bloch Oscillation, see Supple-
mentary Note 4). To systematically study this effect, we repeat the
BO measurements for different values of as, and extract the
corresponding dephasing rate γ. As shown in Fig. 2a, we observe a
resonant-type behavior with γ showing a pronounced dip with a
minimum at as= 61 a0. This minimum is clearly different to the
point as ≈ add, where the variance of the mean-field energies
across different lattice sites cancel18, which would be expected
from previous observations17,51.

To get further insight on the origin of the minimum, we
develop a discrete effective 1D eGPE, inspired by the close
correspondence between predictions from discrete models and
experimental observations in non-dipolar52,53 and weakly
dipolar18 BECs. We separate the 3D wavefunction into radial
and axial contributions, allowing for a variational anisotropic
radial width and thus maintaining the 3D character45. Along the
lattice direction (z), we further decompose the wavefunction,
ψ(z, t), as a sum of Wannier functions w(z) of the lowest energy
band over all lattice sites: ψðz; tÞ ¼ ffiffiffiffi

N
p

∑jcjðtÞwðz � zjÞ, where N
is the atom number and cj(t) the complex wavefunction
amplitude on lattice site j, leading to a set of discrete effective
1D eGPEs, each including mean-field and beyond mean-field
interactions. For the beyond-mean-field interaction, the 3D form
of the LHY still fully applies since the contact interaction energy
exceed the confinement energy scale (for details on the 2D to 3D
crossover, see Supplementary Note 2)54. However, our system
may also open to further studies on the 2D to 3D crossover of the
LHY. We solve these equations coupled to a minimization of the

energy functional with respect to the variational parameters to
determine the ground states, benchmarking them against the full
3D theory. We then perform dynamic simulations of the expected
time evolution (see the “Methods” section), giving an accurate
dephasing rate (solid line) in Fig. 2a without free parameters.

In previous studies17,18, the point of minimum dephasing was
found to occur when the mean-field interaction energies vanish or
cancel. We isolate the mean-field contribution by removing beyond-
mean-field effects from our simulations (dashed line in Fig. 2a),
predicting a minimum at as ≈ add. However, this is in clear
contradiction with our experimental observations by a shift of 6a0
and a different overall shape due to the different scaling of the LHY
term with the density. Without LHY, the cancellation of mean-field
energies, Ej

MF, is equivalent to the cancellation of onsite chemical
potentials, given by μj ¼ 2Ej

MF=jcjj2. Note, μj dictates the wavefunc-
tion phase winding on each site through cj ¼ jcjje�iμjt=_. Reintrodu-

cing quantum fluctuations, we obtain μj ¼ ð2Ej
MF þ 5=2Ej

BMFÞ=jcjj2,
where the 5/2 appears due to the ∣cj∣5 density scaling in the beyond-
mean-field energy ðEj

BMFÞ. Figure 2b shows μj from the ground state
calculation for four scattering lengths, additionally indicating the
contribution of the LHY correction.

