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Constrained optimization via quantum Zeno
dynamics
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Constrained optimization problems are ubiquitous in science and industry. Quantum algo-

rithms have shown promise in solving optimization problems, yet none of the current algo-

rithms can effectively handle arbitrary constraints. We introduce a technique that uses

quantum Zeno dynamics to solve optimization problems with multiple arbitrary constraints,

including inequalities. We show that the dynamics of quantum optimization can be efficiently

restricted to the in-constraint subspace on a fault-tolerant quantum computer via repeated

projective measurements, requiring only a small number of auxiliary qubits and no post-

selection. Our technique has broad applicability, which we demonstrate by incorporating it

into the quantum approximate optimization algorithm (QAOA) and variational quantum

circuits for optimization. We evaluate our method numerically on portfolio optimization

problems with multiple realistic constraints and observe better solution quality and higher in-

constraint probability than state-of-the-art techniques. We implement a proof-of-concept

demonstration of our method on the Quantinuum H1-2 quantum processor.
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Combinatorial optimization is widely considered to be one
of the most promising problem domains for quantum
algorithms. The ubiquity of hard optimization problems in

science and industry amplifies the impact of any improvements in
algorithmic performance. In practice, the optimization problems
often have many constraints, such as the regulatory constraints
when optimizing a portfolio or logistic constraints when opti-
mizing flight crew assignments. Being able to incorporate a
diverse range of constraints is an essential criterion for the
applicability of a quantum algorithm to industrial problems.

A commonly considered class of quantum optimization algo-
rithms uses a parameterized quantum evolution to drive the
quantum system towards a state encoding the solution of
the optimization problem. This class of algorithms includes the
quantum approximate optimization algorithm (QAOA)1,2 and
variational algorithms for optimization3,4. While these algorithms
are often discussed as promising approaches for noisy near-term
devices5–9. Therefore, in this paper we primarily view these
algorithms as targeting fault-tolerant quantum processors.

One of the main challenges in applying these quantum algo-
rithms to commercially-relevant optimization problems is the
need to enforce the constraints. Concretely, the goal is to prepare
a quantum state such that upon measuring it, a high-quality
solution that satisfies the constraints is obtained with high
probability. Two commonly considered approaches are to encode
the constraint into the objective using a penalty term and to
directly restrict the parameterized quantum evolution to the in-
constraint subspace. In the first approach, a penalty term is added
to the objective so that optimizing the objective requires satisfying
the constraint. While such approaches are flexible enough to
satisfy most constraints, the quality of the result is sensitive to the
choice of the penalty strength10. As tuning the penalty strength is
difficult in general, this approach often leads to sub-optimal
performance in practice11. This observation motivates the second
approach, i.e., restricting the quantum evolution to the in-
constraint subspace.

A number of techniques have been proposed to ensure that the
parameterized quantum evolution respects the constraints of
the problem. Hadfield et al.12,13 proposed the quantum alter-
nating operator ansatz algorithm, which applies pairs of alter-
nating operators to an in-constraint initial state. The first
alternating operator (phase operator) is diagonal in the compu-
tational basis and encodes the objective, and the second operator
(mixing operator or mixer) is non-diagonal and restricts the
transitions of probability amplitudes to the computational basis
states corresponding to the in-constraint solutions. The problem
of constructing a Hamiltonian preserving arbitrary constraints is
NP-complete even for linear constraints14, though explicit con-
structions are available for some combinatorial optimization
problems12,13,15,16. In general, constraint-preserving mixers are
difficult to implement, even when constructions are available17,18.
The cost of implementing the algorithm on hardware can be
reduced for a restricted class of problems by combining the phase
and mixing operators19. If a uniform superposition of in-
constraint states can be prepared efficiently, a Grover operator
can be used as the mixer20–22. Finally, for problems with an
indexable set of feasible states (such as those with Hamming-
weight constraints), a continuous-time quantum walk in the
solution space can be used as a mixer23–25. However, none of
these techniques are sufficiently flexible to handle the general case
of multiple arbitrary constraints directly. The parity optimization
framework26–30 can natively handle polynomial equality con-
straints for QAOA-like circuits. However, this framework intro-
duces an auxiliary qubit for every unique monomial term that
appears, leading to large space overhead for complex objectives
and constraints. All of the techniques mentioned above consider

QAOA-like alternating operator circuits, and are not easy to
generalize to other variational algorithms.

In this work, we introduce an approach for enforcing multiple
arbitrary constraints in quantum optimization. We restrict the
quantum evolution to the in-constraint subspace by repeated
projective measurements. In each measurement, the value of the
constraint is computed onto an auxiliary register, which is then
measured. Our technique uses quantum Zeno dynamics, wherein
the evolution of the system is restricted to the subspace defined by
the repeated projective measurements and transitions outside of
this subspace are suppressed. Our approach is applicable to any
problem in NPO (the NP optimization complexity class), as the
only restriction we impose on the constraints is the existence of an
efficient oracle for testing them. We provide explicit constructions
for arbitrary combinatorial constraints. We demonstrate the
effectiveness of the proposed technique by using it to enforce
constraints in QAOA with various, unconstrained, mixing opera-
tors and the layer variational quantum eigensolver (L-VQE)31,
which is a variational quantum algorithm for optimization. We
show analytically that our technique is guaranteed to obtain the
optimal in-constraint solution when applied to the digital simula-
tion of the quantum adiabatic algorithm, or equivalently to QAOA
in the constrained subspace with sufficiently large depth. We derive
an analytical form of the scaling of the number of measurements
required to maintain a constant minimum success probability for
any parameterized quantum evolution. Furthermore, we provide
numerical evidence that our technique, applied to QAOA for the
portfolio optimization problem with a budget constraint, provides
significant performance improvements over the state-of-the-art
method of enforcing the constraint by introducing a penalty term.
While the results we derive are for fault-tolerant quantum pro-
cessors, high-fidelity near-term devices may be able to implement
the algorithms without realizing full error-correction. To demon-
strate an end-to-end realization of our technique, we implement
QAOA with Zeno dynamics on the QuantinuumH1-2 trapped-ion
quantum processor for proof-of-concept portfolio optimization
problems. These experiments complement our numerical simula-
tions by using explicit constructions and compilations of circuits,
including those for checking the constraints. In the hardware
experiments, we observe performance improvements from
increasing the number of measurements, up to a two-qubit circuit
depth of 148.

Results
Quantum Zeno dynamics for constrained optimization. We
now introduce our approach to enforcing constraints in quantum
optimization by repeated non-selective projective measurements.
Our method is general, though here we focus on algorithms
utilizing parameterized states of the form

ψðθÞ
�� � ¼ UðθÞ sj i ¼

Ym
j¼1

e�iθjHj sj i; ð1Þ

where Hj is some Hamiltonian, e.g., a tensor product of single-
qubit Pauli operators, and sj i is the initial state, which lies in the
system Hilbert space H.

A constrained combinatorial optimization problem has a set of
feasible states F , which is a subset of the n-dimensional Boolean
cube Bn. Let PF denote the orthogonal projector onto the
subspace spanned by computational basis states corresponding to
feasible solutions in F . We discuss the construction of this
operator in the Methods Section. The measurement P is a super-
operator as defined as

Pρ ¼ ∑
k

j¼1
PjρPj; ð2Þ
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where ∑k
j¼1 Pj ¼ I, and Pj is a projection onto some subspace

Hj ¼ PjH of dimensionality TrðPjÞ≥ 1. Without loss of general-

ity, we can assume P1 ¼ PF , and define PG :¼ I� PF ¼ ∑k
j¼2 Pj.

We give our main result in Theorem 1, which we use to derive
the number of measurements required to enforce constraints in
parameterized evolutions of the form given by Equation (1).

Theorem 1. Let P be the measurement defined in Equation (2).
Suppose a system is evolved from some initial state ρ0= Pjρ0Pj
under the action of a Hamiltonian H, whose distinct eigenvalues
are ξmin ¼ ξ1 < ξ2 < � � �< ξd ¼ ξmax, for time θ. For δ≤0.19, if N
applications of P are performed at equally-spaced time intervals
with

N ¼ θðξmax � ξminÞ
� �2
ln 1� 2δð Þ�2

& ’
; ð3Þ

then the probability of measuring a state in Hj at time θ is lower
bounded by 1− δ, i.e.,

Tr PjρðθÞ
h i

≥ 1� δ; ð4Þ
where

ρðθÞ ¼ UðθÞρ0UðθÞy; UðθÞ ¼ ½Pe�iHθ=N �N : ð5Þ

Proof. See the Methods Section.

Remark 1. Note that since 2kHk2 ≥ jξmax � ξminj, the bound can
be reformulated in terms of the spectral norm of the Hamiltonian.
This may be useful as the spectral norm may be easier to bound in
practice for complicated Hamiltonians.

Assume that the initial state sj i respects the constraints, that is
PF sj i ¼ sj i. We apply a parameterized unitary U(θ) to the initial
state following Equation (1). To enforce the constraints, we can
insert measurements into the parameterized evolution as follows:

UZðθÞ ¼
YL
k¼1

P
Ymk

j¼1

e�iðθrðk;jÞ=NkÞHrðk;jÞ

" #Nk

; ð6Þ

where rðk; jÞ ¼ ∑k�1
t¼1 mt þ j and each sequence of mk parameter-

ized evolutions, without a measurement, is called a block. We
define Nk= 0 to mean that no measurement is performed and no
θr(k, j) is not scaled for that block. The following corollarly
provides a sufficient Nk for each block to ensure a desired
minimum in-constraint probability. The asymptotic dynamics,
i.e. when Nk→∞, ∀ k and also called the Zeno limit, will be
different depending on how the blocks are chosen.

