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Electronic pair alignment and roton feature in the
warm dense electron gas
Tobias Dornheim 1,2✉, Zhandos Moldabekov 1,2, Jan Vorberger 2, Hanno Kählert3 & Michael Bonitz3

The study of matter under extreme densities and temperatures as they occur, for example, in

astrophysical objects and nuclear fusion applications has emerged as one of the most active

frontiers in physics, material science, and related disciplines. In this context, a key quantity is

given by the dynamic structure factor S(q, ω), which is probed in scattering experiments—the

most widely used method of diagnostics at these extreme conditions. In addition to its

importance for the study of warm dense matter, the modelling of such dynamic properties of

correlated quantum many-body systems constitutes an important theoretical challenge. Here,

we report a roton feature in the dynamic structure factor S(q, ω) of the warm dense electron

gas, and introduce a microscopic explanation in terms of an electronic pair alignment model.

Our results will have direct impact on the interpretation of scattering experiments and may

provide insights into the dynamics of a number of correlated quantum many-body systems

such as ultracold helium, dipolar supersolids, and bilayer heterostructures.
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Matter at extreme densities and temperatures is ubiquitous
throughout our universe1 and naturally occurs in astro-
physical objects such as giant planet interiors2, brown

dwarfs3, and neutron stars4. In addition, such warm dense matter
(WDM) conditions are relevant for technological applications such
as the discovery of novel materials5,6, hot-electron chemistry7, and
inertial confinement fusion8,9. Consequently, WDM is nowadays
routinely realized in experiments in large research facilities around
the globe such as the National Ignition Facility10 in the USA, the
European XFEL in Germany11, and SACLA12 in Japan. Indeed, the
advent of new experimental techniques for the study of WDM13

has facilitated a number of spectacular achievements5,14–16 and has
opened up new possibilities for the exciting field of laboratory
astrophysics.

One of the central practical obstacles regarding the study of
WDM is given by the lack of reliable diagnostics. The extreme
conditions prevent the straightforward measurement even of
basic system parameters like the electronic temperature, which
have to be inferred indirectly from other observations. In this
situation, the X-ray Thomson scattering (XRTS) technique17 has
emerged as a widely used method of diagnostics. In particular, an
XRTS measurement gives one access to the dynamic structure
factor (DSF) S(q,ω) describing the full spectrum of density fluc-
tuations in the system. The task at hand is then to match the
experimental observation with a suitable theoretical model,
thereby inferring important system parameters like the electronic
temperature T, density ρ, or charge state Z. Yet, the rigorous
theoretical modelling of WDM18, in general, and of an XRTS
signal19, in particular, constitutes a difficult challenge. Indeed, the
physical properties of WDM are characterized by the intriguingly
intricate interplay of a number of effects such as the Coulomb
interaction between charged electrons and ions, partial ionization
and the formation of atoms and molecules, quantum effects like
Pauli blocking and diffraction, and strong thermal excitations out
of the ground state.

Very recently, Dornheim et al.20 have presented accurate
results for the DSF of the uniform electron gas (UEG)21 in the
WDM regime based on ab initio path integral Monte Carlo
(PIMC) simulations. In particular, the UEG assumes a homo-
geneous neutralizing ionic background, and, therefore, allows us
to exclusively focus on the rich effects inherent to the electrons.
The accurate treatment of electron–ion interactions is beyond the
scope of the present work and the interested reader is referred e.g.

to refs. 22,23. The UEG constitutes one of the most fundamental
model systems in physics, quantum chemistry, and related
disciplines24, and constitutes the basis for a number of important
developments, such as the success of density functional theory in
the description of real materials. From a practical perspective,
accurate results for the DSF of the UEG are indispensable for the
interpretation of WDM experiments, and directly enter models
such as the widely used Chihara decomposition17.

While the availability of highly accurate results for S(q,ω)
constitutes an important step towards our understanding of the
dynamics of correlated electronic matter, their theoretical inter-
pretation has remained unclear. For example, the exact calcula-
tions by Dornheim et al.20 have uncovered a negative dispersion
in the UEG that closely resembles the roton feature in quantum
liquids such as 4He25 and 3He26,27. Despite speculations about a
possible excitonic interpretation of this effect28,29, its precise
nature is hitherto unknown. This reflects the notorious difficulty
to describe the dynamics of correlated quantum many-body
systems, which constitutes a challenge in a number of research
fields. In the present work, we introduce a new paradigm—the
structural alignment of pairs of electrons. It allows us to under-
stand and accurately capture both the roton feature in the
strongly coupled UEG and the XC-induced red-shift of the DSF
at metallic densities. Therefore, it is of substantial importance for
the description and diagnostics of WDM.

