Table 1 Calculated anomalous Hall conductivity for different noncollinear antiferromagnetic phases.

From: Vector-chirality driven topological phase transitions in noncollinear antiferromagnets and its impact on anomalous Hall effect

Spin

Energy/f.u.

σx

σy

configuration

(meV)

(Scm−1)

(Scm−1)

\({a}_{1}^{+}\)

0

0

0

\({a}_{1}^{-}\,\,(\phi =9{0}^{o})\)

−4.472

−226

0

\({a}_{2}^{-}\,\,(\phi =21{0}^{o})\)

−4.472

116

−204

\({a}_{3}^{-}\,\,(\phi =33{0}^{o})\)

−4.472

116

204

\({a}_{4}^{-}\, \, (\phi ={0}^{o})\)

−4.451

0

223

\({a}_{5}^{-}\,\,(\phi =3{0}^{o})\)

−4.472

−116

204

\({a}_{6}^{-}\,\,(\phi =6{0}^{o})\)

−4.451

−200

−104

\({a}_{7}^{-}\,\,(\phi =9{0}^{o})\)

−4.472

−226

0

  1. The stability energies of vector chirality κ = − 1 noncollinear antiferromagnetic states with respect to κ = + 1 one and the corresponding intrinsic anomalous Hall conductivity, σx(y). The angle ϕ in parenthesis is defined with respect to the \({a}_{4}^{-}\) antiferromagnetic configuration, representing uniform spin rotation measured in integer multiple of 30°.