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Higher-order topological transport
protected by boundary Chern number
in phononic crystals
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Topological pumps enable robust transports of topological states when the system parameters are
varied in a cyclic process. The reported topological pumps are protected by the bulk topology.
However, the exploration of topological pump protected by other mechanism remains elusive. Here
we report our prediction and observation of higher-order topological pumps linked to the boundary
topology, i.e., boundary Chern number. Based on such topological pump, the higher-order transports
between the topological states of different dimensions (e.g., corner-edge-corner) are directly
observed by spatial scanning of the sound field, and their topological robustness is observed in the
paths with defects. Furthermore, modulated by the fundamental corner-edge-corner topological
transport, topological splitting effects are unambiguously observed in our acoustic experiments. Our
findings not only advance the research of the higher-order topological transports, but also offer good
platforms to design unconventional devices.

Higher-order topological insulators with robust unconventional states at
their boundaries have been one of the most active research directions in
condensedmatter systems1–9 and have been rapidly extended to the classical
systems10–22. An nth-order topological insulator in d dimensions protects
topological states at its (d � n)-dimensional boundaries, such as corners of
two-dimensional (2D) systems and hinges of three-dimensional (3D) sys-
tems, in addition to the (d � 1)-dimensional topological boundary states.
The reported works show that the hierarchical topological boundary states
of higher-order topological insulators can be excited independently and
selectively since the states areusually decoupled inboth real andmomentum
spaces and belong to different energy ranges. The higher-order topological
boundary states (e.g., corner and hinge states) have been used to design
peculiar devices, such as topological lasing23,24 and interferometer25,26.

Adiabatic quantum pump, proposed in the dynamically periodic sys-
tems in one dimension by Thouless firstly, is a quantized transport process
linked to the Chern numbers27. Subsequently, such topological pumps have
been investigated in various systems28–38, such as ultracold atom29–31,
photonic32,33, and acoustic systems34. Basedon the topological pumpsof bulk
states, a variety of nontrivial physical effects havebeenobserved, such as spin
pumping35, nonlinear Thouless pumping36, and non-Abelian Thouless
pumping37,38. In addition to the quantized topological bulk pumps, a gen-
eralization of adiabatic pump physics to the topological insulators gives the

topological pumps of edge states, which have been realized in diverse
platforms39–46.

Most recently, a higher-order topological pump, which is a combina-
tion of adiabatic pump physics and higher-order topology, has opened a
new direction for topological phases28,47–53. Essentially, the higher-order
topological pump is a dynamical realization of the higher-order topology1,2.
Based on higher-order topological pumps, various interesting higher-order
topological transport phenomena, e.g., corner-bulk-corner transport, which
cannot be implemented in the conventional higher-order topological
insulators, have been observed47,48,51–53. Note that the reported higher-order
topological pumps are protected by bulk topologies, such as the bulk Chern
number47,48.

In this work, we propose a periodically evolved tight-binding model
(TBM) to implement the higher-order topological pump of corner states
protected by the boundary Chern number, which is related to the adiabatic
evolution of the bulk quadrupole moment. The higher-order topological
pump indicates that corner states, crossing the edge band gap, can be used to
adiabatically transport energy from one corner of the structure to its
opposite corner through the edge states. We implement this model in
phononic crystals modulated in their parameter dimensions and use it to
demonstrate in an experiment that sound is transported as TBM predicted.
The robustness of topological corner-edge-corner sound transport is
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identified. Furthermore, we have shown that the evolution path can be
arbitrarily designed. As such, we can realize some interesting topological
sound transports, e.g., topological splitting effects of sound, which are
conclusively identified by our acoustic experiments.

Results
Tight-binding models
We first present a TBM for a 2D insulatorwhose properties aremodulated in
parameterdimension, as shown inFig. 1a.Eachunit cell includes four spinless
orbitals (labeled as 1-4) with intra-cell couplings tx θz

� � ¼ 0:5� 0:3 cos θz ,
ty ¼ 0:2, inter-cell couplingswx θz

� � ¼ 0:5þ 0:3 cos θz ,wy ¼ 0:8, andon-
site energies Va θz

� � ¼ �Vb θz
� � ¼ �0:1 sin θz . Note that the parameter

θz , ranging from 0 to 2π, is a closed one-dimensional parameter space. The
Hamiltonian of TBM can be described by

H kx; ky; θz
� �

¼wx sin kxΓ4 þ tx þ wx cos kx
� �

Γ3 þ wy sin kyΓ2

þ ty þ w
y
cos ky

� �
Γ1 � VaΓ0;