Corollary 1. Let P be the measurement defined in Equation (1). Let
the parameterized evolution defined in Equation (6) evolve the sys-
tem from some initial state ρ0= Pjρ0Pj. Then, in order to ensure that

Tr½PjUZðθÞρ0UZðθÞy�≥ 1� δ;

it suffices to choose

Nk ¼
4L½∑mk

j¼1 jθrðk;jÞj�
2
maxjkHrðk;jÞk22

τðδÞ

& ’
; ð7Þ

where

● τðδÞ ¼ ln ð1� 2δÞ�2 if Hr(k, j) pairwise commute,
● τðδÞ ¼ ln 1� δð Þ�1:78 otherwise,

and δ≤0.19. In addition, the asymptotic dynamics isYL
k¼1

e�iPHk�θkP; ð8Þ

where P acts element-wise on the vector Hk ¼
ðHðk;1Þ; ¼ ;Hðk;mkÞÞ

T and θk ¼ ðθðk;1Þ; ¼ ; θðk;mkÞÞ.
Proof. See the Methods Section.

Remark 2. For combinatorial optimization problems, constraint-
preserving measurements that correspond to different constraints
always commute. Thus PF can be implemented as a composition
of measurements corresponding to different constraints.

While the previous results indicate that Nk can grow inverse
polynomially with the desired error probability, the following
result (Corollary 2) shows that fixing δ and applying a simple
repetition scheme suffices to suppress the failure probability
arbitrarily below δ with only logarithmic overhead. Thus, the
overall procedure can be made efficient. The purpose of the Zeno
framework is to ensure that we can obtain a state that has an
overlap with Hj that is lower bounded by a constant and prepare
this state with an overhead that is OðpolylogðdimHÞÞ.
Corollary 2. Let P be the measurement defined in Equation (2).
Let the parameterized evolution defined in Equation (6) evolve
the system from some initial state ρ0= Pjρ0Pj. In addition, sup-
pose that the number of measurements Nk was chosen, using
Corollary 1, to ensure that Tr½PjρZðθÞ� ¼ Tr½PjUZðθÞρ0UZðθÞy� is
lower bounded by a constant independent of the system size, and
then in order to ensure that P applied to ρZ(θ) prepares a state in
Hj with a probability at least 1− ϵ, it suffices to prepare and
measure at most logð1=ϵÞ copies of ρZ(θ).
Proof. Suppose Tr½PjρZðθÞ� ¼ c. Since we can efficiently check
whether the post-measurement state obtained from applying P to
ρZ(θ) is in Hj, logð1=ϵÞ= logð1=ð1� cÞÞ< logð1=ϵÞ repetitions suf-
fice to ensure that the outcome of at least one of the repetitions is
in Hj with probability at least 1− ϵ.

These results imply that for most practical cases, e.g. when Hj

are Pauli operators as in the cases of QAOA and hardware-
efficient parameterized circuits, the number of measurements
scales at most quadratically in the circuit depth and width, i.e., as
OðpolylogðdimHÞÞ. Thus, QZD can be used to efficiently
constrain parameterized evolution for quantum optimization.

Constrained QAOA via Zeno dynamics. We now discuss the
application of QZD to QAOA. In a QAOA circuit, the phase
operator UC(γ) is diagonal in the computational basis and cannot
violate constraints. More specifically, it evolves the current state,
for time γ, under the diagonal operator C ¼ ∑x2Bn f ðxÞ xj i xh j,
which encodes the values of the objective function f on Bn. The
Hermitian mixing operator B transitions probability amplitude
between elements of Bn and, in general, does not respect
the problem constraints. Therefore the measurements only need
to be added to the mixing operator. Since a p-layer QAOA circuit
consists of p applications of the phase and mixing operators in an
alternating fashion, the full circuit combined with the Zeno fra-
mework then becomes

UZ�QAOAðβ; γÞ ¼
Yp
j¼1

UBðβj;NjÞUCðγjÞ
h i

; ð9Þ

where

UBðβj;NjÞ ¼ Pe�i
βj
Nj
B

� �Nj

: ð10Þ

In the notation of Equation (6), this corresponds to setting all
mk= 1, and setting Nk= 0 for blocks containing the cost opera-
tor. While there are other valid choices for the blocks, the
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decomposition we have chosen is sufficient to achieve an efficient
scheme.

As the mixing operator B is known, we can explicitly derive the
number of measurements required to maintain a constant success
probability. We observe that for any mixer this number of
measurements grows linearly with the number of QAOA layers,
and for commonly considered mixers, the number of measurements
grows no more than quadratically with the number of qubits.

Corollary 3. Let UZ�QAOAðβ; γÞ denote the QAOA circuit on n
qubits with N measurements added to each mixing operator as
defined in Equation (9). Let the initial state ρ0 ¼ sj i sh j be in-
constraint. Then Nj measurements suffice to maintain at least a
1− δ probability of obtaining an in-constraint measurement
outcome, where

● if B ¼ ∑n
k¼1 xk, then Nj ¼

pβ2j n
2

ln 1�2δ½ ��1
2

� 	
● if B ¼ þj i þh j, then Nj ¼

pβ2j
ln 1�2δ½ ��2

l m
,

and δ ≤ 0.19.

Proof. The proof follows from Theorem 1 by noting that for
B ¼ ∑n

k¼1 xk the minimum and maximum eigenvalues are− n
and n, respectively, and for B ¼ þj i þh j the only eigenvalues are
one and zero. For QAOA with p layers, the number of mea-
surements increases by a factor of p. Note that while we could of
instead used Corollary 1, using Theorem 1 directly results in Nk

being lower by a constant for B ¼ þj i þh j.
Note that the scaling rule of Corollary 3 implies that the

number of measurements will change with βj and thus each
mixer layer.

Figure 1 visualizes how the number of measurements required
to maintain a given minimum in-constraint probability, accord-
ing to Corollary 3, grows with the evolution time β for the

B=∑jxj (✖ marker) and B ¼ þj i þh j (✚ marker) mixing
operators for p= 1 QAOA with a 3-qubit initial state sj i. As
the phase operator is diagonal, there is no dependency on it. We
note that the number of measurements for the mixer B=∑jxj
grows with number of qubits and is therefore larger than for
B ¼ þj i þh j. Note that when following the scaling rules of
Corollary 3, the number of measurements is multiplied by the
number of QAOA layers p.

In the Results Section, we observe that for realistic constraints,
the number of measurements is significantly lower. This is
because the worst-case PF and sj i, i.e., from Equation (37) in the
proof of Lemma 1, are far from those encountered in practice.
Specifically, the worst-case PF is rank one (i.e., only one state is
in-constraint). A larger in-constraint subspace leads to a lower
sufficient number of measurements. Moreover, in practice the
initial state is unlikely to align perfectly with the worst case
presented in Equation (37). We also observe in our experiments
that the required number of measurements has only a weak
dependence on the number of QAOA layers p for the problem
instances considered. Therefore, one could consider a signifi-
cantly relaxed and simplified version of the rules provided in
Corollary 3 as follows:

Nj ¼
β2j
η

& ’
; ð11Þ

where η is some hyperparameter to be fine tuned. One could
always efficiently estimate the in-constraint probability of a
QAOA circuit with a fixed η by measuring a single auxiliary qubit
indicating whether the final state output by the circuit is in-
constraint. In the portfolio optimization experiments, we
successfully use an η for the B=∑jxj mixer that is orders of
magnitude larger than predicted by Corollary 3, requiring a
correspondingly smaller number of measurements.

QAOA with Zeno dynamics in the adiabatic limit. If the initial
state sj i is the ground state of the mixer Hamiltonian B, QAOA is
known to be able to prepare the ground state of the cost
Hamiltonian C and thereby solve the problem exactly in the limit
of an infinite number of QAOA layers by approximating adia-
batic evolution2. We now show that this limiting behavior is
preserved for constrained QAOA with Zeno dynamics.

Now consider QAOA with constraints enforced by measure-
ment P as defined in Equation (2), in the Zeno limit, when the
number of measurements is taken to infinity, the operator
describing the asymptotic dynamics is a sum of the original mixer
B projected onto the subspaces defined by the projectors
constituting P, i.e.,

HZ ¼ PB ¼ ∑
k

j¼1
PjBPj:

Concretely, consider the task of using QAOA to approximate
the adiabatic evolution under the following time-dependent
Hamiltonian:

HsðtÞ ¼ ð1� sðtÞÞBþ sðtÞC; ð12Þ
where s: [0, T]→ [0, 1] is the interpolating schedule function. A
common schedule function is the linear schedule defined by

sðtÞ ¼ t
T
; ð13Þ

where T is the evolution time scale. Suppose
T � Oððmins ΔnðsÞÞ�2Þ, where Δn(s) is the instantaneous mini-
mum difference between the n-th eigenvalue and any other
eigenvalue of H(s). If ∀ s, it holds that Δn(s) ≠ 0, then the quantum

Fig. 1 Scaling of the number of Zeno measurements. Number of
measurements, obtained from Corollary 3, required in QAOA with Zeno
dynamics to maintain a maximum out-of-constraint probability of δmax

(hence, a minimum in-constraint probability of 1� δmax) for the B=∑jxj (✖
marker) and B ¼ þj i þh j (✚ marker) mixers with 3 qubits. Color denotes
the minimum in-constraint probability 1� δmax, as indicated by the legend.
Note that this is the scaling required to ensure the desired minimum in-
constraint probability for the worst-case initial state (i.e., Equation (37))
and is potentially more pessimistic than what is observed in practice. Many
more measurements are required for B=∑jxj as the number of
measurements grows quadratically with number of qubits. Note that due to
periodicity, the evolution time, β, can be constrained to jβj � π

2 for B=∑jxj
and ∣β∣ ≤ π for B ¼ þj i þh j.
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adiabatic theorem32 implies:

T exp i
Z T

0
HsðtÞdt


 �
ϕnð0Þ
�� � ¼ ϕnðTÞ

�� �
: ð14Þ

In the Zeno case, we consider

HsðtÞ ¼ ð1� sðtÞÞHZ þ sðtÞPC: ð15Þ
Consider the QAOA operator with only one measurement per
layer, i.e., ∀ j,Nj= 1 in (9):

UðpÞ ¼
Yp
j¼1

PUB

�
βj


UC

�
γj


: ð16Þ

Now it is easy to recover the parameters βj, γj giving the limit.
From the definition of the product integral33 it follows that

T exp i
Z T

0
HsðtÞdt


 �

¼ lim
p!1

Yp
j¼1

exp i
T
p
Hs

jT
p


 �
 �

¼ lim
p!1

Yp
j¼1

exp i
T
p

1� j
p


 �
PBþ j

p


 �
PC

� �
 �

¼ lim
p!1

Yp
j¼1

P exp i
T
p

1� j
p


 �
B


 �
exp i

jT
p2

C


 �
;

ð17Þ

where the third equality follows from expanding to the first order
in T

p and that j
p and 1� j

p are bounded by 1. Also, since the
evolution is in a finite-dimensional space, B and C have bounded
operator norms.

