Table 3 Comparisons with classical community detection algorithms on real networks with ground-truth community labels
Karate | Football59 | Polbooks | Polblogs | Cora | Citeseers | Pubmed | Time Complexity | |
---|---|---|---|---|---|---|---|---|
Spin glass89 | 0.61 | 0.92 | 0.62 | 0.88 | 0.33 | 0.22 | 0.21 | NA |
GN8 | 0.59 | 0.84 | 0.80 | 0.74 | 0.32 | 0.23 | 0.18 | O(N3) |
GDG48 | 0.91 | 0.60 | 0.75 | 0.66 | 0.29 | 0.63 | 0.19 | O(dtN2) |
Walktrap90 | 0.51 | 0.88 | 0.79 | 0.88 | 0.29 | 0.14 | 0.16 | O\(({N}^{2}\log N)\) |
Spectral23 | 0.62 | 0.54 | 0.70 | 0.89 | 0.32 | 0.25 | 0.46 | O\(({N}^{2}\log N)\) |
0.65 | 0.87 | 0.77 | 0.32 | 0.31 | 0.40 | 0.07 | O\(({N}^{2}\log N)\) | |
Fastgreedy25 | 0.75 | 0.56 | 0.78 | 0.89 | 0.39 | 0.28 | 0.32 | O\((N\log N)\) |
Infomap26 | 0.76 | 0.96 | 0.69 | 0.80 | 0.07 | 0.04 | 0.01 | O\((N\log N)\) |
LPA30 | 0.88 | 0.79 | 0.69 | 0.91 | 0.22 | 0.11 | 0.18 | ~ O(E) |
Louvain9 | 0.63 | 0.87 | 0.70 | 0.85 | 0.32 | 0.27 | 0.20 | ~ O(E) |
LS | 0.83 | 0.35 | 0.80 | 0.69 | 0.33 | 0.45 | 0.46 | O(E) |