ð1Þ

where Γ0, Γ1;2;3, and Γ4 are the direct product of two Pauli matrices τ̂ and σ̂,
i.e., Γ0 ¼ τ0σz , Γ1;2;3 ¼ τx;y;zσx, and Γ4 ¼ τ0σy . Obviously, at θz ¼ 0, the
2D system exhibits a topological insulator with bulk quadrupole moment
qxy ¼ 0:5. Modulated by θz , the bulk quadrupole moment has the quan-
tized value of 0:5 (0) at θz ¼ 0; 2π (θz ¼ π) and loses its quantization away
from those θz values, see the data shown in Supplementary Fig. 1. Naturally,
as θz goes from 0 to 2π, the 2D system changes from the quadrupole
topological insulator to topological trivial insulator and back to quadrupole
topological insulator, which is accompanied by no bulk band gap closure
(see Supplementary Fig. 1). It is worth pointing out that the parameter θz
together with the wave vectors kx and ky form a synthetic 3D parameter
space, indicating that themodel can be viewed as a synthetic 3D system.We
have checked that this model carries zero bulk Chern number in the syn-
thetic 3D parameter space (see Supplementary Note 1).

Thenwe consider the θz evolutionof edgeproperties of 2D system.The
strips in the consideration contain finite complete unit cells, where their
θz-dependent projected dispersions simulated at ky ¼ π and kx ¼ π are
shown in Fig. 1c. It can be observed that the edges of both x and y directions
present gapped states in θz space, see Supplementary Fig. 1 for more data.
Note that the evolutions of y directional edge states in θz space exhibit
nontrivial Chern numberCE ¼ �1 (see SupplementaryNote 1), referred to
as boundary Chern numbers. Essentially, the non-zero boundary Chern
number originates from the quantized edge dipole pumping due to the
adiabatic evolution of the bulk quadrupole moment, see Supplementary
Fig. 2 formore details. The above analysis demonstrates that our system is a
higher-order topological insulator with a boundary Chern number in the
synthetic 3D parameter space.

When the system is applied with the open boundaries in both x and y
directions, the nonzeroboundaryChernnumber guarantees the existence of
gapless topological states (i.e., corner states). This is further confirmedby the
θz-dependent projected dispersions of the finite 2D system, as shown in
Fig. 1d. Clearly, the gapless corner states traverse the gap between the bands
of the bottom and top edges. Considering a process in which θz con-
tinuously varies from 0 to 2π in a very slow evolution speed, a topological
pump between corner states will be achieved. To be specific, as θz increases
from 0 to 2π, the corner state is transported from the right bottom (left top)
corner to the left bottom (right top) corner and back to itself through the
bottom (top) edge state. This higher-order topological pump indicates that
corner states can be used to adiabatically transport energy from one corner
of the structure to its opposite one. However, such topological pump is
unfavorable for experimental observations, since it requires a long evolution
path (i.e., varying θz from 0 to 2π) and thenmakes energy transmission not
fast enough toovercome thedissipationbefore it is pumped fromone corner
to the other.

To achieve a topological corner pump in a short evolutionpath,we also
consider a topological phase, which can be constructed by interchanging the
sites of the couplings tx and wx , and changing the on-site energies of four

Fig. 1 | Tight-binding models (TBMs). a, b Sketch of the TBM for phases I and II,
respectively. c Top: θz evolution of the projected dispersion for a supercell of phase I
that is periodic in the y direction but has 15 unit cells in the x direction, simulated at
ky ¼ π. Bottom: The same as top panel, but for a supercell of phase I that is periodic
in the x direction but has 15 unit cells in the y direction, simulated at kx ¼ π. d θz
evolution of the projected dispersion for a 2D finite system of phase I that has 15 unit
cells in both x and y directions, where gapless corner states (red and magenta dots,
black and green stars) appear in the common band gap of the bulk and edge states. In