Thus if ρnð0Þ ¼ ψnð0Þ
�� �

ψnð0Þ
� �� is an n-th eigenstate of HZ then

ρnðTÞ ¼ lim
p!1

UðpÞρnð0Þ; ð18Þ
where ρn(T) is pure and is an n-th eigenstate of PC. Thus with
βj ¼ � T

p ð1� j
pÞ and γj ¼ � jT

p2 as p→∞, QAOA with Zeno
dynamics approaches the adiabatic limit and recovers the optimal
solution.

Mitigating mixer limitations in the Zeno limit. While the evolu-
tion under PFBPF is guaranteed to preserve the in-constraint
subspace, it may inhibit transitions between states in F that were
allowed with B. This is because states in F may be connected by B
through a path that passes through states not in F . To see this,
consider a simple example of the two-qubit mixer B2= x1+ x2
and the in-constraint space F ¼ f 01j i; 10j ig. In the Zeno limit,
the mixing operator evolution in the in-constraint subspace is
generated by PFB2PF , which equals the zero matrix. Thus, the
propagator corresponding to the projected mixer becomes the
identity operator and the dynamics become trivial. In general, if
there is no path between two computational basis states j

�� �; kj i 2
F in the graph defined by B, the continuous-time quantum walk
defined by the mixing operator cannot move probability ampli-
tude from kj i to j

�� �. Whether the transitions between in-
constraint states are suppressed in the Zeno limit is in general
dependent on the in-constraint space F .

One way to avoid the issue of suppressed transitions is by
choosing a mixer B with a complete connectivity graph among
computational basis states, i.e., B ¼ þj i þh j. This mixer is also
known as the complete-graph mixer20,34. It has been
conjectured34 that mixers with high connectivity, such as the
B ¼ þj i þh j, can at best produce a Grover-like speedup since they
do not make use of the structure of the cost operator. While it is
unclear if this conjecture is true, we emphasize that our approach

can utilize any mixer and can efficiently enforce constraints as
long as the difference between the maximum and minimum
eigenvalues of the mixer is polynomial in the number of qubits.

Numerical experiments. We now present the numerical experi-
ments showing the power of the proposed method. The technique
we propose is general, though in this section we consider only the
problem of portfolio optimization (with both equality and
inequality constraints) and only the QAOA and L-VQE algo-
rithms. The parameters in QAOA and VQE were optimized using
COBYLA35 initialized with a large number of random initial
points. We compare the results to the state-of-the-art method of
encoding constraints by introducing a penalty into the objective,
and observe significant improvements in both approximation
ratio and in-constraint probability. In addition to better perfor-
mance, the proposed method does not require complicated tun-
ing of the penalty factor.

Benchmark: portfolio optimization. The daily operation of a large
financial institution requires solving many classically-hard opti-
mization problems36–38. Among such problems, one of the most
important is portfolio optimization. Modern portfolio theory39

considers the task of finding a portfolio with a desired trade-off
between risk and expected return. This task is typically for-
mulated as an optimization problem, which is hard to solve
classically in many settings, such as when the variables are
required to only take on a discrete set of values. When designing
an algorithm for portfolio optimization, a central consideration is
the ability to incorporate a general class of constraints. Such
constraints can come from regulatory or business considerations,
with examples ranging from portfolio-level constraints (including
budget and total number of assets) to asset-level constraints (such
as minimum holding size).

The particular constrained portfolio optimization problems we
study numerically arise from the discrete mean-variance
Markowitz model39 and have the following objective function

min
x2F

qxTΣx � μTx; ð19Þ

where F is defined by some set of constraints on the portfolio.
We consider two sets of problems. In the first set, we impose an
inequality constraint on the total size of the portfolio (∑jxj ≤ C).
In the second set of problems, in addition to the inequality
constraint on portfolio size, we include a constraint on the total
expected return (∑jμjxj ≥ R). For each of the two sets of
constraints, we consider seven instances with between four and
ten assets, for a total of fourteen instances. In all problem
instances F � Bn, where n is the number of assets.

Zeno dynamics improves quantum optimization performance.
Figure 2 presents the comparison between QAOA with Zeno
dynamics and QAOA with constraints enforced using a penalty
factor on the fourteen problem instances described in the pre-
vious subsection. The penalty method is described in the Methods
Section. The solution quality is measured in terms of the
approximation ratio r, a value between 0 and 1, with larger r
being better. The approximation ratio is formally defined in the
Methods Section. We consider QAOA with mixers B=∑jxj (✖
marker) and B ¼ þj i þh j (✚ marker), and optimize the QAOA
parameters exhaustively. To improve the performance of para-
meter optimization, we follow ref. 40 and rescale the cost function
so that the gradients with respect to β and γ are roughly of the
same magnitude.

For instances with a single constraint (see dotted lines in
Fig. 2a–d) we perform extensive tuning of the penalty factor λ.
For multi-constraint problems, the tuning becomes prohibitively
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expensive. Therefore, we exclude QAOA with constraints
enforced through penalties from the comparison for problems
with multiple constraints. The choice of the penalty factor and the
difficulty of its optimization are discussed in detail in the next
subsection.

We observe that Zeno dynamics (see solid lines in Fig. 2a–d)
enables consistently better solution quality and in-constraint
probability as compared to QAOA with constraints enforced
using a penalty (dotted lines) for all problems considered.
Furthermore, Fig. 2b shows that for 6 and 10 assets the in-
constraint probability drops off rapidly with the number of
QAOA layers if the penalty factor is kept constant. This highlights
an important limitation of enforcing the constraints via penalties,
namely that the penalty factor must be tuned independently for
each QAOA depth. In contrast, for QAOA with Zeno dynamics
we obtain an explicit rule for how η, from (11), should change
with the QAOA depth (see Corollary 3). However, for the
numerics shown in Fig. 2, we fix η to ensure a constant minimum
in-constraint probability per layer. We observe good performance
despite η being a depth-independent constant in this case. We
note that since η was held constant while p varied, the in-
constraint probability slowly decreases with the number of layers
as predicted by Corollary 3. For B ¼ þj i þh j mixer, this results in
an average number of measurements of ≈ 77 for 6 assets and ≈ 35
for 7 assets.

Since multiple constraints can be efficiently handled in the
Zeno framework, in Fig. 2e, f, we include the performance of
QAOA with Zeno dynamics on problems with multiple

constraints (one on the budget and one on the total expected
return). The results show that the Zeno-enhanced QAOA is able
to achieve a similar performance as it did for the single-constraint
problems, with sufficiently high p.

We note that the in-constraint probability can be improved
arbitrarily for the Zeno dynamics approach by decreasing η,
without the need to re-optimize the QAOA parameters. This is
due to the objective function landscape becoming independent of
η as the Zeno limit is approached. In fact, we observe that
transferring parameters from a smaller to a larger number of
measurements (larger to smaller η) works well even for practically
relevant values of η. Figure 3 shows the approximation ratio r and
in-constraint probability with directly optimized QAOA para-
meters and with pre-optimized parameters transferred from a
fixed value of η= 1.6 (marked with a star in the plot). We observe
that for sufficiently small η, transfer works well and the difference
in approximation ratio is negligible. Specifically, parameter
transfer using the B=∑jxj mixer and a total of 33, 75, and 200
measurements results in in-constraint probabilities of at least
85%, 89%, and 96%, respectively for the nine-assets, single-
constraint problem at p= 5. At the same time, if the number of
measurements is very small (η large), the objective function
landscape is very different from the landscape in the Zeno limit,
and the parameter transfer does not work well. We remark that
while the in-constraint probability increases monotonically as η
decreases, no such guarantee is given for approximation ratio r. In
fact, in Fig. 3 we observe that depending on the problem and the
circuit depth, r can either increase or decrease with η.

Fig. 2 Performance of QAOA with Zeno dynamics and QAOA with constraints enforced using penalty terms. Approximation ratio r and out-of-
constraint probability δ (correspondingly 1− δ in-constraint probability) achieved by QAOA with constraints enforced using penalty terms (dotted lines) on
problems (a–d) with a single constraint, and by QAOA with Zeno dynamics (solid lines) on problems with a single (a–d) and multiple (e, f) constraint(s).
The markers ✖ and ✚ indicate whether QAOA used the B=∑jxj mixer or B ¼ þj i þh j mixer, respectively. For all single constraint problems, QAOA with
Zeno dynamics produces a superior approximation ratio and in-constraint probability (solid line is above dotted line with the same color). As penalty factor
tuning is prohibitively difficult for problems with multiple constraints (see the Results Section), for these problems only Zeno dynamics results are
presented.
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Note that the same approach of boosting the in-constraint
probability without re-optimizing the QAOA parameters does
not work if the constraints are enforced using penalties. Figure 4
shows that transferring parameters from a fixed value of penalty
factor (marked with a star) leads to the approximation ratio
rapidly dropping off to random guess. It is however possible that
better performance may be achieved by leveraging more
sophisticated parameter transfer strategies, such as the rescaling
rule proposed for the weighted MaxCut problem41,42 or machine
learning methods43.