Results and discussion
Spectrum of density fluctuations. In Fig. 1a, we show results for
the corresponding spectrum of density fluctuations ω(q) that we
estimate from the maximum in the DSF at the electronic Fermi
temperature θ= kBT/EF= 1 (with EF being the Fermi energy) and
the density parameter rs ¼ a=aB ¼ 10 (with a being half the
average distance to the nearest neighbour and aB the first Bohr
radius). We note that the entire depicted q-range is easily
accessible in XRTS experiments at modern free electron laser
facilities such as the European XFEL11. The dotted green curve
shows the ubiquitous random phase approximation (RPA), which
entails a mean-field description of the electronic density response
to an external perturbation; see the ‘Methods’ section for details.
The dash-dotted blue curve shows exact PIMC results that have
been obtained on the basis of the full frequency-dependent local
field correction G(q, ω), which contains the complete wave-vector

Fig. 1 Spectrum of density fluctuations of the uniform electron gas. a ω(q) at the electronic Fermi temperature (θ= 1) at rs= 10. Dotted green: random
phase approximation; dash-dotted blue: exact path integral Monte Carlo (PIMC) results20; dashed black: static approximation G(q, ω)≈ G(q, 0). For small
wave numbers, the spectrum features a single sharp plasmon excitation. This collective regime, where the wave length λ= 2π/q is much larger than the
average interparticle distance d, λ≫ d, is well described by the random phase approximation (RPA). Upon entering the pair continuum (shaded grey),
S(q, ω) becomes substantially broadened. The regime with λ ~ d (shaded red) features a hitherto unexplained pronounced red-shift Δωxc compared to RPA,
which eventually resembles the roton feature known from ultracold helium26,27,35. Finally, the single-particle regime with q≫ qF and λ≪ d is dominated by
a broad peak with ω(q) ~ q2. b ω-dependence of S(q, ω) at q≈ 2.1qF, rs= 10, and θ= 1. The static approximation entails an effective average over the less
trivial structure of the full PIMC curve, with the shaded blue area being a measure for the uncertainty in the latter.
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and frequency resolved information about electronic exchange-
correlation effects. Finally, the dashed black curve corresponds to
the static approximation, i.e., by setting G(q, ω)=G(q, 0); see
Dornheim et al.20 for a detailed explanation of the PIMC
calculations.

Let us next discuss the different physical regimes shown in Fig. 1.
For small q, i.e., in the collective regime where the wave length is
much larger than the average interparticle distance (λ≫ d ~ 2rs)
the spectrum consists of a single, sharp plasmon peak that is exactly
captured by all three theories. For completeness, we note that the
plasmon is replaced by an acoustic mode in quantum liquids, and
the slope is then determined by the sound speed c. Indeed, an ion
acoustic mode can also be observed in realistic WDM systems, but
for the (quantum) OCP there is no acoustic branch even in the
limit of large rs. Upon increasing q, we enter the pair continuum,
where the plasmon decays into a multitude of other excitations and
ceases to be a sharp feature24. From a comparison to the
simulations, it is evident that the RPA breaks down in this regime
and does not capture the intriguing non-monotonous behaviour of
the exact PIMC data. Indeed, the latter exhibit a pronounced
minimum in ω(q) around q= 2qF, which closely resembles the
well-known roton feature in both 4He25 and 3He26,27. We stress
that this is a real physical trend, which has been observed
experimentally for electrons in alkali metals30. In the present work,
we demonstrate that this red-shift Δωxc compared to RPA is
a direct consequence of the alignment of pairs of electrons
where λ ~ d, and show that it can be understood and accurately
quantified in terms of the microscopic spatial structure of the
system. Finally, a further increase of q eventually brings us into the
single-particle regime (λ≪ d), where ω(q) is known to increase
quadratically with q.