We observe that the point of minimal dephasing in the
experiment is close to the point where the variance of μj is
minimized. Indeed, within a semi-analytic approximation (see
Supplementary Note 3 for details on the analytic model of
dephasing), we find a direct relationship between γ and μj, which
reads γ∝ ∣μ1− μ0∣ when 3 lattice sites (j=−1, 0, 1) are occupied.
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Fig. 1 Bloch oscillations of a dipolar BEC in a one-dimensional optical
lattice. a Sketch of our experiment, consisting of a 1D optical lattice in the
z-direction, loaded with an erbium BEC from an optical dipole trap with
trapping frequencies ωx,y,z= 2π × (240(3), 30(3), 217(1)) Hz. Gravity acts
along z. b Absorption images after time of flight (TOF) showing the
momentum distributions during one Bloch cycle. c, d Evolution of the peak
position of the momentum distribution (qmax) for as= (71.6(1.0), 59.8(1.0))
a0, respectively. A sawtooth fit (solid gray) to the data yields
TBO= 0.469(4) ms, consistent with the expected value TBO= 2k/(mggrav).
The error bars represent the standard error on the mean over 4–6
repetitions.
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Fig. 2 Dephasing rate and chemical potential distributions. a Experimental
dephasing rate γ (circles) as a function of scattering length as. The green
solid line shows the theory result, with an uncertainty region (shaded area)
accounting for 20% atom number variation. The blue dashed line shows the
theory expectation without Lee-Huang-Yang (LHY). The gray dot-dashed
line gives the prediction of the semi-analytic approximation for γ. Error bars
show the 68% confidence interval (see Supplementary Note 4 for details
on the analysis of the momentum distribution during Bloch Oscillation). The
statistical uncertainties on the scattering length is smaller than the symbols
size. b Chemical potential per lattice site μj extracted from the discrete
model for as= (59, 60, 65.5, 70) a0(1, 2, 3, 4). The green area depicts the
LHY contribution to μj.
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This model can be extended to 5 lattice sites, giving the dot-
dashed line (Fig. 2a) which reproduces very well the system
behavior. These results lead us to believe that measuring the
dephasing rate through the chemical potential will be ubiquitous
to systems with arbitrary interaction potentials, which can be
substantiated through future work. Note, the total (MF+ LHY)
interaction energies over the system cancel at 57.5 a0, which does
not coincide with the minimum of the dephasing, occurring at
approximately 60 a0. Additionally, we mainly attribute the
asymmetric shape of the dephasing rate in both the theory and
experiment to the change of the number of occupied sites in the
ground state, which smoothly reduces from ~5 to 3 from 75 to
60 a0, before rapidly reducing to a single occupied lattice site
at ~55 a0 (see later discussion and insets of (Fig. 3a).

Interaction-induced single site localization. By decreasing the
scattering length below 57 a0, no BOs nor interference peaks are
visible anymore. We observe at the initial instant (th= 0 ms) that
the momentum distribution is already spread over the entire first
Brillouin zone. To quantify this, we study the contrast, C, of the
interference pattern of the initial momentum distribution as a
function of as, see Fig. 3a. We extract C, defined as the amplitude
of the momentum peaks at ±2ℏk relative to the zero momentum
peak, from the Fourier analysis of the TOF images (see the
“Methods” section). For large as, we observe the typical matter-
wave interference pattern, as expected from a coherent state
populating several lattice planes (see inset)53. As we lower as, C
first remains fairly constant. For as below a certain critical value
a�s � 57 a0, we observe a sudden loss of the interference pattern
with a sharp decrease of C to almost zero.

Additionally, we observe that this interaction-driven process is
reversible. To test the restoring of the interference pattern, we
employ the following protocol (see the “Methods” section): In
brief, we first prepare the system in the lattice at constant and
large as (as= 69(2) a0). We then ramp down as below a�s
(as= 56(2) a0) in 20 ms and wait until C stabilizes to a small
value; see Fig. 3b. Note that the interference pattern disappears
after about 10 ms, which is on the order of the tunneling time h/J
between two neighboring lattice sites. At this point, we quench as
back to its initial value and probe the time evolution of the system
towards its new equilibrium state. On a similar timescale, we
observe the reappearance of the interference pattern with an
increase of C, which then saturates to about 60% of its initial
value. We attribute the partial recovery of the contrast to an
increase of the losses and heating. These arise from the combined
effect of an increase of the density and three-body scattering rates
occurring when tuning the magnetic field closer to a Feshbach
resonance4. For comparison, we also show the data without
inverting the field ramp.

The observed broad distribution in reciprocal space suggests
that the system ground state has undergone a structural change,
with the macroscopic wavefunction localized in one lattice plane.
To verify this interpretation, we calculate the ground state of the
system as a function of as. When the repulsive contact interaction
dominates (as > add), we find an array of BECs occupying
approximately three to five lattice planes; see insets Fig. 3a. In
contrast, when the relative strength of the attractive dipolar
interaction with respect to the other terms in the Hamiltonian is
increased, the system reaches a critical point. Here, it undergoes a
phase transition to a quasi-2D state, in which all atoms are
localized into a single lattice plane to minimize their energy. This
purely interaction-driven phase transition–somewhat reminiscent
of a continuous version of a superfluid to Mott insulator
transition55–is stabilized by quantum fluctuations (LHY), pre-
venting the subsequent collapse of the system42,56. The predicted
critical point occurs exactly where we observe the disappearance
of the interference pattern in the experiments. We find an overall
excellent agreement between the measured and the calculated C
from both the discrete 1D model and the 3D theory without any
free fitting parameters, except for a rescaling factor to the contrast
amplitude to account for the thermal atoms in the experiment.

