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Accurate hyperfine tensors for solid state
quantum applications: case of the NV
center in diamond
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The decoherence of point defect qubits is often governed by the electron spin-nuclear spin hyperfine
interaction that can be parameterized by using ab inito calculations in principle. So far most of the
theoretical works have focused on the hyperfine interaction of the closest nuclear spins, while the
accuracy of the predictions for distinct nuclear spins is barely discussed. Here we demonstrate for the
case of theNVcenter in diamond that the absolute relative error of the computed hyperfine parameters
can exceed 100% using an industry standards first-principles code. To overcome this issue, we
implement an alternative method and report on significantly improved hyperfine values with O(1%)
relative mean error at all distances. The provided accurate hyperfine data for the NV center enables
high-precision simulation of NV quantum nodes for quantum information processing and positioning
of nuclear spins by comparing experimental and theoretical hyperfine data.

Point defects have been widely used to control the optical and electronic
properties of semiconductors. Recently, the magnetic properties of these
materials have also been tailored by paramagnetic defects giving rise to
various microscopic and mesoscopic magnetic phenomena. At low defect
counteractions, controllable few-spin systems can be realized that has led to
the development of point defect quantum bits1,2 (qubits) and quantum
nodes3–5. In contrast to other qubit implementations, point defect qubits in
wide-bandgap semiconductors are highly coherent and robust even at ele-
vated temperatures2,6. Such optically addressable spin qubits, realized for
example by the NV center in diamond7, the silicon vacancy8,9 in silicon
carbide (SiC), and divacancy-related defects in SiC10,11, can possess as long
coherence time as 1ms at room temperature8,12,13. Research activities in this
area have gained considerable momentum over the last decades and point
defect-based quantum devices have become leading contenders in several
areas of quantum technologies, such as quantum sensing and quantum
internet14.

The coherence of spin qubits in light element semiconductors is often
limited by spin-spin interactions with paramagnetic defects and nuclei. In
high-purity samples, themagnetic environment of a spin qubit is defined by
the surrounding nuclear spin bath15,16. Point defect spins interact with
nuclear spins through the hyperfine coupling that depends on the spatial
distribution of the defect’s spin density and the position of the nuclear spins.
The hyperfine spin Hamiltonian term is parameterized by the hyperfine
tensor, whose elements can be measured by various magnetic resonance
techniques and calculated by using first-principles electronic structure

methods. Conventionally, electron spin resonance (ESR) has been used to
determine the hyperfine tensor for the closest nuclear spins giving rise
to ~ 10–300MHz hyperfine splitting of the nuclear spin sublevels. The high
controllability and the long coherence time of point defect qubits have
enabled more sophisticated nuclear spin detection techniques to be devel-
oped. Optically detected magnetic resonance (ODMR) measurement of
individual point defect qubits allowed the detection of nuclear spins 2.5–7 Å
distances from theNVcenterwithhyperfine splitting ranging from430 kHz
to 14MHz17,18. Dynamic decoupling techniques can be used to boost further
the sensitivity of the measurements19–23. Using such techniques, nuclear
spins as distant as 30 Å could be detected with hyperfine splitting
of ~1 kHz22,23. These developments have opened newdirections inmagnetic
resonance and magnetic resonance imaging in nanometer scales19–23. In
addition, the characterized nearby nuclear spins can be utilized as additional
highly coherent quantum resources for quantum computation and quan-
tum internet4,5.

Hyperfine coupling tensors can be calculated using different first-
principles methods, such as density functional theory (DFT) and wave
functions-based methods. The accuracy of the computed hyperfine tensors
for close nuclear spins is remarkable. For example, considering para-
magnetic point defects in semiconductors a mean absolute relative error of
4.7% has been reported24. Since the hyperfine structure of the point defect’s
spin sublevels is unique like a bar code, one can compare the measured and
computed hyperfine tensors to identify paramagnetic defects in semi-
conductors unambiguously, see for instance refs. 9,25,26.
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As demonstrated recently by a supercell-size-scaling test in ref. 27, the
accuracy of the computed hyperfine parameters is only limited to the closest
nuclear spin in 1-5 Å distances from the defect. The relative error sharply
increases for nuclear spins located at large distances. As discussed in ref. 27,
this is presumably due to theperiodic boundary condition and relatedfinite-
size effects. Using finite cluster models, such as the C291H172 cluster and the
C510H252 cluster used in refs. 28,29 to calculate the hyperfine coupling
tensors at 1.5–8 Å distances from the defect, errors related to the periodic
boundary condition canbe eliminated.Another limitationoffirst-principles
calculations is themodel size that maximizes the number of lattice sites that
can be considered.