The static approximation leads to a substantial improvement
over the RPA, and qualitatively reproduces the pronounced red-
shift and even exhibits a shallow minimum in ω(q) at the correct
position. A more detailed insight is given in Fig. 1b, where we
show the full ω-dependence of S(q, ω) in the vicinity of the roton
feature. The exact PIMC curve shows a nontrivial shape
consisting of a pronounced peak at ω(q) and an additional
shoulder around ωRPA(q). In contrast, the dashed black curve
features a single broad peak that is located between both
aforementioned features. In fact, the static approximation can
be understood as a kind of frequency-averaged description of the
actual spectrum of density fluctuations, and, therefore, repro-
duces frequency-averaged properties like the static structure
factor S(q)31 with high accuracy. Moreover, it does capture the
correlation-induced shift in S(q, ω) towards lower frequencies,
which is the root cause of the roton feature in the UEG that is
studied in the present work.

Electronic pair alignment. To understand the physical origin of
the latter, it is well-worth to explore possible analogies to other
systems such as 4He25 and 3He26,27. In addition, we mention the
extensively explored negative dispersion in the classical one-
component plasma (OCP)32–34. Both cases have been explained
by the onset of spatial localization of the particles35, and the roton
feature can then be quantified in terms of S(q), e.g. via the
Feynman ansatz36 for He. In stark contrast, such structural
arguments do not apply to the present case of the warm dense
UEG. Indeed, the maximum in S(q) does not exceed 1.02 even at
rs= 10 (see below) and the system is largely disordered.

To explain the physical mechanism behind the red-shift and
eventual roton feature in the warm dense UEG, we explore the
nature of the excitations of density fluctuations in this regime in
Fig. 2. More specifically, the green bead depicts an arbitrary
reference particle, and the blue beads other electrons which are,

on average, disordered; this can be seen by the absence of
pronounced features in S(q). In addition, we note that the
depiction of the electrons as point particles in Fig. 2 does not
constitute a simplification. All quantum mechanical delocaliza-
tion effects are inherently included in the evaluation of the
thermodynamic expectation values within PIMC, which, in our
model, enter both the effective potential and the pair correlation
function in Eq. (3) below. From a mathematical perspective, the
dynamic structure factor entails the same information as the
density response function that describes the response to an
external harmonic perturbation24. The latter is depicted by the
black sinusoidal line and induces the leftmost blue particle to
follow the perturbation, i.e., the blue arrow. This reaction of the
system is associated with a change in the potential energy by an
amount ΔW. In the case of λ ~ d, the particles will actually align
themselves to the minima of the effective potential energy
(shaded green area), which leads to a lowering of the interaction
energy compared to the unperturbed case. Equivalently, we can
say that a density fluctuation contains comparably less energy
when λ ~ d as it coincides with a spatial pattern that minimizes
the potential energy landscape. This electronic pair alignment is
highly sensitive to an accurate treatment of electronic XC-effects
and becomes more pronounced with increasing rs. It should be
noted that the main purpose of Fig. 2 is the illustration of the
spatial geometry of this effect; no actual perturbation of the
system is assumed in our model. The exact spectrum of density
fluctuations can be expressed as

ωðqÞ ¼ ωRPAðqÞ � ΔωxcðqÞ;
¼ ωRPAðqÞ � αðqÞΔWxcðqÞ;

ð1Þ

where we have assumed in the second line that the kinetic
contribution to ω(q) is accurately treated within RPA. The
corresponding absence of XC-effects onto the momentum
distribution n(q) is demonstrated in the ‘Methods’ section. The
screening coefficient37α(q)= χ(q)/χ0(q) is given by the ratio of the
full and noninteracting static density response functions and

Fig. 2 Illustration of the alignment of electron pairs. Let the green bead be
a fixed reference particle. Without an external perturbation [ϕext, dark grey
sinusoidal line], the system is disordered on average in the WDM regime,
see the blue beads. In order to follow ϕext, the particles have to re-align
themselves to the minima of the latter, see blue arrow + red bead. In the
process, they change the potential energy of the green reference particle by
an amount of ΔW, see Eq. (3). In the regime of electronic pair alignment,
λ ~ d, the energy shift ΔW is substantially negative. In other words, a
density fluctuation with a corresponding q= 2π/λ contains comparably less
energy due to its alignment to the potential energy landscape of the system
(shaded green area). The random phase approximation (RPA) substantially
underestimates this effect and, therefore, does not capture this correlation-
induced red-shift.
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takes into account the fact that, on the static level (i.e., in the limit
of ω→ 0), the UEG does not react to an external perturbation in
the limit of λ≫ d. A more detailed discussion of the role of α(q)
in our model is given below. The exchange–correlation correction
to the potential part of the excitation energy of a density
fluctuation of wavenumber q is given by