Two-dimensional bound states: solitons and droplets. The
observation of this phase transition to a quasi-2D localized state
driven by interactions points to the existence of a rich variety of
phases. The importance of the LHY correction and its peculiar
density scaling motivate us to investigate the properties of the
ground state as a function of as and atom number to identify
distinct phases in this unique setting. For this, we employ our
discrete model to derive a full phase diagram; see Fig. 4a. To
investigate the boundness of the states, we assess the impact of the
radial harmonic trap on the minimum of the variational energy,
which is a function of the radial widths lx and ly (the individual
energy contributions are shown in Supplementary Note 1). At
large scattering lengths, as expected, we find a stable delocalized
BEC phase, where the total interaction energy (mean-field +
LHY) is positive. The state is trap-bound, meaning that there is
no energy minimum without the radial harmonic confinement;
inset of Fig. 4a.

Reducing as, we find an energy minimum even without the
radial harmonic trap (Fig. 4b, c), highlighted as colored region in
the phase diagram. These quasi-2D self-bound solutions (the
lattice still provides axial confinement) are either extended over
several sites (lighter color) or localized to a single plane (darker
color). In the literature, there are two paradigmatic examples of
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Fig. 3 Interaction-induced localization. a Contrast of the interference
pattern after loading the lattice at different as. The green dot-dashed (black
solid) line represents the result of the 1D discrete model (3D extended Gross-
Pitaevskii equation, eGPE) multiplied by 0.7. The insets show the respective
density distributions along z of the 1D discrete model (bars) and 3D eGPE
(lines) and corresponding experimental averaged interference patterns after
TOF expansion (1,2). The statistical uncertainties on the scattering length is
smaller than the symbols size. bDynamic evolution of the contrast quenching
back (filled circles) or holding as (open circles); see text. The error bars
represent the standard error on the mean over 4–6 repetitions.
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self-bound objects with attractive mean-field energy: droplets and
solitons. Droplets can exist in one, two or three dimensions and
are stabilized through the LHY correction7. Stable bright solitons
only exist in quasi-1D systems with attractive contact interactions
and are stabilized against collapse purely by kinetic energy. In the
search for solitons in higher dimensions, theoretical studies have
suggested that the DDI could stabilize such 2D solutions43,44. To
the best of our knowledge, there have been no studies on the
effect the LHY correction has on this prediction, nor experi-
mental observation. In the present case, where many interactions
and kinetic energy compete, a classification of self-bound
solutions is much less straightforward. As a crucial distinction
between a droplet (Fig. 4b) and a soliton (Fig. 4c), we extract the
width lx from the energy landscape minimum in the radially
untrapped system, and investigate its scaling with atom number
(Fig. 4d). The soliton width (along the collapse direction) scales
inversely with increasing atom number57, while in contrast, the
droplet size increases in all directions with N58, as predicted in a
quasi-1D setting59. We use this distinction to draw a boundary
between the two phases, observing a phase transition at around
5000 atoms, for both single-site and multi-site solitons. The
overlaying of our measurements (Fig. 3a) onto the phase diagram
suggests that the experiments have already reached the unex-
plored regimes of both 2D self-bound droplet and dipolar

solitons. This opens the door to future experimental investigation
on the self-bound nature and properties of these 2D phases.