c and d, the cyan (blue) dots are the twofold degenerate dots, indicating the left and
right (top and bottom) edge states, and the olive dots represent the bulk states.
eTypical eigenfields of the corner states in d. f, g are the same as c and d, respectively,
but for phase II. h 2D finite system constructed by placing phases I and II together.
i The same as d, but for the structure shown in h. j 2D structure constructed by
cutting the structure shown inh along the red dashed line. kThe same as i, but for the
structure in j.
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sites. The new unit cell is shown in Fig. 1b. Hereafter, we denote the topo-
logical phases in Fig. 1a, b as phases I and II, respectively. For the same θz
evolution, the bulk quadrupole moment of phase II has the quantized value
of 0 (0:5) at θz ¼ 0; 2π (θz ¼ π) and loses its quantization away from those
θz values (Supplementary Fig. 3). Similar to the phase I, the evolution of the
bulk quadrupole moment of phase II also gives rise to a quantized edge
dipole pumping captured by a nonzero Chern number CE ¼ �1, see
Supplementary Note 2. All of those lead to different band evolutions for
phase II, as shown in Fig. 1f, g. Compared to the data shown in Fig. 1c, d, the
gapped edge states of x direction and gapless corner states appear in the
range of 0:5π<θz<1:5π, while the gapped edge states of y direction appear in
whole range of θz . By placing these two phases together (Fig. 1h), a new type
of the higher-order topological pump is achieved, where the couplings t1
(red) and t2 (magenta) at the boundary between the phases I and II are
designed as t1 ¼ �t2 ¼ wx . As shown inFig. 1i, as θz progresses, the corner
states are pumped from the right bottom (top) corner of phase I to the left
bottom (top) corner of phase II and back to itself through the bottom (top)
edge states. If we cut the finite 2D systemalong the red dashed line (Fig. 1h),
higher-order topological pumpbetween the top corner states of phases I and
II vanishes, as demonstrated by the dispersion shown in Fig. 1k. A similar
phenomenon can be observed for the bottom corner states by cutting the
finite 2D system along the blue dashed line in Fig. 1h. With the dispersion
shown in Fig. 1k, we can realize a higher-order topological corner transport
in short evolution path, such as varying the parameter θz from 0:25π to
0:75π, paving a way for high-efficiency energy transmission. Note that the

evolution functions of the parameters and the couplings t1 and t2 of the
system are not unique, and such higher-order topological pump occurs as
long as the evolution path does not close the band gap, see Supplementary
Note 3 and Supplementary Fig. 4 for more details.

Acoustic realizations
The above evolutions of the TBMs can be directly implemented in an acoustic
system consisting of a cavity-tube structure. As sketched in Fig. 2a, each
acoustic unit cell of phase I consists of four air-filled cavities (gray and olive)
coupled with narrow tubes (colored). The acoustic system has a square lattice
and its lattice constant is a ¼ 10cm. The θz-dependent physics discussed
above is realized by the structure parameters lx θz

� � ¼ n0 � δ0 cos θz ,
sx θz
� � ¼ n0 þ δ0 cos θz , wa θz

� � ¼ n1 þ δ1 sin θz , and wb θz
� � ¼ n1 � δ1

sin θz , where n0 ¼ 0:5 cm, n1 ¼ 0:4 cm, δ0 ¼ 0:3 cm, and δ1 ¼ 0:04 cm,
and other parameters can be found in SupplementaryNote 4, Supplementary
Figs. 5 and 6. Similarly, the unit cell of phase II can be constructed by inter-
changing the lx and sx , and changing the sizes of four cavities. We have
checked that the bulk and boundary properties of phases I and II are in good
agreement with the TBM predictions, where topological gapless corner states
appear in the band gaps of the corresponding systems, see Supplementary
Fig. 5. To implement the topological corner pump shown in Fig. 1k, we
consider a supercell formed by assembling acoustic phases I and II together
with the same boundary truncations as those shown in Fig. 1j. The calculated
θz-dependent band structure is shown in Fig. 2b (Methods). As expected, a
topological pumpbetween the bottom corner states of acoustic phases I and II
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Fig. 2 | Acoustic realizations. a Acoustic unit cell of phase I. b θz evolution of the
projected dispersion for a supercell that has finite size of 14:5a � 14:5a in x-y plane,
where gapless corner states (red andmagenta dots) appear in the common band gap
of the bulk (olive dots) and edge states (green dots). The edge truncations of the 2D
acoustic supercell are the same as those used inTBM (Fig. 1j). cThe same asb, but for
the acoustic supercell with interlayer couplers (purple in f), where supercell has the
size of 3:5a � 3:5a in x-y plane. During the calculation, the periodic Bloch boundary
condition is applied in the z direction. The topological pump of corner states is
represented by blue surfaces, whereas the bulk bands are labeled by olive surfaces.