ΔWxcðqÞ ¼ ΔWðqÞ � ΔWRPAðqÞ; ð2Þ
where ΔW(q) denotes the actual change in the interaction energy.
Equation (1) implies that the observed red-shift in ω(q) is a direct
consequence of the insufficient description of the electronic pair
alignment within RPA. To quantitatively evaluate this effect, we
express the energy shift ΔW as

ΔWðqÞ ¼ n
Z

dr gðrÞ ϕðrÞ � ϕðrqÞ
h i

; ð3Þ

where ϕ(r) denotes the effective potential between two electrons
in the presence of the electron gas38. From a physical perspective,
Eq. (3) can be interpreted as follows: a reference particle at r= 0
is located in the minimum of an external sinusoidal perturbation,
cf. Fig. 2. On average, it will encounter a second particle at r with
the probability P(r)= ng(r), where g(r) is the usual radial
distribution function. Finally, we have to evaluate the difference
in the effective potential between r, and the position of the nearest
minimum in the external potential, which we denote rq. Without
loss of generality, we assume a perturbation along the x-direction.
For λ≫ d, this physical picture breaks down as the translation of
the second particle to rq will be increasingly blocked by other
electrons in the system. This is a direct manifestation of screening
in our model, and is taken into account by the coefficient α(q) in
Eq. (1). A relation of the energy shift Eq. (3) to the XC-
contribution to the self energy known from Green functions
theory is given in the ‘Methods’ section.

Effective electron–electron potential. The appropriate effective
potential between two electrons has to 1) take into account all
effects of the surrounding medium and 2) not include any XC-
effects between the electrons themselves. This is a crucial differ-
ence to the effective interaction of two test charges in a medium,
where one can simply use dielectric theories24. In the present
context, the appropriate potential has been derived by Kukkonen
and Overhauser39 (KO) within linear-response theory, and is
given by a functional of the local field correction (LFC),
ϕ(r)= ϕ[G(q, 0)](r). Here we use exact PIMC results40 for G(q, 0)

and perform a Fourier transform to obtain the corresponding KO
potential ϕ(r). The results are shown in Fig. 3 for the metallic
density of rs= 4 (a) and the more strongly coupled case of rs= 10
(b), with the solid red, dotted green, and dashed blue lines
depicting the KO potential with the LFC, the KO potential in
RPA, and the bare Coulomb potential, respectively. The impact of
the medium vanishes for r→ 0, and all curves converge. In
addition, both KO potentials quickly decay for r≳ 2rs and do not
exhibit the long Coulombic tail. For completeness, we note that a
subsequent direct PIMC study38 of the effective potential has
revealed excellent agreement to the KO expression, which further
confirms the accuracy of the present results.

The insets in Fig. 3 show the respective contributions to
ΔW(2qF) [Eq. (3)], and the vertical yellow line depicts the
corresponding wave length λ. For rs= 4, the positive and negative
contributions to ΔWRPA nearly cancel. Consequently, the
observed XC-induced red-shift in Fig. 4a is predominantly due
to the lowering of the interaction energy, i.e., ΔW(q), in the
regime of electronic pair alignment. For rs= 10, the situation is
more subtle, and the RPA predicts a substantial increase in ω(q)
for q ~ 2qF. This is a direct consequence of the pair correlation
function gRPA(r), which is known to be strongly negative for small
r at these conditions. The exact PIMC results indicate a similar
trend as for the metallic density and again indicate a lowering of
W due to the electronic pair alignment. Therefore, it is the
combination of (1) removing the spurious RPA prediction for W
and (2) further adding the correct decrease in W quantified by
our PIMC simulations that leads to the large down-shift of the
actual ω(q) compared to RPA.