In this work, we first demonstrate the inaccuracy of the numerical
hyperfine parameters obtained with the industry standard VASP code30,31.
To resolve the underlying methodological issues we introduce a real-space
integration method and the use of a large support lattice for considering
nuclear spins outside the boundaries of the supercell. To benchmark our
method, we carry out large-scale calculations for the NV center in diamond
using different exchange-correlation functionals and compare the numer-
ical results with available experimental hyperfine data sets. From the
comparison, we conclude that the HSE0632,33 functional with 0.2 mixing
parameter performs best for the NV center in diamond resulting in a mean
absolute percentage error of 1.7% for nuclear spins 6-30 Å distances from
the NV center. This is a significant improvement compared to previous
theoretical predictions obtained by using VASP. We show that the residual
errors are likely related to the inaccurate calculation of the Fermi contact
term. High-accuracy hyperfine tensors of ≈ 104 lattice sites as well as volu-
metric hyperfine data with < 0.1 Å spatial resolution are published together
with this article (theoretical hyperfine tensors for all lattice sites within 30 Å
distance from the NV center are available at https://ivadygroup.elte.hu/
hyperfine) and ready to be used for modeling NV center quantum nodes
and positioning nuclear spins around the NV center in diamond in nano-
NMR measurements.

Results and discussion
The hyperfine interaction describes the weak coupling between the electron
and the nuclear spins. Integrating out the spatial degrees of freedom, the
corresponding hyperfine spin Hamiltonian term can be written as

HHF ¼ SAI; ð1Þ

where A is the hyperfine tensor and S and I are the electron spin and the
nuclear spin operator vectors with S = 1 and I = 1/2 quantum numbers for
the NV center and adjacent 13C nuclear spins of the diamond lattice,
respectively. The twodominant contributions to thehyperfine tensor are the
Fermi contact interaction,AFC, and themagnetic dipole–dipole coupling of
the electron and nuclear spins,ASS.

Elements of the hyperfine tensor can be calculated given the spin
density of the electron spinσ(r), see Fig. 1 for theNVcenter, and theposition
RJ of nuclear spin J as24

AJ
ij ¼

1
2S

γJγe_
2 8π

3

Z
δðr� RJ ÞσðrÞdrþW ijðRJ Þ

� �
; ð2Þ

where γJ and γe are the gyromagnetic ratios of nucleus J and the electron,
respectively. The first term on the r.h.s. of Eq. (2) accounts for the Fermi
contact interactions, where the Dirac-delta function δ(r−RJ) takes the
value of the spin density at the position of the nucleus whose spatial
distribution is neglected. The largest contribution to the Fermi contact term
originates from electronic states of s orbit character exhibiting non-zero
probability at the nucleus site. The second term on the r.h.s. of Eq. (2)
accounts for the dipole–dipole interaction, where the integral W ij can be
expressed as

W ijðRÞ ¼
Z 3ðr� RÞiðrRÞj

jr� Rj5 � δij
jr� Rj3

� �
σðrÞdr: ð3Þ

First-principles electronic structure codes for solid state physics often
use periodic boundary conditions, plane-wave basis sets, and pseudo-
potentials to describe valance states of periodic lattices. For example, the
industry standard VASP software package30,31 calculates the hyperfine ten-
sor using the method of P. E. Blöchl34 while taking core polarization con-
tributions into account24 in periodic boundary conditions. Employing the
projector augmented wave (PAW) method35, the total spin density of the
system is composed of three parts24,34

σ ¼ ~σ þ σ1 � ~σ1; ð4Þ

where σ1 and ~σ1 are the atomic core-centered true and pseudo-spin
densities, respectively, and ~σ is the total spin density of the valance electrons
calculated using pseudo-potentials. With this differentiation, the Fermi
contact interaction can be written as

8π
3

Z
δðr� RJÞσðrÞdr ¼

8π
3

X
G
~σðGÞeiGRþ

h
ð5Þ

þ
Z

δT ðrÞσ1sRðrÞdr �
Z

δT ðrÞ~σ1sRðrÞdr
�
; ð6Þ

where σ1sR and ~σ1sR are the s-like contributions to the true and pseudo-core-
centered spin densities respectively, and δT (r) is an extended Dirac-delta
function, that takes into account the relativistic effects24. Spin polarization of