d The pumping curve of states at f ¼ 4:16 kHz, corresponding to the intersection
illustrated by the blue horizontal sheet in c. e Pressure field distributions of the
topological states from right bottom corner to left bottom corner localization with
the change of the pumping parameter θz from 0:25π to 0:75π along the z direction.
f Numerical demonstration of topological corner-edge-corner transport at
f ¼ 4:16 kHz. Inset shows the details of the cavity with interlayer couplers (purple).
gThe same as f, but for the defect system. Inset presents the details of the defects. The
cyan dots and black arrows in f, g represent the point sources and the propagations of
sound, respectively.

https://doi.org/10.1038/s42005-024-01681-y Article

Communications Physics |           (2024) 7:193 3



appears. Note that the spectral spacings between the pumping (red and
magenta dots connected by the green dots) and edge state (green dots) bands
exhibit closures at θz ¼ 0:5π and 1:5π, which is unfavorable for accessing the
adiabatic condition in the experiments54–56. This dilemma can be released by
scaling the size of the finite 2D system, where the finite spectral spacings at
θz ¼ 0:5π and 1:5π increase with decreasing size and a large spectral spacing
allows for a faster pumping process55,56, see Supplementary Note 5 for more
details. In this context, we choose the 2D system with size of 3:5a � 3:5a for
the acoustic simulations and experimental observations below.

We now consider the higher-order sound transports based on the
topological pumpsbetweenacoustic corner states. The topological pumpsof
corner states can be realized by stacking the θz-dependent 2D acoustic
systems along its vertical dimension, i.e., the z direction, with interlayer
couplings47. Here, the interlayer couplings in the z direction are realized by
the uniform vertical tubes (purple in Fig. 2f), where the coupling strength
can be tuned by the location and size of the tubes. Following the ref. 47, with
such stacking procedure, the pumping curves of corner states are given by
the spectrum of the collective states of stacked 3D crystal shown in Fig. 2c
(Methods), which is a function of the pumping parameter θz and kz . The
spectrum reveals the existence of the gapped edge states (green surfaces)
inside the band gap of bulk states (olive surfaces) and the existence of the
gapless corner states (red and magenta surfaces) within the gap of edge
states. Figure 2d shows the pumping curve of states at f ¼ 4:16 kHz, which
is chosen for the intersection of the dispersion surface of corner states with
the plane at frequency f ¼ 4:16 kHz (Fig. 2c). The spatial profile evolutions
of the states along the pumping curve are shown in Fig. 2e, which confirm
that sound is indeed pumped from one corner to the other. Concretely, as
parameter θz increases from 0:25π to 0:75π, the state localized at the right
bottomcorner becomes the edge state and is further transformed into a state
localized at the left bottom corner.

To elucidate the topological pump-based corner-edge-corner sound
transport, a 3D sample constructed by stacking the 2D systemswith discrete
θz values is needed. Naturally, a sample with more 2D layers (i.e., variation
Δθz from one layer to another is in small values) will be closer to the
adiabatic topological pump47,48.Here,we consider a 13-layer sample (Fig. 2f)
within the adiabatic regime (Supplementary Fig. 7) to demonstrate the
topological corner transport. The 2D systems of the sample are in the range
from 0:25π to 0:75π and the variation of θz is Δθz ¼ 0:042π, see Supple-
mentary Fig. 6 formore details. As shown in Fig. 2f, the soundwave, excited
by the sound source located at the site marked by a cyan dot, does evolve
fromthe right bottomcorner to the left bottomcorner as onewalks along the
stacking direction. It is of interest to evaluate the extent of the topological
robustness of the higher-order sound transports in such conditions. To
evaluate that, four hard cylinders with length of l ¼ 2 cm and diameter of
d ¼ 0:35 cm are inserted into the four cavities of the bottom edge of the
seventh layer of the sample (inset of Fig. 2g) and the topological corner-
edge-corner pump in thedefected structure is simulated, as shown inFig. 2g.
Comparing performance with the system without defects (Fig. 2f), the
corner states can be smoothly pumped in spite of the presence of defects.
This confirms that the pump we designed is robust against the reflections
from defects. We have checked that a similar fast pumping effect can be
observed in a non-adiabatic sample, see Supplementary Fig. 8.