Red-shift and roton feature. Let us now apply these insights to
the spectrum of density fluctuations depicted in Fig. 4. Specifi-
cally, the solid red lines show our present model Eq. (1), which
reproduces the correct behaviour of ω(q) at both densities. We
note that it follows the static approximation rather than the full
dynamic PIMC data at rs= 10. This is expected, as Eq. (3) con-
stitutes an average over changes in the effective potential ϕ for
different initial positions r. Therefore, it gives us the average
change in ω(q), i.e., the location of the peak of the broad dashed
black curve in Fig. 1, and not the actual position of the sharper
roton peak. The predictive capability of our model is demon-
strated over a broad range of densities and temperatures in the
‘Methods’ section.

Fig. 3 Effective Kukkonen Overhauser (KO) potential between a pair of electrons surrounded by the electronic medium. Dotted green: random phase
approximation (RPA); solid red: full KO potential using exact PIMC data for the local field correction (LFC) G(q, 0)40; dashed blue: bare Coulomb. The inset
shows the contribution ΔWr(q) to the full shift ΔW(q) for q≈ 2qF within LFC and RPA as a function of the distance between the particles r. a For rs= 4,
positive and negative contributions to ΔW(q) approximately cancel within the RPA, and the red-shift in ω(q) is mainly due to the reduction of the
interaction energy described by the exact path integral Monte Carlo (PIMC) results. b For rs= 10, the RPA even predicts an unphysical increase of W,
whereas our PIMC results again correctly describe the minimization of the interaction energy for λ ~ d.
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In combination, our results provide a complete description of
ω(q) over the full q-range, and allow us to give a simple and
physically intuitive explanation of both the XC-induced red-shift
at metallic density and the roton feature at stronger coupling. For
small q, the main feature of ω(q) is given by the sharp plasmon
peak. In particular, the plasmon is a collective excitation and
involves all particles in the system. Upon entering the pair
continuum, the DSF broadens, and we find an initial increase of
ω(q) with q; this is a well-known kinetic effect due to quantum
delocalization and is qualitatively reproduced by the RPA.
Correspondingly, it is not present in ω(q) of the classical OCP
(yellow curves in Fig. 4) at the same conditions. In the vicinity of
qF, the potential contribution to ω(q) starts to be shaped by the
electronic pair alignment, and the corresponding lowering of the
interaction energy W leads to the observed red-shift. In other
words, the non-monotonic roton feature at rs= 10 is a
consequence of two competing trends: (1) the delocalization-
induced quadratic increase in ω(q) and (2) the decrease of the
interaction contribution due to electronic pair alignment.

An additional insight into the physical origin of the excitations in
this regime comes from the effective potential shown in Fig. 3.
Specifically, ϕ(r) vanishes for r≳ 2rs, which means that the change
in the interaction energy W is of a distinctly local nature. This, in
turn, strongly implies that the roton feature is due to two-particle
excitations—the alignment of electron pairs. In this light, we can
even explain the nature of the nontrivial structure of the full S(q, ω)
shown in Fig. 1b: the large ΔW leading to the actual roton peak in
the blue curve must be a result of configurations where two
particles are initially separated by a short distance r < rs. Only in
this case will the corresponding change in ϕ(r) be sufficient for the
observed lowering in ω(q). The additional shoulder in S(q, ω) is
then due to transitions where the particles have even in their initial
configuration been effectively separated, so that the change in ϕ(r)
and, hence, the resulting ΔW(q) are comparably small.

Going back to Fig. 4, we note that a further increase in q again
changes the nature of the excitations. In particular, ω(q) is
exclusively shaped by single-particle effects when λ≪ rs.

Conclusion
We are convinced that our findings for the spectrum of density
fluctuations of the UEG—one of the most fundamental quantum
systems in the literature—will open up many avenues for future
research in a diverse array of fields. First and foremost, the
archetypical nature of the UEG has allowed us to clearly isolate

the rich interplay of the correlated electrons with each other,
which constitutes an indispensable basis for the study of realistic
systems. The roton feature has already been experimentally
observed for electrons in metals at ambient conditions28,30, and
understanding the interplay of the electronic pair alignment with
the presence of the ions will be an important next step. We expect
that the observation of a non-monotonous ω(q) will also be
possible in the WDM regime for real materials such as hydrogen,
since the presence of bound states leads to an effectively reduced
electronic density41 and, therefore, an increased effective Wigner-
Seitz radius r�s . Indeed, preliminary simulation results confirm
that the presence of mobile ions does not weaken the roton
feature but leads even to a stabilization.