Fig. 1 | Spin density of the NV center in diamond.
a and b depict top and side views, respectively. Red
(blue) lobs indicate positive (negative) spin density
isosurfaces and gray dots and bars show the lattice of
the diamond. The isosurface value is set to ± 0.003.
The blue lobs indicate weak antiferromagnetic
couplings with neighboring atoms, e.g., the nitrogen
of the NV center.
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the core electrons can be calculated within the frozen valence
approximation24,36. The computed core polarization is added to σ1 and the
corresponding hyperfine contribution A1c is determined. With a similar
line of thought, the dipole–dipole interaction can also be expressed as

W ijðRÞ ¼ ~W ijðRÞ þW1
ijðRÞ � ~W1

ijðRÞ; ð7Þ

where the valance electrons’ contribution ~W ij is obtained from the pseudo-
spin density ~σ as

~W ijðRÞ ¼ �4π
X

G

GiGj

G2 � δij
3

� �
~σðGÞeiGR; ð8Þ

and the one-center contributions to the dipole–dipole term can be obtained
from d-like contribution to the one-center spin density24,34.

First, we use this method as implemented in VASP to calculate
hyperfine tensors of all sites in a 512-atom and a 1728-atom supercell of
diamond including a single NV center in the middle of the supercell, see
Fig. 1. For the calculations, we use HSE06 exchange-correlation functional,
500 eV cutoff energy of the plane-wave basis set, Γ-point sampling of the
Brillouin zone, and high convergence criteria. The structure of the defect is
optimized as far as the largest force is smaller than 10−3 eV/Å. To compare
our results with the experimental values, see Fig. 2a, we either compute the
hyperfine splitting as Az ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
xzþA2

yzþA2
zz

p 18, where Aij are the elements of the
hyperfine tensor,which is comparedwith experimental values in thedata set
I taken from ref. 18, or compare the Azz hyperfine tensor element with
experimental Azz values obtained from high-precision measurements in

ref. 19 (data set II) and ref. 23 (data set III). Note that the latter data set is a
refined and extended version of the data published in ref. 22. From the
reported 50 nuclear spins, we consider only those for which both the
position and the hyperfine parameter are reported with high accuracy, see
Fig. 2a. When comparing the computed Azz values with data sets II–III, we
found a consistent sign difference between theory and experiment. The sign
of our hyperfine values agrees with other theoretical calculations, i.e.,
VASP’s values as well as the values reported in refs. 28,29. Therefore, we
anticipate that the discrepancy originates from the convention used in the
experiments. Hereinafter, we omit this sign difference.

In Fig. 2b, we depict the absolute relative error of the computed
hyperfine splitting values for data sets I–III. As can be seen, the absolute
relative error of the theoretical values rapidly increaseswithdecreasing value
of the experimental hyperfine parameter, and below ~ 1MHz wildly fluc-
tuates. It is also clear that the use of a large supercell does not improve the
comparison with the experiments. Finally, we note that for making the
comparison between theory and experiment we needed to position the
nuclear spins measured in data sets I and II. For this, we used our improved
hyperfine tensor computation discussed next.

Finite-size correction of hyperfine tensors computed in periodic
supercell models has not been thoroughly investigated before. There are
several possible sources of finite-size effects that can lead to non-physical
interaction of nuclear spins and period defect structures. For instance, the
spin density of a defect and its periodic replicas may overlap in small
supercell models giving rise to overestimated Fermi contact interaction
terms and perturbed dipole–dipole interaction terms for certain nuclei sites.
This error is, however, assumed to decay exponentially with the size of the
supercell since localized defect states decay exponentially.More difficult-to-
handlefinite-size effects arise from the long-range dipole–dipole interaction
that decays with the third power of the distance of the spins. In periodic
supercell models, nuclear spins interact with a lattice of defects. In contrast
to the Coulomb interaction, the dipole–dipole interaction does not diverge,
although the interaction strength and the hyperfine tensor’s principal axis
may be considerably perturbed. A nuclear spin halfway between the defect
and one of its periodic replicas interacts with two spin densities with
approximately the same coupling strength that can give rise to Oð100%Þ
error explaining our observations depicted in Fig. 2b. In the following, we
remedy these finite-size effects.