While for QAOA with Zeno dynamics the approximation ratio
r given in Equation (23) increases monotonically with the number
of QAOA layers, this is not guaranteed for QAOA with
constraints enforced through penalties. This is because the
QAOA parameters are chosen with respect to the objective with
penalties and the increased expressivity of the higher-depth
circuit is only guaranteed to improve the performance with
respect to that objective. Figure 5 shows that this is indeed the
case and the approximation ratio rpenalty given in Equation (24)
increases with the number of QAOA layers as expected.

Finally, we include the results for Zeno-enhanced L-VQE
with L= 1 in Equation (6). The structure of L-VQE is presented
in Equation (26) and further described in the Methods Section.
However, instead of using Corollary 1 to determine a sufficient
value for the number of measurements N, we heuristically set
N= 100. Table 1 presents the results. As expected, L-VQE
achieves high approximation ratio, while Zeno dynamics
enables high in-constraint probability. As the total number of
measurements is kept fixed for all problems and parameter
values, slightly lower in-constraint probability is observed for
higher qubit counts. As is the case for QAOA, the in-constraint
probability can be increased by increasing the number of
measurements.

Penalty factor tuning is difficult. An important advantage of our
method is the simplicity of hyperparameter tuning, as only η in
Equation (11) needs to be chosen. This choice is made easy by
Theorem 1 and its corollaries, which imply the monotonic
increase of in-constraint probability with decrease in η. This is in
sharp contrast with the penalty approach, where the performance
crucially depends on the penalty strength, which is hard to tune
in general. We now present how the penalty strength was chosen

Fig. 3 Transferability of parameters in QAOA with Zeno dynamics. Performance of a 1-layer (a) and 5-layer (b) QAOA with Zeno dynamics and mixer
B=∑jxj with directly optimized parameters (ropt, 1− δopt) and with parameters transferred from a fixed value of η= 1.6 (rtran, 1− δtran). The source is
marked with a star. Corresponding to each case, r signifies the approximation ratio and δ the out-of-constraint probability. For values of the hyperparameter
η, which controls the number of measurements and is defined in Equation (11), smaller than 1.6, the difference between performance with optimized and
transferred parameters is negligible (dashed line very close to the solid line).

Fig. 4 Transferability of parameters in QAOA with penalty terms.
Performance of QAOA with B=∑jxj mixer and constraints enforced
through penalties with parameters transferred from a fixed value of penalty
factor λ= 0.1 (source marked with a star). The out-of-constraint probability
is δ. The approximation ratio r (Equation (23)), unlike rpenalty (Equation
(24)), excludes the penalty objective and drops off to random guess if
transferring parameters to values of λ sufficiently different from source.

Fig. 5 Approximation ratio of QAOA with penalty terms using different
numbers of QAOA layers. The approximation ratio (as defined in Equation
(24)) for the full objective with penalty terms increases monotonically with
the number of QAOA layers, as expected. However, the in-constraint
approximation ratio (as defined in Equation (23)) is not guaranteed to
change monotonically, as seen in Fig. 2a, c. Color denotes the number of
assets in the optimization problem, as shown in the legend. The markers ✖
and ✚ indicate whether QAOA used the B=∑jxj mixer or B ¼ þj i þh j
mixer, respectively.
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for the experiments above, and discuss the challenges that arose
in doing so.

Figure 6 presents the performance of QAOA on a single-
constraint problem enforced using a penalty term with varying
penalty factors λ. In the plot, the in-constraint probability 1− δ
monotonically increases with λ, while the approximation ratio r
decreases. This indicates a trade-off between r and the out-of-
constraint probability δ, and hence hyperparameter tuning on λ
must be performed in order to obtain a good approximation ratio
while meeting requirements on the minimum in-constraint
probability. We also observe that for QAOA with small p, 1− δ
tends to levels off at a value far below what is achievable by using
Zeno dynamics. For example, the top figure in Fig. 6 shows that
the highest in-constraint probability achievable with p= 1 is
around 80% for the problem tested. Given that the approximation
ratio with the penalty term rpenalty is above 0.9 for the high λ
regime, it indicates that the maximum achievable in-constraint
probability may be limited by the expressivity of the variational
circuit. On the other hand, constraints enforced by Zeno
dynamics do not suffer from such problems, as the in-
constraint probability can be arbitrarily boosted regardless of
the expressivity of the varational circuit (see Fig. 3). In the
numerical experiments, we choose the value of λ independently
for each problem instance with the goal of obtaining a high in-
constraint probability 1− δ. Since we show that the factor λ

trades off r and δ, both cannot be improved at the same time. This
suggests that there does not exist a choice of λ such that QAOA
with the penalty method outperforms QAOA with Zeno
dynamics.

For problems with multiple constraints, hyperparameter tuning
should generally be performed on each penalty factor λj included
in the relaxed objective (Equation (21)). This means that
hyperparameter tuning can quickly become infeasible, as the
search space for all λj’s grows exponentially with the number of
penalty terms. We show in Fig. 7 how hyperparameter tuning
works with two penalty factors: λ1 and λ2, which correspond to
penalty terms enforcing the budget constraint and the return
constraint respectively. The figure shows the in-constraint
probability of the optimal solution obtained with varying λ1
and λ2. Similar to the single-constraint case, maximal approx-
imation ratio r and maximal in-constraint probability 1− δ
cannot be simultaneously achieved. Specifically, the solutions
with the maximal r and maximal 1− δ have very different values
in λ1 and λ2. Moreover, unlike Fig. 6, Fig. 7 clearly shows the non-
monotonic behavior of 1− δ in both λ1 and λ2. In fact, we
observe a similar behavior across many of the single- and multi-
constraint problems that we have tested, and for both the
B=∑jxj and B ¼ þj i þh j mixers. This indicates that tuning the
penalty factors is indeed difficult in the general case.

Hardware experiments. While the numerical experiments pre-
sented earlier show evidence of the performance of our technique,
they do not make use of any concrete circuit implementations of
the constraint-checking oracles. In this section, we consider
optimized circuit implementations of constraint-checking oracles
for two proof-of-concept portfolio optimization problems on
noisy quantum hardware. This enables us to validate all of the
hardware features, such as mid-circuit measurements and quan-
tum conditional logic (QCL), that are required to implement the
efficient oracle construction presented in the Methods Section.

We execute QAOA with Zeno dynamics on the Quantinuum
H1-2 trapped-ion quantum processor. Our implementation uses
constraint-checking oracles that perform quantum arithmetic in
the Fourier domain, following directly the construction in the
Methods Section. We observe that increasing the number of
measurements improves the in-constraint probability 1− δ, as
expected. The improvement from additional measurements
continues up to a two-qubit gate depth of 148, at which point
the hardware noise prevents further improvements.

Fig. 6 Difficulty of penalty factor tuning for QAOA with a single penalty term. Performance of QAOA with a single constraint enforced through a penalty
term with varying penalty factors λ. A trade-off occurs between the approximation ratio r (Equation (23)) and the in-constraint probability 1− δ. As shown
in a the maximum in-constraint probability is limited by the expressivity of the QAOA circuit at low depth (1 QAOA layer, or p= 1). With 5 layers (b),
QAOA is able to achieve better performance in terms of the penalized objective, as indicated by the approximation ratio rpenalty (Equation (24)). However,
there is still a significant trade-off between the true objective r and in-constraint probability.

Table 1 Performance of L-VQE with Zeno dynamics on the
benchmark problems.

# assets Single Multiple

r 1− δ r 1− δ

4 0.995 0.964 0.9996 0.980
5 0.995 0.913 0.977 0.909
6 0.972 0.895 0.964 0.963
7 0.979 0.870 0.917 0.936
8 0.956 0.887 0.948 0.944
9 0.967 0.844 0.961 0.974
10 0.914 0.811 0.910 0.960

Layer variational quantum eigensolver (L-VQE) enhanced with Zeno dynamics obtains high
approximation ratio r (Equation (23)) and high in-constraint probability 1− δ. The algorithm was
applied to both problems with a single constraint and multiple constraints. The Zeno-enhanced
L-VQE circuit was constructed by inserting measurements after all parameterized gates have
been applied. This corresponds to L= 1 in Equation (6). The number of measurements was
heuristically set to 100.
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The experiments presented in this Section utilize p= 1 QAOA
and the B=∑jxj mixer. We use the cost function of the four-
assets portfolio optimization problem used in the numerics
described in the Results Section, but apply different constraints.
We consider two instances with linear constraints, one with an
equality constraint and one with an inequality constraint. Figure 8
shows a high-level circuit diagram. For each problem, the QAOA
parameters are first optimized using a noiseless simulator. All
circuit executions use 2000 shots and no error mitigation.

The first portfolio optimization instance we consider has an
equality constraint on the four binary variables x1, x2, x3, x4:
2x1− x2− x3= 0. As discussed in the Methods Section, the
semiclassical quantum Fourier transform (QFT) can be utilized
for equality constraints. The semiclassical QFT makes use of QCL
and midcircuit measurements, which are features supported by
the H1-2 device. This results in an oracle that uses only one

auxiliary qubit, and thus the circuit uses five qubits in total. The
circuit for the oracle is shown in Fig. 9. We note that the
uncomputation step consists of resetting the one auxiliary qubit
to the þj i state.