Let us now return to the alternative interpretation of the roton
as an excitonic mode29. Common to both interpretations is the
governing role of short range correlations—of electron pairs or
electron-hole pairs (excitons), respectively. However, in contrast
to the ground state results of Takada29, we do not find zeroes of
the retarded dielectric function in the range of the roton mini-
mum at the considered temperatures42. This rules out an inter-
pretation in terms of collective modes.

Our improved microscopic theory for the DSF in the regime of
λ ~ d will be particularly relevant for the interpretation of XRTS
measurements17, which constitute the key diagnostics of state-of-
the-art WDM experiments.

Going beyond the study of WDM, we stress that the proposed
concept of electronic pair alignment is very general, and will likely
help to shed light on the mechanism behind the spectrum of density
fluctuations and elementary excitations in a number of correlated
quantum systems. This includes the improved understanding of the
“original" roton mode in liquid 4He25 (and the corresponding
emergence of a sharp quasiparticle peak with the onset of super-
fluidity) and 3He26,27. In addition, we mention the transition from
the liquid regime to a highly ordered Wigner crystal43 in strongly
coupled bilayer heterostructures44, and the impact of supersolidity45

onto the DSF of strongly coupled dipole systems46. Specifically,
quantum dipole systems are known to exhibit a roton feature in the
DSF35,47 and, in addition to their well-known physical realization
with ultracold atoms48, naturally emerge in electron-hole bilayer
systems in the case of small layer separation.

Methods
Dynamic structure factor and density response. The dynamic structure factor
S(q, ω) is directly connected to the linear density response function by the well-

Fig. 4 Electronic pair alignment model for the spectrum of density fluctuations. Shown is the dispersion ω(q) [i.e., position of the maximum in S(q, ω)] of
the warm dense electron gas at the electronic Fermi temperature for a rs= 4 and b rs= 10. Dotted green: random phase approximation (RPA); dash-dotted
blue: exact path integral Monte Carlo (PIMC) results20 using the full G(q, ω); dashed black: static approximation, i.e., setting Gstatic(q, ω)= G(q, 0); solid
yellow: classical one-component plasma (OCP) at Γ= 1.92 (rs= 4) and at Γ= 4.8 (rs= 10); solid red: electronic pair alignment model [Eq. (1)] introduced
in this work; the red arrows indicate the corresponding average red-shift compared to RPA. We can distinguish 3 distinct physical regimes: (I) λ≫ d
[collective], (II) λ ~ d [electronic pair alignment, two-particle excitations], and (III) λ≪ d [single-particle]. The insets show PIMC and RPA results for the
static structure factor S(q) and illustrate the absence of spatial structure at these conditions.
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known fluctuation–dissipation theorem24,

Sðq;ωÞ ¼ � Imχðq;ωÞ
πnð1� e�βωÞ : ð4Þ

It is very convenient to express the latter as

χðq;ωÞ ¼ χ0ðq;ωÞ
1� 4π

q2 1� Gðq;ωÞ� �
χ0ðq;ωÞ

; ð5Þ

where χ0(q, ω) describes the density response of a noninteracting system at the same
conditions and can be readily computed. As we have mentioned in the main text, the
dynamic LFC37G(q, ω) contains all electronic XC-effects; setting G(q, ω)≡ 0 thus corre-
sponds to the RPA, which entails a mean-field description (i.e., Hartree) of the electronic
density response. The DSF within RPA, the static approximationGstatic(q, ω)≡G(q, 0), or
using the full PIMC results forG(q, ω)20 are then obtained by inserting the corresponding
χ(q, ω) into Eq. (4). The DSF of the classical OCP is obtained from molecular dynamics
simulations using the LAMMPS code49.

Definition of the effective potential. The effective potential described in the main
text has been first derived by Kukkonen and Overhauser39, and is given by

ΦKOðqÞ ¼ 4π
q2

þ 4π
q2

1� Gðq; 0Þð Þ
� �2

χðq; 0Þ; ð6Þ

see also the excellent discussion by Giuliani and Vignale24. It is exclusively a
functional of the LFC, and, therefore, highly sensitive to electronic XC-effects. In
the present work, we use the accurate neural net representation of G(q,ω= 0; rs, θ)
by Dornheim et al.40 that is based on exact PIMC simulation data. The results for
ϕ(r) in coordinate space are then obtained via a simple one-dimensional Fourier
transform, which we solve numerically.