The errors are derived from the long-ranged interaction term, i.e., the
pseudo-dipole–dipole integral ~W ij defined in Eq. (8). The periodicity of the
spin density and thus thefinite-size effects are encoded into the pseudo-spin
density ~σðGÞ. The point defect and its replicas cannot be separated in
Fourier space; however, in real space, this can be easily achieved by simply
limiting the range of integration. To overcome the finite-size dependence of
the dipolar hyperfine interaction term, we utilize this strategy and combine
it with the PAWmethod. To this end, we calculate ~W ij as

~W ijðRþÞ ¼
ZΩSC

3ðr� RþÞiðr� RþÞj
jr� Rþj5 � δij

jr� Rþj3
� �

σðrÞdr; ð9Þ

where the extended position coordinates R+ include the lattice sites within
the supercell (R) and outside the supercell provided by a support lattice
within a sphereof 30Åradius centeredon theNVcenter.The support lattice
is aligned with the supercell, although it does not contain the atomic sites of
the supercell. Thisway the hyperfine interaction calculation is not limited by
the size of the supercell. Note that for the integration we use the full spin
density σ(r) expressed on a fine grid and not the pseudo-spin density in
contrast toEq. (8). Fornuclear spins containedwithin the supercell, the real-
space integration is carried out over the supercell except a sphere of rPAW
radius centered at the nuclear spin positionR, i.e.,ΩSC ¼ ΩSC �ΩPAWðRÞ.
The total dipole–dipole interaction term is defined asW ijðRÞ ¼ ~W ijðRÞ þ
W1

ijðRÞ in contrast to Eq. (7). The Fermi contact interaction with a core
polarization contribution is obtained using the VASP’s implementation24.
For lattice sites outside the supercell’s boundaries, the spin density is
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Fig. 2 | Comparison of experimental and theoretical hyperfine parameters.
a Experimental data sets of hyperfine parameters reported in ref. 18 (data set I), in
ref. 19 (data set II.), and in ref. 23 (data set III). Gray columns depict the measured
hyperfine parameters, Az for data set I and Azz for data sets II and III. The red bars
depict the absolute error of themeasurements. bAbsolute relative error (ARE) of the
calculated hyperfine values showing increasing error due to finite-size effects. Blue
columns with squares and red columns with circles depict the ARE of calculations
with supercells containing respectively 512-, and 1728 atomic positions. When no
bars are depicted for certain elements of the data sets, the corresponding nuclei site is
outside the supercell used for the calculations. Value 1 on the y-scale corresponds to
a 100% absolute percentage error.
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considered to be zero at the nuclear spin site, i.e., both theW1
ijðRþÞ and the

Fermi contact terms are approximated to be zero. The sole non-zero term
for these sites is givenby Eq. (9), where the integration is carried over the full
supercell volume. With these modifications, the computed tensors account
for the case when the nuclear spins interact with an isolated defect and not
with a lattice of defects. We anticipate that the leading finite-size effects will
be removed within our approach.

To compute the hyperfine tensors for a large number of lattice
sites, ~ 20000 sites within a sphere Rþ

cut ¼ 30 Å around the NV center, we
implement the real-space integrationmethod in an in-house code that post-
processes the VASP output files. The ground state calculations of the NV
center are carried out in 512-atom and 1728-atom supercells using the
experimental lattice parameter of 3.567Å.Weuse both the semi-local PBE37

and various forms of the HSE06 hybrid functional, which are labeled as
HSE(α), where α is the mixing parameters, e.g., HSE(0.25) =HSE06. The
ground state spin density used in the calculation of Eq. (9) is defined on a
real-space grid of 0.036 Åspacing. Thepositionsof thenuclear spins for data
set III are taken from ref. 23. For data sets I and II we use the following
strategy for positioning the nuclear spins: Considering an experimental
hyperfine value, we look for the closest theoretical value in our data set.
Dependingon the error bar of themeasurement and the calculations,we can
position nuclear spin up to symmetrically equivalent sites with thismethod.