In conclusion, we theoretically and experimentally investigate
the behavior of a strongly dipolar quantum gas in a 1D optical
lattice. We employ BOs and characterize their dephasing rate as a
function of as. We observe a minimum in the dephasing shifted
6 a0 away from the purely mean-field prediction, providing an
interferometric measure of the beyond-mean-field contribution.
For low enough as, the system enters into a quasi-2D state which
is localized onto a single lattice plane, providing a genuine
interaction-driven path to reach reduced dimensions in dipolar
gases. Using our developed discrete theory model, we derive a full
phase diagram which confirms the observed localization transi-
tion. This also reveals signatures of quasi-2D self-bound dipolar
droplet solutions, and the long sought-after 2D anisotropic
dipolar soliton, first predicted in ref. 43 (see also44,60). Our work
paves the way for future studies of the soliton-to-droplet
crossover in a dipolar gas, as observed in a Bose–Bose gas61,
and of the “solitonic” nature62 of dipolar solitary waves63–67. A
future promising prospect will be to observe the density profiles
with in-situ imaging such to experimentally discriminate between
the soliton/droplet regimes.

Methods
Theoretical model. In this work, we use an extended Gross-Pitaevskii theory for
direct comparison to our experimental results. We employ both the standard three-
dimensional form of the extended Gross-Pitaevskii equation (eGPE) and derive a
discrete effective one-dimensional eGPE. Starting with the three-dimensional case,
our system can be described by the 3D eGPE of the form4,68–70

i_
∂

∂t
Ψð x!; tÞ ¼

h
� _2

2m
∇2 þ Vharmð x!Þ

þ V lattðzÞ � Fextz þ gjΨð x!; tÞj2

þ
Z

d3 x!0
Uddð x!� x!0ÞjΨð x!0

; tÞj2

þ γQFjΨð x!; tÞj3
i
Ψð x!; tÞ;

ð1Þ

where the wavefunction Ψ is normalized to the total atom number
N ¼ R

d3 x!jΨj2. The atoms are confined in a harmonic potential Vharm ¼
∑ξ¼x;y;z

1
2mω2

ξ ξ
2 with single particle mass m and trap frequencies ωξ, together with

the lattice potential V latt ¼ sErecsin
2ðkzÞ where s is the tunable lattice depth in

multiples of the recoil energy Erec and k= 2π/λ is the lattice spacing in reciprocal
space. The mean-field interaction contributions are g= 4πℏ2as/m for the contact
interaction, governed by the s-wave scattering length as, and the long-ranged
anisotropic dipolar interaction potential Uddð x!Þ ¼ 3_2add=m 1� 3cos2θ

� �
=j x!j3,

where add ¼ μ0μ
2
mm=12π_2 with magnetic moment μm and θ is the angle between

the polarization axis (y-axis) and the vector between neighboring atoms. We also
include beyond-mean-field effects through the quantum fluctuations term

γQF ¼ 32
3 g

ffiffiffiffi
a3s
π

q
1þ 3

2 ε
2
dd

� �
12, which depends on the relative strength between the

dipolar and short-ranged interactions εdd= add/as. Finally, Fext= ggravm denotes
the external force exerted on the system by gravity.

In this work, we employ the imaginary time-evolution technique on Eq. (1) in
order to find stationary solutions for the wavefunction in the lattice, without
gravity. For various atom numbers and scattering lengths, we use a numerical grid
of lengths (Lx, Ly, Lz)= (6, 33.3, 6) μm, with corresponding grid points
128 × 256 × 128. The dipolar term is efficiently calculated in momentum space, and
we use a cylindrical cut-off in order to negate the effects of aliasing from the
Fourier transforms71.

To derive the effective one-dimensional model, we follow ref. 45 by assuming a
wavefunction decomposition

Ψð x!; tÞ ¼ Φðx; y; l; ηÞψðz; tÞ � 1ffiffi
π

p
l e

�ðηx2þy2=ηÞ=2l2ψðz; tÞ ; ð2Þ

with variational parameters l and η representing the width of the radial
wavefunction and the anisotropy of the state, respectively. Integrating out the
transverse directions (x, y) in Eq. (1) upon substitution of the ansatz above gives the
continuous quasi-one-dimensional eGPE, which when combined with a variational
minimization of the energy functional to find (l, η) gives close agreement to the full
3D eGPE45. We further decompose the longitudinal wave function ψ(z, t) into a
sum of Wannier functions w(z) of the lowest energy band over all lattice sites