As a comparison, we also implement the coherent QFT
(Fig. 10) on three qubits, resulting in seven qubits in total. After
applying the oracle and measuring, all auxiliary qubits are reset to
the ground state for the uncompute step. Figure 11a shows the in-
constraint probability as a function of the number of projective
measurements. Figure 12a shows the distributions of measure-
ment outcomes of QAOA for varying numbers of measurements
(N), with the outcomes (computational basis states) ordered by
the objective function value. For both implementations, the in-
constraint probability improves with the number of measure-
ments up to N ≈ 15. For a higher number of measurements, the
hardware noise arising from high circuit depth prevents further
improvements in the in-constraint probability 1− δ.

While the QCL and non-QCL implementations both perform
similarly, we do note a reduction in the number of two-qubit
gates and auxiliary qubits. For QCL and N= 15, the two-qubit
gate depth was 122 and the count was 123. Without QCL, for
N= 15, the two-qubit gate depth was 148 and the count was 165.
The similar performance between QCL and non-QCL versions
despite the difference in gate count may be due to the higher
impact of measurement error on the QCL implementation.

The second portfolio optimization instance we consider has a
cardinality (Hamming-weight) inequality constraint ∑4

j¼1 xj ≤ 2.
For this problem, it is necessary to utilize the coherent QFT, and
thus QCL does not lead to a resource-requirement reduction. The
QFT adder is used to compute ∑jxj− 3, which requires four
qubits to accommodate the range. In addition, unlike the
equality-constraint case, the inverse oracle is necessary for
uncomputation. The system is in-constraint when the most-
significant qubit, i.e., the sign bit, is a one. The circuit for the
oracle is shown in Fig. 10. Similar to the previous run, we plot the
in-constraint probability for varying numbers of measurements
(Fig. 11b), as well as, the measurement distributions obtained
from QAOA (Fig. 12b). For N= 3, the two-qubit gate depth is
112 and the count is 186. Similarly to the experiments with the
equality constraint, the in-constraint probability 1− δ improves
until N= 3. For a higher number of measurements, the hardware
noise prevents further improvements.

Note that the performance deteriorates at a significantly lower
N for the inequality constraint problem than equality. This occurs
even though the two-qubit circuit depth is lower for the inequality
case and the two-qubit gate count is not significantly higher.
Besides the inclusion of an additional qubit, one potential reason
for this is that for the inequality constraint, only one of the
auxiliary qubits is measured and then the inverse oracle is
applied. This allows for errors to accumulate more and propagate
to the rest of circuit. However, in the equality constraint case,
after applying the oracle, all auxiliary qubits are measured and
then reset to the ground state. In addition, the total gate count
happens to be significantly higher for the inequality constraint
case.

Discussion
In this work, we propose an approach for enforcing constraints in
quantum optimization and demonstrate its effectiveness by
applying it to constrained instances of portfolio optimization in
simulation and on a trapped-ion quantum processor. Our tech-
nique has two major advantages: the ability to enforce a very
general class of constraints and the simplicity of hyperparameter
tuning. Two important downsides of our approach are the

Fig. 7 Difficulty of penalty factor tuning for QAOA with two penalty
terms. In-constraint probability of optimized solution using QAOA applied
to an objective with two penalty functions, associated with separate
constraints. The corresponding penalty factors are indicated by λ1 and λ2,
respectively. One is a maximum budget constraint and the other is
minimum return constraint. The value δ is the out-of-constraint probability,
and r is the approximation ratio (as defined in Equation (23)). The square
highlighted in red corresponds to the maximum in-constraint probability
(1− δ) over all combinations of the two penalty factors, and the square
highlighted in green corresponds to the maximum r. This highlights that
both large in-constraint probability and large approximation ratio cannot be
obtained. The figure shows results for the B ¼ þj i þh j mixer and 3-layer
QAOA, though we observe similar behavior for all mixers and QAOA
depths considered.

Fig. 8 Quantum circuit for QAOA with Zeno dynamics. QAOA circuit with
Zeno dynamics used in hardware runs for one-layer QAOA (p= 1) on four-
asset problems. The operator S prepares a uniform superposition over
feasible states.
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Fig. 9 QFT adder with QCL. Quantum circuits for (a) semiclassical quantum Fourier transform adder with quantum conditional logic (QCL) used in the
hardware experiments involving equality constraints and (b) the four-qubit rotation gate used in a. Note that R(α) denotes a phase gate. For the equality-
constraint experiment executed on the H1-2 quantum device, we set a≔ (a1, a2, a3, a4)= (2,− 1,− 1, 0). The uncomputation step consists of resetting the
auxiliary qubit to the þj i state.

Fig. 10 QFT adder without QCL. Quantum circuits for (a) the quantum Fourier transform (QFT) adder used in the hardware experiments and (b) the four-
qubit rotation gate used in a. Note that R(α) denotes a phase gate. For the inequality-constraint experiment, we set a1= a2= a3= a4= 1, d=− 3 and used
four qubits for precision. For the equality-constraint experiment, without quantum conditional logic (QCL), we set a1= 2, a2= a3=− 1, a4= d= 0 and used
only three qubits for precision. For the inequality constraint, the inverse of the oracle is applied after measuring the qubit encoding the sign. However, for
the equality constraint, since all auxiliary qubits are measured, we do not need to apply the inverse QFT operator and can simply reset all auxiliary qubits to
the ground state. Note that here the inverse QFT operator (QFT†) does not include swaps as the reordering has been done by rearranging the banks of
controlled rotations.

Fig. 11 Simulation and hardware experiment results using QAOA with Zeno dynamics. QAOA with p= 1 and Zeno dynamics was applied to solve a four-
asset problem with an equality constraint 2x1− x2− x3= 0 (a) and inequality constraint∑4

j¼1 xj � 2 (b). The circuits were executed on a classical simulator
and on the H1-2 quantum device. The oracles are implemented using arithmetic in the Fourier domain. For the equality constraint (a), the quantum
conditional logic (QCL) implementation of the Fourier adder used one auxiliary qubit, and the version without QCL used three auxiliary qubits. The Fourier
adder used for the inequality constraint (b) used four auxiliary qubits. Error bars indicate the standard error of the mean arising from finite sampling (2000
shots). The in-constraint probability 1− δ grows with the number of measurements (N).
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complexity of implementing the measurement and the possibility
of the measurements resulting in trivial dynamics.

Implementing the oracle for a constraint in general requires
quantum arithmetic and may lead to high gate count for more
complex constraints. However, the asymptotic efficiency of our
approach makes it viable for fault-tolerant quantum devices.
Additionally, reductions in the cost of implementing quantum
arithmetic, such as techniques utilizing quantum conditional
logic, can further reduce the overhead of the proposed method.

Moreover, for noisy quantum devices, additional perfor-
mance improvements can be obtained by leveraging advanced
algorithm-specific error mitigation techniques such as the ones
recently proposed for QAOA44,45. Such techniques may help
bridge the gap between the noisy near-term devices and the
error correction likely required to execute circuits of sufficient
depth to provide performance improvements over classical
algorithms46–48.

As discussed in the Results Section, restricting the evolution to
the Zeno subspace may result in trivial dynamics for certain
mixers. Therefore an important consideration when applying the
proposed technique is evaluating whether the particular choice of
mixer has this behavior. As this effect would apply generally to all
instances with a given class of constraints, the mixer only needs to
be analyzed once for a class of problems.

Methods
Preliminaries. We begin by briefly introducing the relevant concepts and setting
the notation. We undertake the task of minimizing an objective function f defined
on the Boolean cube, Bn , over the set of feasible solutions F � Bn :

min
x2F

f ðxÞ: ð20Þ

We consider sets F of the form F ¼ fx 2 Bn j �gjðxÞ ¼ 0 8jg, where �gjðxÞ is an
oracle that returns 0 if x satisfies the j-th constraint and a value strictly greater-than
0 otherwise. This general definition includes most commonly considered problems
such as those with equality and inequality constraints.

This constrained optimization problem can be solved by relaxing the
constraints and introducing penalty terms as follows:

min
x2Bn

f penalty ¼ min
x2Bn

f ðxÞ þ∑
j
λj�gjðxÞ; ð21Þ

where λj 2 Rþ are the penalty factors.
Specifically, for an equality constraint g(x)= 0, the penalty function may be

written as

�gðxÞ ¼ gðxÞ� �2
:

On the other hand, an inequality constraint g(x) ≥ 0 can be converted into an
equivalent equality constraint gðxÞ � ŝ ¼ 0 by introducing a slack
variablês 2 ½0; gmax�, where gmax ¼ maxx2F gðxÞ. If we assume g(x) can be
discretized with a spacing of Δg, then ŝ can be implemented using nslack ¼
dlog2ðgmax=Δg Þe binary variables s ¼ ðs1; ¼ ; snslack Þ

T , and the resultant equality
constraint is g(x)− Δg∑j2j−1sj= 0. Therefore the penalty function for an inequality
constraint can be written as

�gðx; sÞ ¼ gðxÞ � Δg ∑
nslack

j¼1
2j�1sj

� �2
:

The magnitudes of the penalty factors λj control how much the constraint
violations are penalized. Intuitively, a higher value of λj should lead to a higher in-
constraint probability. However, in practice, the relationship between the penalty
factor, the in-constraint probability and the solution quality may be non-
monotonic. This makes choosing λj harder. We discuss the difficulty of tuning the
penalty factors in the Results Section.

Quantum algorithms for approximate optimization. In this work, we focus on the
class of quantum optimization algorithms that use a parameterized quantum
evolution to prepare a state, such that the corresponding measurement outcomes
contain a high-quality, valid solution to the original optimization problem with
high probability. This parameterized state, a restatement of Equation (1), is pre-
pared by applying a parameterized evolution U(θ) to some initial state sj i:

ψðθÞ
�� � ¼ UðθÞ sj i ¼

Ym
j¼1

e�iθjHj sj i; ð22Þ

where Hj is some Hamiltonian, e.g., a tensor product of single-qubit Pauli
operators.