The hyperfine splitting values computed with our method are sig-
nificantly improved compared to the currently available implementation24.
The relative error of the theoretical values reduces fromOð100%Þ toOð1%Þ,
see Figs. 2b and 3. For different data sets, we obtain differentmean absolute
percentage errors (MAPE). For data set I we obtain a MAPE of 3.8%, while
the experimental data exhibit an averaged relative error margin of 1.2%18.
The obtained MAPE of the improved theoretical values for data set II is
1.5%, which is better than the relative errormargin of the experimental data
of 3.3%19. This suggests that the theoretical values are “overfitted" for data set
II, i.e., multiple matching hyperfine values were found within the error
margin of the experimental data. By selecting the closest ones, we could
obtain aMAPE smaller than the experimental error bar. Themost accurate
hyperfine values, with a relative error margin of 6 × 10−3%, together with
nuclear spin positions are provided for data set III23. These high-precision
measurements allow us tomake a reliable assessment of the error bar of the
theoretical values. Considering the 29 most accurately measured and
positioned nuclear spins, we obtain a MAPE of 1.79%. In Fig. 3, we also
depicted the ARE of hyperfine values obtained with the PBE functional. As
can be seen, theHSE06 functional consistently improves on the PBE values,

especially for nuclear spins found close to the NV center. We also note that
the use of accurate DFT spin density has high relevance. Considering point
spin density approximation, i.e., σ(r) = δ(r− r0) where r0 is the center of the
NVcenter,we obtain amean absolute relative error (MARE)of 76% for data
set III (see Supplementary Fig. S1).

Finally, we investigate the source of residual errors and possible further
measures to improve the computed hyperfine tensors. For this study, we use
data set III. First of all, it is notable that the mean signed relative error
(MSRE) of −0.12% is significantly smaller than the MARE of 1.79%, sug-
gesting that there are no large systematic errors and the discrepancies may
be related tonumeral uncertainties.Next, we plot theMAREas a function of
the Fermi contact term, see Fig. 4, and as a function of the distance, see
Supplementary Fig. S2. There seems to be a correlation between the largest
errors and the value of the Fermi contact term. Due to the distance
dependence of the Fermi contact term, the MARE seems to decay with the
distance of the nuclear spins, see Supplementary Fig. S2. It should be noted;
however, that large errors are also obtained for a few nuclear spins that are
beyond the boundaries of the supercell, where we explicitly neglect the
Fermi contact terms. Here, the neglect of the Fermi contact termmay be the
source of the error. To attempt to reduce the errors, we tune the mixing
parameter α of the HSE functional and study the variation of the MARE
obtained for data set III, see Supplementary Fig. S3. By reducing themixing
parameter from 0.25 to 0.2, we obtain a slightly decreasedMARE of 1.69%,
although an enlarged MSRE of −0.32%. These results indicate that tuning
the functional’s inner parameters may lead to an improved description of
the spin density, which in turn can reduce the relative error between theory
and experiments. Overall, the hyperfine values may be further improved by
enhancing numerical accuracy for the core/Fermi contact contribution and
by fine-tuning the function.

In summary, we demonstrated in this article that high-accuracy, finite-
size effect-free hyperfine tensors can be calculated using an improved
integration method. Compared to the industry standard VASP code, we
could achieve a ~ 100-fold reduction of theMARE of the theoretical values.
Having more experimental data of high precision and further improved
numerical accuracy in larger supercells may help to obtain superior theo-
retical hyperfine data compared to what has been presented here. The
obtained and potentially improved future data is available online [34]. The
provided data can be used for high-precision simulation of the NV center-
nuclear spin few-body quantum systems as well as positioning nuclear spin
around the NV center.

Methods
For VASP calculations, we use a 512-atom and a 1728-atom supercell of
diamond including a singleNVcenter in themiddle of the supercell. For the
calculations, we use the Perdew–Burke–Ernzerhof (PBE)37 and the Heyd-
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Scuseria-Ernzerhof (HSE06)32,33 exchange-correlation functional, 500 eV
cutoff energy of the plane-wave basis set, Γ-point sampling of the Brillouin
zone, and high convergence criteria (PREC =Accurate). The energy
threshold for the self-consistent field calculations is set to 10−6 eV. The
structure of the defect is optimized as far as the largest force is smaller than
10−3 eV/Å. For the real-space hyperfine tensor calculations, we use the
convergent spin density of the 1728-atom supercell model defined on a fine
real-space grid of 0.036 Å (a0/600) spacing obtained by VASP.

Data availability
The calculated hyperfine tensors for all lattice sites within 30 Å distance
from the NV center are available at https://ivadygroup.elte.hu/hyperfine.

Code availability
The real-space integration code that post-processes VASP outputs is
available at https://ivadygroup.elte.hu/hyperfine.

Received: 30 December 2023; Accepted: 18 May 2024;
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