ψðz; tÞ ¼ ffiffiffiffi
N

p
∑
j
cjðtÞwðz � zjÞ ; ð3Þ
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Fig. 4 Phase diagram and energy landscapes. a Phase diagram as a
function of as and atom number. The white region denotes a trap-bound
BEC extended over several lattice sites. The colored regions denote quasi-
2D self-bound solutions: a droplet (green), a soliton (blue), each either
extended over several lattice sites (lighter shade) or localized (darker
shade, >95% of the atoms are localized in the central lattice plane). Circles
show the atom number from our experimental data points in Fig. 3a. The
statistical uncertainties on the scattering length is smaller than the symbols
size. a–c Energy landscapes as a function of the radial widths lx and ly, in
units of the radial harmonic oscillator lengths xho= 0.50(1) μm and
yho= 1.42(1) μm, respectively, with (left) and without (right) the radial
harmonic trap, for (a) BEC (as, N)= (70 a0, 1.5 × 104), (b) droplet
(as,N)= (65 a0, 1.5 × 104) and (c) soliton (as,N)= (51.5 a0, 0.4 × 104)
regimes, with darker shading at the minima. d Radial width lx versus N for
as= 51.5 a0. The dashed line indicates the soliton-to-droplet transition
point, and the circles indicate the position of b, c.
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for complex amplitudes cj, and positions of lattice minima zj= (λ/2)j. For deep
enough lattices, the Wannier functions are well approximated by Gaussians of the

form wðzÞ ¼ πl2latt
� ��1=4

e�z2=2l2latt , with llatt ¼ ðk ffiffi
s4

p Þ�1. After multiplying on the left
by c�j and integrating over z, we obtain a set of discrete effective one-dimensional
eGPEs

i_
∂cj
∂t

¼ �Jðcjþ1 þ cj�1Þ þ �Fextzj þ VharmðzÞ þ g1DNjcjj2 þ N∑
k
Udd

jj�kjjckj2 þ γ1DQFN
3=2γQFjcjj3

� �
cj ;

ð4Þ
with the reduced effective one-dimensional parameters γ1DQF ¼
23=2=ð5π3=2l2llattÞ

3=2
γQF and g1D= g/((2π)3/2l2llatt). Here, J denotes the tunneling

rate between two neighboring lattice sites. The dipolar interaction coefficients
between lattice sites j and k depend both on the separation ∣j− k∣, and non-trivially
on the size l and anisotropy η of the transverse cloud. For the variational
minimization, we generate an interpolating function for a sensible range of (l, η)
and separations up to ∣j− k∣= 6 via

Udd
jj�kjðl; ηÞ ¼

Z
d3 x! jΨ0ð x!� zjj�kj êz ; l; ηÞj2

n

´
Z

d3 x!0
Uddð x!� x!0ÞjΨ0ð x!

0
; l; ηÞj2

�
;

ð5Þ

where Ψ0ð x!
0
; l; ηÞ ¼ Φðx; y; l; ηÞwðzÞ [see Eqs. (2) and (3)]. This allows us to

simply look up the values of Udd
jj�kj without having to recalculate for every time step

during the energy minimization. We note that the energy contribution rapidly
declines for separations larger than 2 sites, and find that 6 is more than sufficient to
quantitatively describe the physics.

To find the stationary state solution of Eq. (4) (without gravity) we employ an
imaginary time-evolution in combination with an optimization scheme, aiming to
find the state which minimizes the total energy functional

E½c; l; η� ¼ E?½l; η� þ Ek½c; l; η� ; ð6Þ
where c= (c1, c2,…, cn) for n total lattice sites. Here, E?½l; η� gives the energy
contribution from the transverse variational wave function, which reads

E?½l; η� ¼
_2

2ml2
ηþ 1

η

� �
þml2

4
ω2
x

η
þ ηω2

y

� �
: ð7Þ

The latter term of Eq. (6) gives the discrete energy functional for the amplitudes
cj, which includes the tunneling and all interaction terms

