Fig. 4: Changes in open boundary eigenvalues. | Communications Physics

Fig. 4: Changes in open boundary eigenvalues.

From: Anomalous non-Hermitian skin effect: topological inequivalence of skin modes versus point gap

Fig. 4

a Generalized Brillouin zone (red curve) and Brillouin zone (green curve). b Energy spectra under open boundary conditions (blue curve) and continuum bands (red curve). c Generalized Brillouin zone (red curve) and Brillouin zone (green curve). d Energy spectra under open boundary conditions (blue curve) and continuum bands (red curve). After bringing two open boundary eigenvalues into f(β, E), one energy value obtains ∣β2∣ = ∣β3∣ (EOBC = 4) while the other corresponds to ∣β1∣ = ∣β2∣ (\({E}_{OBC}=\frac{6}{5}\)). e Auxiliary generalized Brillouin zone (red curve) containing all information of ∣βm∣ = ∣βn∣ ({m, n} = {1, 2, 3, 4}) with f(β, E) = 0, and generalized Brillouin zone obtained from the open boundary eigenvalues (blue curve). f Number of certain open boundary eigenvalues versus the system size. a and b \({\gamma }_{1}=\frac{1}{500}\) and \({\gamma }_{4}=\frac{1}{400}\). c-f γ1 = γ4 = 0. Other parameters: ta = 2, tb = 1, \({t}_{c}=\frac{1}{2}\), γ2 = 1, \({\gamma }_{3}=\frac{1}{10}\), Va = 1Vb = 3 and Vc = 2.

Back to article page