Spectral representation of the DSF. An additional motivation for the present
electronic pair alignment model is given by the exact spectral representation of the
DSF24,

Sðq;ωÞ ¼ ∑
m;l

Pm nmlðqÞ
�� ��2δðω� ωlmÞ: ð7Þ

Here l and m denote the eigenstates of the full N-body Hamiltonian, ωlm= (El−
Em)/ℏ is the energy difference, and nml is the usual transition element from state m
to l induced by the density operator n̂ðqÞ. Equation (7) implies that S(q, ω) is fully
defined by the possible transitions between the (time-independent) eigenstates; the
full frequency dependence comes from the corresponding energy differences. In
other words, no time propagation is needed. The translation of our electronic pair
alignment model and the corresponding impact of ΔW(q) on ω(q) into the lan-
guage of Eq. (7) is then straightforward. Firstly, we assume a continuous dis-
tribution of eigenstates, which we examine in coordinate space. In the regime of
λ ~ d, the excitations primarily involve only two particles, as the effective potential
ϕ(r) decays rapidly with r. The probability P(r)= ng(r) thus plays the role of Pm in
Eq. (7), and the energy shift can be expressed as ωlm= ΔWlm+ ΔKlm. The kinetic
contribution is accurately captured by the RPA as we demonstrate in the next
section. Finally, we note that Eq. (7) even gives us some insight into the nontrivial
shape of the exact PIMC results for S(q,ω) shown in Fig. 1 in the main text. In
particular, the roton peak around ωp must be due to transitions where the down-
shift ΔW is substantial. This is only the case for electron pairs that have been
separated by r < rs in the initial state. The substantial reduction in the interaction
energy of such a pair due to an excitation with λ ~ d is thus the microscopic
explanation for the observed roton feature.

Momentum distribution of the correlated electron gas. In Fig. 5, we show the
momentum distribution function n(k) of the UEG at the electronic Fermi tem-
perature θ= 1. Specifically, the symbols show exact PIMC results50 for different
values of rs, and the dashed black line the Fermi distribution describing a non-
interacting Fermi gas at the same conditions. Clearly, n(k) is hardly influenced by
the Coulomb interaction for both rs= 4 (blue diamonds) and rs= 10 (green
crosses); correlation effects only manifest for much larger rs, cf. the yellow triangles
that have been obtained for a strongly coupled electron liquid (rs= 50). This is a
strong indication that the main error in ωRPA(q) is due to ΔW and not the kinetic
part.

Results for other temperatures and densities. In the main text, we have
restricted ourselves to the representative cases of rs= 4 (metallic density) and
rs= 10 (boundary to the electron liquid regime21) at the electronic Fermi tem-
perature, θ= kBT/EF. The validity of our electronic pair alignment model is
demonstrated for a vast range of densities and temperatures in Fig. 6.

Connection of the electronic pair alignment model to Green functions theory.
In the following, we connect the shift of the plasmon dispersion to the energy
change of a test particle, ΔWxc. Kwong and Bonitz51 have derived a direct relation
between the DSF and the single-particle nonequilibrium Green function (NEGF)
δG< that is produced by a short monochromatic field pulse, Uðt; qÞ ¼ U0ðtÞ cos qx,

and is valid in case of a weak excitation (linear response). Here we rewrite this in
terms of the spectral function of the occupied states, δA,

Sðω; qÞ ¼ 1
πn0_U0ðωÞ

∑
p
δAðp;ω;UÞ; ð8Þ

δAðp;ω;UÞ ¼ Aðp;ω;UÞ � Aðp;ω; 0Þ; ð9Þ
where the argument U comprises the dependencies on U0 and q. Note that δA is
proportional to U0, cancelling its appearance in the denominator. Thus, in linear
response there is a direct linear relation between the frequency dependencies of
the DSF and the field-induced correction to the single-particle spectral function.
Now the question is how the peak position of the DSF, ω(q), that is discussed in
the main part of the paper, is related to the peak position δE(p, U) of the spectral
function δA.