Ek½c; l; η� ¼ �∑
j
Jðcjþ1 þ cj�1Þcj

þ 1
2
Ng1D ∑

j
jcjj4 þ

1
2
N∑

j;k
Udd

jj�kjjckj2jcjj2

þ 2
5
N3=2γ1DQF ∑

j
jcjj5:

ð8Þ

Starting from an initial distribution of the amplitudes cj we first determine the
variational parameters (l, η), which is done via an optimization scheme minimizing
Eq. (8). Subsequently, we evolve the amplitudes in imaginary time using Eq. (4)
and repeat this process until we find the minimum of the total energy function Eq.
(6). Once we have the ground state of the system, we employ the discrete effective
one-dimensional eGPE in real-time to simulate the Bloch oscillations in the
presence of gravity. To account for changing transverse widths, after removing the
harmonic potential from the optical dipole traps, we take l and η from the
harmonic oscillator length calculated from the residual trapping potential of the

lattice beams, given by l ¼
ffiffiffiffiffiffiffi
lx ly

q
and η= ly/lx. This provides a good approximation

to the time averaged transverse behavior, which we have verified through
comparison with the 3D eGPE.

Experimental protocol. We prepare a 166Er spin-polarized BEC similar to ref. 4.
The magnetic field during the evaporation is along the z-axis with absolute value
∣B∣= Bz= 1.9 G (as= 80(1) a0), see Fig. 1a. The magnetic field sets also the value
of the scattering length thanks to a Feshbach resonance, centered close to 0 G. For
the magnetic field range considered in this work, the B-to-as conversion has been
precisely mapped out in previous experiments4,20. Before loading the lattice, we
rotate the magnetic field direction along the y-axis in 50 ms and change its absolute
value to set the scattering length. At this step, we typically achieve 5 × 104 atoms
with more than 60% condensed fraction in a cigar shape dipole trap with trapping
frequencies ωx,y,z= 2π (240(3), 30(3), 217(1)) Hz. For our experiments, the atoms
are then loaded in a 1D lattice by a 20 ms exponential ramp of the lattice depth.
This is the experimental protocol used in Figs. 1, 2, and 3a.

To study the reversibility of the interaction-induced transition to a single lattice
site (Fig. 3b), i.e., the evolution of the contrast due to a change of the scattering
length, we employ a different protocol from the one above. In fact, in our
experiment, the magnetic field along the y-direction can be changed on a timescale
of ≃20 ms, which is slower compared to the z-direction (≃1 ms). For this dataset,
we prepare the BEC with B= (0, 0.25, 1)G and then we load the lattice as described
above. We then linearly ramp the field in 20 ms to B= (0, 0.25, 0)G and record the

time evolution. In Fig. 3b, we study the contrast evolution after the ramp. For the
black dataset, the magnetic field is quenched back to the initial value after 10 ms.

For Fig. 4, we extract the atom number condensed in the lattice by releasing the
cloud from the combined ODT-lattice trap and by performing an absorption imaging
after 30ms of TOF. We integrate the density along the lattice axis and use a double
Gaussian fit on the integrated density profile. We repeat the sequence 4–8 times for
every scattering length. At low scattering lengths, we find a decreased number of
condensed atoms, see Fig. 4. We attribute this to an increase of three-body loss in the
vicinity of a Feshbach resonance4 and the increased density of the groundstate.

Contrast of the interference pattern. The density modulation that usually
characterizes a BEC loaded into a 1D lattice can be experimentally extracted from
the matter-wave interferometry after a TOF expansion55. To study the transition to
one single occupied lattice site, we record the density distribution as a function of
as. In more details, for each picture we perform a Fourier transform (FT) of the
integrated momentum distribution, n(qz). In the contact dominated regime, the
lattice induces two sidepeaks at ± q�z in n(qz). Consequently, in the FT analysis the
peaks are at z*≃ λlattice. The visibility of the interference pattern is then estimated
as nFT(∣z*∣)/nFT(0).

Data availability
Experimental data is available on reasonable request from the authors.

Code availability
Code used to generate the theory results is available on reasonable request from the
authors.
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