Let C ¼ ∑x2Bn f ðxÞ xj i xh j be the operator encoding the objective function f on
qubits and Cpenalty ¼ ∑x2Bn f penaltyðxÞ xj i xh j be the operator encoding the relaxed
objective function (21). The figures of merit used to evaluate the quality of a

Fig. 12 Effectiveness of constraint enforcement using QAOA with Zeno dynamics in simulation and hardware experiments. Distribution of final
measurement results obtained from QAOA applied to the equality- (a) and inequality-constrained (b) problem for different numbers of measurements (N).
For the equality-constrained problem experiments were executed both with and without quantum conditional logic (QCL). Each column corresponds to a
computational basis state (either in-constraint or out-of-constraint), and the columns are ordered by objective value (to the right is better). The circuits
were executed on a classical simulator and on the H1-2 quantum device. There is strong agreement between the hardware results and results from noise-
free simulation.

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01331-9 ARTICLE

COMMUNICATIONS PHYSICS |           (2023) 6:219 | https://doi.org/10.1038/s42005-023-01331-9 |www.nature.com/commsphys 11

www.nature.com/commsphys
www.nature.com/commsphys


parameter θ* obtained by algorithms that employ parameterized circuit (22) are
approximation ratios, defined as follows:

r ¼ ψðθ	Þ� ��CF ψðθ	Þ
�� �� fmax

fmin � fmax ð23Þ

and

rpenalty ¼
ψðθ	Þ� ��Cpenalty ψðθ	Þ

�� �� fmax
penalty

fmin
penalty � fmax

penalty

; ð24Þ

where CF ¼ ∑x2F f ðxÞ xj i xh j, fmin ¼ minx2F f ðxÞ, fmax ¼ maxx2F f ðxÞ,
fmin
penalty ¼ minx2Bn f penaltyðxÞ, and fmax

penalty ¼ maxx2Bn f penaltyðxÞ.
This class of algorithms includes QAOA1,2,48 and its generalization, the

quantum alternating operator ansatz algorithm13. In both algorithms, the
parameterized quantum evolution is performed by applying pairs of alternating
operators:

ψðβ; γÞ
�� � ¼Yp

j¼1

UBðβjÞUCðγjÞ
h i

sj i; ð25Þ

where UCðγjÞ ¼ e�iγjC is the phase operator, and UB(βj) is the mixing operator. In
the special case of QAOA, the initial state sj i is the uniform superposition over all
computational basis states and the mixing operator UB is set to be UBðβjÞ ¼ e�iβjB ,
where B=∑kxk is a sum of single-qubit Pauli-x operators. In quantum alternating
operator ansatz, UB and sj i are allowed to be arbitrary, and are typically set such
that the resulting state ψðβ; γÞ

�� �
preserves the constraints, in the sense that every

measurement outcome x belongs to F . In this paper, we consider QAOA with an
arbitrary mixing Hamiltonian B, defined in ref. 13 as Hamiltonian-based QAOA. In
all other sections of this paper, unless it is specified otherwise, the acronym QAOA
is used to denote this version of the algorithm.

In addition to QAOA, we consider the layer variational quantum eigensolver
(L-VQE)31, which is a version of VQE with the hardware-efficient layered
parameterized circuit tailored towards optimization problems. L-VQE uses the
parameterized circuit of the form

Yp
j¼1

UNNðθjÞ
h i

Vðθ0Þ 0j i; ð26Þ

where UNN consists of nearest-neighbor CNOT’s and single-qubit Ry’s, and V is a
layer of single-qubit Ry’s. The reader is referred to ref. 31 for the precise definition
of the circuit. While the circuit includes non-parameterized CNOT’s, it is easy to
write it equivalently in the form of Equation (22) by pushing Ry through the control
of the CNOT and noting that RyðθÞ ¼ e�iθ2y and cnot1;2Ry2ðθÞcnot1;2 ¼ e�iθ2z1y2 .
Here, yj and zj denote a single-qubit Pauli-y and Pauli-z, respectively, acting on
the j-th qubit.

Quantum Zeno dynamics. The quantum Zeno effect (QZE)49,50 is named after
Zeno’s paradox51, which regards the continuous observation of a moving arrow.
Zeno’s paradox states that an arrow cannot move if no time has elapsed since the
point it was last observed. If the time difference between observations is Δt, con-
tinuous observation occurs in the limit of Δt→ 0. Under continuous observation,
no time elapses between observations, and during each observation the arrow is not
moving; thus, no overall movement is possible. The analog in quantum mechanics
is a consequence of the Schrödinger equation. We first introduce a simpler one-
dimensional version, in which the quantum state is restricted from evolving due to
repeated measurements, and then present a more general case in which the
dynamics of the system are restricted to a particular subspace, called a Zeno
subspace.

Suppose a time-dependent quantum state is evolved in a finite-dimensional
Hilbert space H from some initial state ψ0

�� �
under the action of some Hamiltonian

H for time t. Define a projective measurement P given by a pair of complement
projections P ¼ ψ0

�� �
ψ0

� �� and Q= I− P, which acts on a density operator ρ as

Pρ ¼ PρP þ QρQ:

If we carry out N repeated projective measurements P at a time interval of t/N,
then the probability that the system remains in the initial state is

pðtÞ ¼ k Pe�iHt=N ψ0

�� �k2N2
¼ j ψ0

� ��e�iHt=N ψ0

�� �j2� �N
¼ 1� ðt=NτZÞ2

� �N þ OðN�2Þ !N!1
1;

where τ�2
Z ¼ ψ0

� ��H2 ψ0

�� �� ψ0

� ��H ψ0

�� �2
is called the Zeno time and quantifies

how often the measurements need to be taken. As the frequency at which the
measurements are performed increases without bound, the probability of
remaining in the initial state approaches one.

Quantum Zeno dynamics (QZD)52–55 considers the more general case where
the evolution of the state is constrained to a subspace of dimension greater than
one. Thus the projective measurement P can contain multiple projections with

ranks all greater than one. Specifically, a restatement of Equation (2),

Pρ ¼ ∑
k

j¼1
PjρPj; ð27Þ

where ∑k
j¼1 Pj ¼ I, and Pj is a projection onto some subspace Hj ¼ PjH of

dimensionality TrðPjÞ≥ 1. Informally, QZD states that if the evolution starts in Hj

and the measurement P is performed sufficiently often, then the system will
remain in Hj with high probability.

Consider an initial state ρ0, after N projective measurements by P, the state of
the system is given by

ρðtÞ ¼ UðtÞρ0UðtÞy; ð28Þ

where UðtÞ ¼ ðPe�iHt=N ÞN and pðtÞ ¼ TrðPjρðtÞÞ is the probability of the system
remaining in Hj after evolving for time t. Note that

UðtÞ ¼ Pe�iHt=N
� 
N

¼ P½I� iHt=N þ OðN�2Þ�� 
N
:

¼ I� iPHt=N þ OðN�2Þ� 
N
¼ I� iPHt=N

� 
N þ OðN�1Þ

ð29Þ

!N!1
e�iPHtP; ð30Þ

and the dynamics of the system are governed by HZ ¼ PH, called the Zeno
Hamiltonian. Moreover, as N→∞, transitions between different subspaces
fH1; ¼ ;Hkg of H are suppressed. This implies if ρ0= Pjρ0Pj for some
j∈ [k]≔ {1,…, k}, then in the limit of N→∞, called the Zeno limit, it follows that
p(t)→ 1, and thus the state will remain in Hj throughout the evolution. For a more
detailed discussion the reader is referred to refs. 54,55.

QZE has many applications in algorithms and error mitigation. Childs et al.56

propose a version of Grover’s search based on QZD that utilizes frequent
measurements instead of slow adiabatic evolution. This alternative approach to
slow evolution was also observed in ref. 57. Somma et al.58,59 develop a quantum-
enhanced version of the simulated annealing algorithm. Their approach makes use
of QZD to ensure that the evolution remains in the instantaneous quantum Gibbs
state for varying temperature. Boixo et al.60 show that for Grover’s algorithm and
simulated annealing based on QZD, one could use frequent randomized evolutions
instead of measurements (the randomization method). The randomization method
has also been used to implement algorithms for quantum linear systems61,62.
Finally, dynamical decoupling, also called bang-bang decoupling63, is a popular
error-mitigation technique that uses QZE to suppress decoherence55,64–68.

Proof of Theorem 1. In this Section we derive our main result, Theorem 1, for the
number of measurements required to maintain a constant success probability. We
start by deriving the required lemmas.

Lemma 1. Let H be a Hermitian matrix. Then

min
P; ψj i2ImðPÞ

Pe�iθH ψ
�� ��� ��2

2
¼ cos2 ξmax�ξmin

2 θ
� �

8θ 2 R; jθj≤ π
ξmax�ξmin

;

where P is an orthogonal projector and ξmax and ξmin are the largest and smallest
eigenvalues of H.