To answer this question we follow the approach by Kwong and Bonitz51 and
outline the main steps. First the Keldysh-Kadanoff-Baym equations (KBE) are
solved for the NEGF, G(t1,t2), in the two-time plane, in the presence of the field U.
The spectral information is then contained in the dependence of A(p, τ,U) on the
difference time, τ= t1− t2, and the numerical result can be expressed as a Fourier
series

Aðp; τ;UÞ ¼ ∑
a
Cae

iEa ðpÞ_ τe�ΓaðpÞτ : ð10Þ

The exponential damping ansatz is known to be a poor approximation for small τ,
and can be straightforwadly improved; however, for the present discussion ansatz
(10) is sufficient.

In the field-free case, U0→ 0, and a given exchange-correlation self energy of
the uniform electron gas, Σxc(p, τ) [the Hartree term vanishes for the UEG], the
sum (10) contains only a small number s of terms. For example, in the quasiparticle

approximation, there is only one term, s= 1, with E1ðpÞ ¼ p2

2m þ ReΣxcðp; τÞ and
_Γ1ðpÞ ¼ ImΣxcðp; τÞ. Since the system is stationary, there is no dependence on the
center of mass time, T= (t1+ t2)/2. Now, when the field U is turned on, it excites
plasma oscillations with wavenumber q which give rise to one additional
contribution to the sum with (within linear response)

E2ðp; qÞ ¼ δΣHðp; qÞ þ Re δΣxcðp; qÞ; ð11Þ

_Γ2ðp; qÞ ¼ Im δΣxcðp; qÞ; ð12Þ
where δΣH and δΣxc are the linear perturbations of the selfenergies due to the
external field, where we suppress the time dependencies. The specific contribution
to the single-particle spectrum that is caused by plasmons can be isolated by
considering the difference δA, where s field-free terms cancel. Now, Fourier
transforming with respect to τ yields a Lorentzian in frequency space with the peak
position of δA(p, ω) given by E2(p, q)= δE(p, q),

δEðp; qÞ � δΣH ðp; qÞ þ Re δΣxcðp; qÞ; ð13Þ

Fig. 5 Momentum distribution n(k) of the uniform electron gas at the
electronic Fermi temperature θ= 1. The symbols show exact path integral
Monte Carlo (PIMC) results for rs= 2 (red circles), rs= 4 (blue diamonds),
rs= 10 (green crosses), and rs= 50 (yellow triangles); the dashed black line
shows the Fermi distribution function describing a noninteracting Fermi gas.
Taken from Dornheim et al.50, and reproduced with the permission of the
American Physical Society.
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with the life time Γ2. If the KBE are solved in the presence of the field on the mean-
field level (Σxc= 0), the second term in Eq. (13) vanishes which is known to yield
the plasmon spectrum (peak of the DSF) on RPA-level, ωRPA(q)51. If exchange-
correlation effects are restored, the plasmon spectrum and energy spectrum δE
undergo synchronous changes,

ωRPAðqÞ ! ωðqÞ
δΣH ðp; qÞ ! δΣH ðp; qÞ þ Re δΣxcðp; qÞ:

ð14Þ

Equivalently, we may subtract the terms on the left-hand side. This yields, on one
hand, the frequency change, Δωxc= ω(q)− ωRPA(q), that is caused by exchange-
correlation effects. On the other hand, this leads to the xc-induced difference of
energy dispersions

ΔδExcðp; qÞ � Re δΣxcðp; qÞ: ð15Þ
Thus, we have established a direct link between the two exchange-correlation
energy effects, Δωxc and Re δΣxcðp; qÞ. Taking into account the linear relation (8)
and subtracting the mean field (RPA) expressions, we expect a proportionality also
for the peak positions,

ΔωxcðqÞ � ∑
p
Re δΣxcðp; qÞ ð16Þ

While, the KBE procedure has been successfully demonstrated for the computation
of the plasmon spectrum51, the change of the single-particle energy, Eq. (15), is
presently not available. Physically, δΣxc(p, q) has the meaning of the field-induced
change of the energy of a test particle that is related to its interaction with the medium41.
Since ΔWxc has exactly this meaning (an approximation to it) we conclude that

∑
p
ΔδExcðp; qÞ � ΔWxcðqÞ: ð17Þ

Together with the proportionality (16) this gives a connection to Eq. (1) of the
main text.

Data availability
The neural network representation of the static local field correction is available in
Dornheim et al.40. All further data that support the findings of this study are available
from the corresponding author upon reasonable request.
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