Table 1 Quantized Berry phases of a self-closed band along a loop Γ protected by different types of twofold DAS point-group symmetries G.

From: Symmetry-protected topological exceptional chains in non-Hermitian crystals

Symmetry type

Loop

Other conditions

Quantized Berry phases (\(0\,{{\mbox{or}}}\,\,\pi \,\,{{{{{{\mathrm{mod}}}}}}}\,\,2\pi\))

Examples

G

\(\Gamma =\hat{g}{\Gamma }^{-1}\)

none

\({\theta }^{{{{{{{{\rm{LR}}}}}}}}}={\theta }^{{{{{{{{\rm{RL}}}}}}}}}={\theta }^{{{{{{{{\rm{LL}}}}}}}}}={\theta }^{{{{{{{{\rm{RR}}}}}}}}}=\arg (p(0)p(\pi ))\)

\({{{{{{{\mathcal{P}}}}}}}}\), M

G-†

\(\Gamma =\hat{g}{\Gamma }^{-1}\)

two intersections of Γ and ΠG are in the exact phase

\({{{{{{{\rm{Re}}}}}}}}[{\theta }^{{{{{{{{\rm{LR}}}}}}}}}]={{{{{{{\rm{Re}}}}}}}}[{\theta }^{{{{{{{{\rm{RL}}}}}}}}}]=\frac{1}{2}({\theta }^{{{{{{{{\rm{LL}}}}}}}}}+{\theta }^{{{{{{{{\rm{RR}}}}}}}}})=\arg (\tilde{p}(0)\tilde{p}(\pi ))\)

M-†

\(G{{{{{{{\mathcal{T}}}}}}}}\)

\(\Gamma =-\hat{g}\Gamma\)

Γ is in the exact phase

\({{{{{{{\rm{Re}}}}}}}}[{\theta }^{{{{{{{{\rm{LR}}}}}}}}}]={{{{{{{\rm{Re}}}}}}}}[{\theta }^{{{{{{{{\rm{RL}}}}}}}}}]={\theta }^{{{{{{{{\rm{LL}}}}}}}}}={\theta }^{{{{{{{{\rm{RR}}}}}}}}}\)

\({{{{{{{\mathcal{PT}}}}}}}}\), \({C}_{2}{{{{{{{\mathcal{T}}}}}}}}\)

\(G{{{{{{{\mathcal{T}}}}}}}}\,{{\mbox{-}}}\,{{{\dagger}}}\)

\(\Gamma =-\hat{g}\Gamma\)

none

\({\theta }^{{{{{{{{\rm{LR}}}}}}}}}={\theta }^{{{{{{{{\rm{RL}}}}}}}}}=\frac{1}{2}({\theta }^{{{{{{{{\rm{LL}}}}}}}}}+{\theta }^{{{{{{{{\rm{RR}}}}}}}}})\)

\({{{{{{{\mathcal{PT}}}}}}}}\,{{\mbox{-}}}\,{{{\dagger}}}\)

  1. The corresponding G-invariant subspace is \({\Pi }_{G}=\{{{{{{{{{\bf{k}}}}}}}}}_{G}\,| \,\hat{G}{{{{{{{{\bf{k}}}}}}}}}_{G}={{{{{{{{\bf{k}}}}}}}}}_{G}\}\). \(p(\phi )\in \left\{\pm 1\right\}\) and \(\tilde{p}(\phi )\in \left\{\pm 1\right\}\) denote the G-parities and G-†-parities, respectively, of the eigenstates at the G-invariant points k(ϕ) (\(\phi \in \left\{0,\pi \right\}\)).