Proof. Suppose H has the following eigendecomposition

H ¼ ∑
d

k¼1
ξkQk;

where ξk are the unique eigenvalues of H (including 0 if H is not full rank) and
fQkgdk¼1 is the complete set of projectors onto the corresponding eigenspaces.
Therefore

pðθÞ ¼ Pe�iθH ψ
�� ��� ��2

2

≥ ψ
�� � ψ
� ��ψe�iθH ψ

�� ��� ��2
2

¼
�� ψ� ��e�iθH ψ

�� ���2
¼ ∑

d

j;k¼1
eiθðξj�ξkÞ ψ

� ��Qj ψ
�� � ψ
� ��Qk ψ

�� �

¼ ∑
d

j;k¼1
cosðθðξj � ξkÞÞ ψ

� ��Qj ψ
�� � ψ
� ��Qk ψ

�� �

¼ ∑
d

j;k¼1
cjkxjxk;

ð31Þ

where cjk ¼ cosðθðξj � ξkÞÞ, xj ¼ ψ
� ��Qj ψ

�� �≥ 0. Note that the second to the last
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equality follows from

eiθðξj�ξkÞxjxk þ eiθðξk�ξ jÞxkxj ¼ cosðθðξj � ξkÞÞxjxk þ cosðθðξk � ξjÞÞxkxj:
Let C be the matrix with elements cjk at the j-th row and k-th column. Then using
simple trigonometric identities, it can be shown that

C ¼ vðθÞvðθÞT þ v
π

2
� θ

� �
v

π

2
� θ

� �T ð32Þ

where

vðθÞ ¼ ðcosðξ1θÞ; ¼ ; cosðξdθÞÞT: ð33Þ
Since C is the sum of positive semi-definite matrices, it too is positive semi-definite.

Therefore, minimizing p(θ) is equivalent to solving the following convex
constrained minimization problem

min
x2S

xTCx; where S :¼ fx 2 Rd
þ j kxk1 ¼ 1g; ð34Þ

x ¼ ðx1; ¼ ; xdÞT and thus a sufficient condition69, Theorem 2.2.5 for x⋆ to be the
optimum is

x?TCðx � x?Þ≥ 0; 8x 2 S ð35Þ
Consider the following trial solution

x?min ¼ x?max ¼ 1
2 ;

x?j ¼ 0 8 j =2 fmin;maxg: ð36Þ

We have that 8x 2 S

2x?TCðx � x?Þ
¼ ð1þ cmax;minÞðxmax þ xmin � 1Þ þ ∑

j=2fmin;maxg
xjðcmax;j þ cmin;jÞ

¼ ð1� xmax � xminÞ ∑
j=2fmin;maxg

ðcmax;j þ cmin;jÞ � ð1þ cmax;minÞ
" #

Also for jθj ≤ π
ξmax�ξmin

, we have cj;k ≥ cmax;min, and thus

1þ cmin;max ¼ 2cos2
ξmax � ξmin

2
θ


 �

≤ 2 cos
ξmax � ξmin

2
θ


 �
cos

ξmax þ ξmin � 2ξj
2

θ


 �
¼ cmax;j þ cmin;j:

Combining the above results, we obtain that 2x?TCðx � x?Þ≥ 0. Thus our choice is
optimal.

After, plugging in the optimal choice and noting that all steps are equalities in
(31) when P ¼ ψ

�� � ψ
� ��, we obtain:

min
P; ψj i2ImðPÞ

Pe�iθH ψ
�� ��� ��2

2
¼ x?TCx? ¼ cos2

ξmax � ξmin

2
θ


 �
:

Additionally, the result implies that minimization occurs when

ψ
�� � ¼ ± H

�� �
:¼ 1ffiffiffi

2
p ξmax

�� �
±

1ffiffiffi
2

p ξmin

�� �
ð37Þ

for any ξmax

�� � 2 ImðQmaxÞ and ξmin

�� � 2 ImðQminÞ.
Note as observed in the proof of Lemma 1, the lower bound on the in-constraint

probability bound is saturated when the initial state is chosen to be either þH

�� �
or

�H

�� �
in Equation (37), and P is the projector onto the chosen initial state.

Lemma 2. Let H be a Hermitian matrix. Then

min
P; ψj i2ImðPÞ

P Pe�iθNH
� �N

ψ
�� �����
����
2

2

¼ 1
2
þ 1

2
2p	

θ

N


 �
� 1

� �N
;

8θ 2 R; jθj ≤ πN
ξmax � ξmin

;

where P is a projective measurement as defined in Equation (27) with projectors P
and I− P,

p	
θ

N


 �
¼ cos2

ξmax � ξmin

2N
θ


 �
;

and ξmax and ξmin are the largest and smallest eigenvalues of H.

Proof. Consider a fixed θ and some N that satisfies the hypothesis. The stochastic
process formed by random variables indicating whether the system is in Im(P) or
its complement after each evolution segment Pe�iθNH form a two-state Markov
chain. According to Lemma 1, the probability of remaining in a state on the chain
at any point in time is at least

p	
θ

N


 �
:¼ cos2

ξmax � ξmin

2N
θ


 �
; ð38Þ

and this minimum probability is attained at each segment when ψ
�� � is (37) and

P ¼ ψ
�� � ψ
� ��. Because, in this case, the evolution lies in the two-dimensional space

spanned by ± H

�� �
, the result is a Markov chain with transition matrix

AðkÞ ¼ �A ¼ p	 1� p	

1� p	 p	


 �
;8k 2 ½N�; ð39Þ

and ∀ k >N, A(k)= I.
Therefore the probability of the state remaining in Im(P) after N steps of the

chain is �AN
0;0, or the first diagonal element of the matrix �A after raising it to the N-th

power. Applying diagonalization on �A, we obtain

�AN
0;0 ¼

1þ ð2p	 � 1ÞN
2

: ð40Þ
We now proceed to derive Theorem 1 using the above lemmas.

Proof of Theorem 1. For all θ 2 R, such that

jθj< N
ξmax � ξmin

; ð41Þ

it follows that

cos2 ξmax�ξmin
2N θ

� �
≥ 1� 1

2
θðξmax�ξminÞ

2N

h i2
 �2

≥ 1� θðξmax�ξminÞ½ �2
4N2 :

If we combine this result with Lemma 2, then we obtain

1
2 þ 1

2 2p	 θ
N

� 
� 1
� �N

≥ 1
2 þ 1

2 1� θðξmax�ξminÞ½ �2
2N2


 �N

≥ 1
2 þ 1

2 exp � θðξmax�ξmin Þ½ �2
2N


 � ð42Þ

To lower bound this by 1− δ, we can choose N as stated in Theorem 1. Note that to
ensure Equation (41) we must have

θðξmax � ξminÞ
� �2

N
<N; ð43Þ

and thus

1
2
þ 1

2
exp � θðξmax � ξminÞ

� �2
2N

 !
>
1
2
þ 1

2
exp �N

2


 �
: ð44Þ

At the minimum of value of N, we have

1
2
þ 1

2
exp � 1

2


 �
≲ 0:81: ð45Þ

Proof of Corollary 1

Proof. For simplicity, consider a single block of size m:

UZðθÞ ¼
Ym
j¼1

e�iðθj=NÞHj

" #N
: ð46Þ

First, suppose that the elements of fHjgmj¼1
do not all pairwise commute. Then,

according to70, Proposition 9:

Ym
j¼1

e�iðθj=NÞHj � e�i∑m
j¼1 ðθj=NÞHj

�����
�����
2

≤
1

2N2 ∑
m

j¼1
∑m

j0¼jþ1 θj0Hj0 ; θjHj

h i��� ���
2

ð47Þ

This implies that

UZðθÞ � Pe�i∑m
j¼1 ðθj=NÞHj

h iN����
����
2

≤
1
2N

∑
m

j¼1
∑
m

j0¼jþ1
θj0Hj0 ; θjHj

" #�����
�����
2

≤
∑m

j¼1 jθjj
h i2

maxj Hj

��� ���2
2

N
:

ð48Þ

Then

PGUZðθÞ ψ
�� ��� ��2

2
≤ PG Pe�i∑m

j¼1 ðθj=NÞHj

h iN
ψ
�� �����
����
2

þ
∑m

j¼1 jθjj
h i2

maxj Hj

��� ���2
2

N

0
B@

1
CA

2

:

ð49Þ
If we choose

N ¼
4 ∑m

j¼1 jθjj
h i2

maxj Hj

��� ���2
2

ln 1� δð Þ�2α

2
6666

3
7777; ð50Þ
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then for α≤1, Theorem 1 with Remark 1 implies that the out-of-constraint
probability is at most

PGUZðθÞ ψ
�� ��� ��2

2
≤
δ

2
þ α

ffiffiffi
δ

p

2
ln 1� δð Þ�2 þ α2

16
ln2 1� δð Þ�2 ð51Þ

≤
δ

2
þ δ

2
αþ α2

8

� �
; ð52Þ

where δ ≤ 0.19. If α= 0.89, then

PGUZðθÞ ψ
�� ��� ��2

2
< δ: ð53Þ

To compensate for the decay of the success probability after L blocks, each Nk

must be multiplied by L.
Lastly, for the asymptotic dynamics, from Equation (29)-(30) we get

UZ ðθÞ ¼ P
Qm
j¼1

I� iðθj=NÞHj þ OðN�2Þ
� �" #N

¼ P I� i ∑
m

j¼1
ðθj=NÞHj þ OðN�2Þ


 �� �N ð54Þ

�!N!1
e�i∑m

j¼1 PHjθjP ¼ e�iPH�θP: ð55Þ
Thereby the dynamics are described by the Zeno Hamiltonian HZ ¼ PH , where P
acts element-wise on the vector H ¼ ðH1; ¼ ;HmÞT. The limiting dynamics of L
blocks is the product of these limits.

If the elements of fHjgmj¼1
pairwise commute, then there is no Trotter error, and

α= 1 without the need to halve δ. The limiting dynamics follows trivially as well.

Realizing oracles for combinatorial constraints. In this Section, we review the
constructions of quantum oracles for implementing polynomial inequality and
equality constraints. We use the constructions provided in this Section in the
experiments on a trapped-ion quantum computer described in the Results Section.
Since any function on the Boolean cube can be expressed as a polynomial it suffices
to only demonstrate constructions for polynomial constraints71. In addition, since
we are considering problems in NPO we can assume the existence of a
polyomially-sized classical circuit for evaluating any constraints to sufficient pre-
cision. Given that all classical basis gates can be represented as polynomials, we can
represent our constraint as the composition of polynomially many polynomial
functions. Of course, one could also directly implement the classical circuit in a
reversible fashion on a quantum device efficiently. For the remainder of this Sec-
tion, we consider a polynomial function g:

gðbÞ ¼ ∑
K

k¼1
dk
Y
l2Sk

bl ; ð56Þ

where Sk⊆ [n] and dk 2 R. In addition for Sk ¼ +,
Q

l2Sk bl :¼ 1.
Without loss of generality we can assume that equality constraints are of the

form g(b)= 0 and inequality constraints are of the form g(b) ≥ 0. We assume that
there exists an oracle that computes the value of g(b) into a quantum register
(constructions of such oracles are briefly reviewed in the Methods Section). For an
equality constraint, we implement the constraint-enforcing measurement by simply
measuring the entire register. A projection onto the in-constraint subspace implies
that we have observed a 0 in the register. For an inequality constraint, we measure
the qubit corresponding to the sign, a 0 corresponds to a successful projection, and
apply the inverse of the oracle post measurement.

While the above procedure works in general, there are further optimizations
that can be made by utilizing quantum conditional logic (QCL). We give an
example of such an optimization in the Results Section. Further optimizations are
possible for double-sided inequalities of the form 0 ≤ g(b) < a, where a is a power of
2. To implement the measurement corresponding to this double-sided inequality,
we only need to measure higher-order bits. Since the results of these high-order bits
are now classical, we can replace the part of the inverse-oracle circuit controlled on
these bits with classically-conditioned single-qubit gates. Lastly, because all
constraint-preserving measurements can be implemented separately and thus
auxiliary qubits can be reused, the required number of auxiliary qubits to
implement all constraint-preserving measurements is equal to the maximum
amount of auxiliary qubits required by any oracle call.

In the subsections that follow, we present efficient constructions of oracles that
can be used to implement polynomial functions. Both of these use techniques that
have been presented in prior work. Here we include a brief review for completeness
and present the resource analysis for our setting.

Review of classical reversible arithmetic circuits. The design of reversible versions of
classical arithmetic circuits has been extensively explored and highly optimized
constructions are available72–74. Such constructions allow one to implement uni-
tary operations for performing arithmetic on quantum registers. Consider fixed-
point arithmetic of m bits including digits both before and after the decimal point.
Suppose polynomial g has K terms. For each coefficient dk, we require an n-qubit
controlled m-bit adder. A controlled m-bit adder can be implemented with O(m) T

gates75. Since a multi-controlled Toffoli can be implemented with a T count of
O(n)76,77 and thus the overall multi-controlled adder can be implemented with a T
count of O(n+m). The T count for implementing g is O(K(n+m)).

Review of quantum Fourier arithmetic. For smaller quantum devices, a more
resource efficient approach is to switch to the Fourier basis using the quantum
Fourier transform (QFT) and perform the arithmetic in the Fourier basis. This
approach has worse asymptotic complexity in terms of T-gate counts, but requires
fewer qubits and CNOT gates. We use this approach in the hardware experiments
discussed in the Results Section. The discussion in this Section is based on ref. 21,
though the idea of using the QFT for quantum arithmetic is well-known, see
e.g.78–80.

For s∈ [2m], the QFT on Z2m is defined as follows:

QFT2m : sj i7! ∑
k2½2m �

e�i2πks=2m kj i: ð57Þ

It can be shown81 that the right-hand side of (57) is a product state and can be
expressed in the following form:

Om
k¼1

0j i þ e�iπ s
2m�k 1j iffiffiffi

2
p ¼ Fm

s
2m

� �
þj i
m; ð58Þ

where

FmðθÞ :¼
Om
k¼1

Rðπ2kθÞ ð59Þ

implements the desired operation. In addition, R(α) denotes the phase gate
0j i 0h j þ eiα 1j i 1h j. The angle θ is restricted to � 1

2 ;
1
2

� 

to avoid overflow and allow

for representing negative numbers. Thus, when implementing a polynomial g, we
require that its range match the range of θ, i.e., k gk1 ≤ 1

2. This can always be
satisfied by scaling g accordingly.

As an example, we can add two integers a and b, with the conditions
a, b, a+ b∈ {− 2m−1,…0,…, 2m−1− 1}, as follows:

QFTy
2mFm

a
2m

� �
Fm

b
2m


 �
þj i
m ¼ aþ bj i: ð60Þ

Note, the value in the quantum register is really the two’s complement of a+ b. We
define the following controlled operation:

Fmðb; θÞ :¼ bj i bh j 
 FmðθÞ þ ðI � bj i bh jÞ 
 I; ð61Þ
where b 2 Bn . For Sk⊆ [n], let 1Sk 2 Bn denote the indicator vector of Sk. The
process for (approximately) loading the value of the polynomial (56) into a
quantum register is:

ðI 
 QFTy
2m Þ
YK
k¼1

Fmð1Sk ; dkÞ bj i þj i
m ¼ bj i ~gðbÞ
�� �

; ð62Þ

where by the assumption on the range of g, j~gðbÞ � gðbÞj≤ 2�m . The result is stored
in an auxiliary quantum register of size O(m). The operation Fm(b, θ) requires m n-
controlled rotation gates. Thus overall it requires Km n-controlled rotation gates.
An O(n)-controlled Toffoli can be implemented with O(n) T gates76,77 and each
controlled rotation can be ϵ-approximately implemented with Oðlogð1=ϵÞÞ T’s82,83.
Thus, assuming a fixed rotation-gate approximation error the total cost is O(Kmn).

The operation QFT2m requires O(m2) gates to be implemented exactly81 and
can be implemented approximately, for a fixed approximation error, on a fault-
tolerant device with Oðm logðmÞÞ T gates83. For equality constraints, since we will
be measuring the entire register containing the value ~gðbÞ, we swap the coherent
implementation of the inverse QFT for the semiclassical variant84,85. This
semiclassical version of the QFT replaces all two-qubit gates with classically-
controlled single qubit gates and requires only a single auxiliary qubit that is
repeatedly measured and reset to compute the bits of ~gðbÞ. Thus, this approach
benefits from both mid-circuit measurements and QCL. A fault-tolerant version of
this circuit can be approximately implemented with Oðm logðmÞÞ T gates86. Thus in
a fault-tolerant setting the overall T count of the QFT-based approach is
OðKmnþm logðmÞÞ.

Initial state construction. Our proposed approach is flexible with regards to the
choice of the initial state, any initial state that is in-constraint suffices. Thus, unlike
ref. 20, when using the complete-graph mixer our approach does not require
repeated applications of a unitary and its inverse for preparing the uniform
superposition of in-constraint states. However, the initial state we use in experi-
ments discussed in the Results Section is the uniform superposition over all
computational basis states encoding in-constraint solutions. In general, this
superposition is hard to prepare. However, there exist constructions for a wide
range of practically relevant cases. If the set of feasible solutions is efficiently
indexable, (ref. 24, Section IIIB) gives an efficient procedure for the initial state
preparation. In the specific case of a Hamming-weight equality or inequality
constraint, the uniform superposition over feasible states is a superposition of
Dicke states with corresponding Hamming weights, which can be constructed
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efficiently87. Since, our technique does not require the state preparation method be
reversible, we can make use of repeat-until-success schemes.

Parameter optimization. The Zeno framework we propose works well with
standard techniques used to optimize parameterized quantum circuits. Specifically,
as long as each Nr is large enough to ensure the desired minimum in-constraint
probability is 1− δ (c.f. Corollary 1) for the given parameter range, the direction of
steepest descent will still result in a circuit with the same minimum in-constraint
probability. Here we make an assumption that θ remains bounded throughout
optimization, which is a valid assumption in practice. This means that both
gradient-based and gradient-free local optimization methods can be used with
Zeno-augmented hybrid quantum-classical algorithms. A commonly used way to
optimize parameterized quantum circuits is to use the parameter-shift rule88,89 in
conjunction with a gradient-based optimizer. We now show that the Zeno fra-
mework works efficiently with the parameter-shift rule.

We consider the task of finding a minimum-eigenvalue state of an observableM
using a parameterized quantum evolution consisting of generating Hamiltonians
that are also unitary, e.g. L-VQE. We utilize the measurement scheme presented in
Equation (6) with the condition that ∀ k,mk= 1. (Following similar arguments
as88, Section 3), we obtain

∂
∂θr

Tr MUZðθÞρUy
ZðθÞ

n o
¼ ∑

Nr

k¼1
Tr MkP

Hr
Nr
e�i θrNr

Hr ρk þ h.c.
n o

¼ 1
Nr

∑
Nr

k¼1
Tr MUþðr;kÞ

Z ρUy;þðr;kÞ
Z

n o
� Tr MU�ðr;kÞ

Z ρUy;�ðr;kÞ
Z

n oh i
;

ð63Þ
where Mk and ρk contain terms that have not been differentiated, and U ± ðr;kÞ

Z is the
same as UZ ðθÞ except that the evolution at the∑r�1

t¼1 Nt þ k-th step has a phase shift
of ± π

4Nr
. Thus, whereas the normal parameter-shift requires two expectation

evaluations per parameter, Zeno would require 2Nr. This is the same additional
overhead as in the case of a circuit with gates that share parameters.

It also easy to see that the gradient is biased towards minimizing
MF ¼ PFMPF , i.e. the in-constraint Hamiltonian, as follows:

∂

∂θr
Tr MUZðθÞρUy

Z ðθÞ
n o

¼PrF
∂

∂θr
Tr MF

UZðθÞρUy
ZðθÞ

PrF

( )

þ PrG
∂

∂θr
Tr MG

UZ ðθÞρUy
Z ðθÞ

PrG

( )
;

ð64Þ

where PrF is the probability of projecting onto F when measuring the
parameterized evolution with P. Lastly, Corollary 1 can be used to ensure
PrF > 1� δ.
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