Experimental observations
Figure 3a presents the experimental sample which has the same structure in
Fig. 2f. In the experiment, the acoustic wave is excited by a point sound
source of f ¼ 4:16 kHz at the position marked by a cyan dot, and the
pressure distributions aremeasured by themicrophone, layer by layer along
the stacking direction (Methods). Figure 3d presents the experimental data,
which captures well the simulation results shown in Fig. 2f. It shows that the
sound signal indeed emerges from the right bottom corner and turns to the
left bottom corner through the edge of 2D layers, along which the pressure
field is strongly localized.Nowwe turn to confirm the topological robustness
of such sound transport against defects. The experimental sample has a
geometry employed in Fig. 2g. As shownmore clearly in Fig. 3c, the defect is

constructed by inserting four hard cylinders into the four cavities of the
bottomedgeof the seventh layer of the sample.The topological corner-edge-
corner transport in the defected structure is experimentally measured. As
shown inFig. 3e, the experimental data agreewellwith the simulation results
(Fig. 2g). Compared with the performance in the system without defects
(Fig. 3d), the corner states can be smoothly pumped despite the presence of
defects. This confirms the weak influence of the defects on the topological
pump of acoustic corner states.

Based on the basic topological corner-edge-corner transport demon-
strated above, we can realize some intriguing sound transports, such as
topological splitting effects and topological abnormal reflections of sound.
Here, the sample in Fig. 3a is referred to as θ block. To implement the sound
splitting effects, we construct a 25-layer sample by mirror stacking two θ
blocks in the z direction, as shown in Fig. 4a, b. To map out pressure
distributions of the sound split, we place a point source at the sitemarkedby
the green dot. As shown in Fig. 4d, themeasured data exhibit that the sound
signal splits into two directions and eventually reaches two-end corners,
showing a perfect symmetric splitting effect and agreeing well with the
simulated results in Fig. 4c (see also Supplementary Movie 1 for the beam
splitting effect). However, if we put the point source at the site marked by a
cyan dot (Fig. 4b), a topological abnormal reflection of sound is observed, as
demonstrated by the numerical data shown in Supplementary Fig. 10 and
Supplementary Movie 2. Similar beam splitting and abnormal reflection
effects can also be observed in a 9-layer non-adiabatic sample, as shown in
Supplementary Fig. 8 and Supplementary Movies 3 and 4. Moreover, by
modulating the evolution trajectory, other interesting topological sound
transports can be observed, such as asymmetric topological sound splitting
effect and chiral sound transmission (see SupplementaryNote 6). Thus, our
design, based on the higher-order topological pumps, provides a unique
avenue for the manipulation of acoustic waves.

Conclusions
In summary, we have experimentally demonstrated higher-order topolo-
gical sound transports in modulated acoustic crystals through topological
corner-edge-corner pumps. The topological corner pump is protected by
the nonzero boundary Chern number, which originates from the quantized
edge dipole pumping induced by the adiabatic evolution of the bulk
quadrupole moment. Hence, the higher-order topological corner pump is
fundamentally different from those reported previously, which are typically
protected by bulk Chern numbers or bulk dipolemoment47–53. Based on the
higher-order topological pump, we have demonstrated that sound waves
can be guided along an arbitrarily designed evolution path in 3D space,
forming interesting transport phenomena, such as topological splitting
effects. Physically, by dimensionally extending the proposed system from
two spatial and one parameter dimensions to three spatial dimensions, our
system is a synthetic 3D higher-order topological insulator with a boundary
Chern number. The corner states during the topological pump nowmap to
the chiral hinge states. Such chiral hinge states have not yet been directly
observed in any artificial systems, although the theoretical realizations of
chiral hinge states were proposed2,3,57,58. Thus, our results are dimensionally
equivalent to the observation of chiral hinge states in a synthetic 3D higher-
order topological insulator. Our findings pave the way for the study of
higher-order topological physics and have potential applications in flexible
energy transport and wave manipulation.

Methods
Simulations
All numerical simulations are performed by COMSOL Multiphysics, a
commercial finite-element solver package. The resin used for sample fab-
rication is modeled as acoustically rigid for the airborne sound. The simu-
lated band structure in Fig. 2b is calculated by a θz 2D finite acoustic
supercell of size 14:5a � 14:5a. The acoustic supercell used to calculate the
dispersion in Fig. 2c has the size of 3:5a � 3:5a in x-y plane and interlayer
couplers (purple in Fig. 2f and Supplementary Fig. 6), where the periodic
Bloch boundary condition is applied in the z direction. The pumping curve
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measured data of each layer are normalized by the corresponding maximum value.
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the propagations of sound.
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Fig. 3 | Experimental observations of topological corner-edge-corner transports.
a An image of the experimental sample. Circular holes are perforated in cavities for
inserting the sound probe or point sound source, which are sealed with plugs when
not in use. bZoom-in photograph for the areamarked by the red box in a. cThe same
as b, but for the sample with defects (green dots). Insets give the details of the normal
plug (orange box) and plug (green box) with the hard cylinder. The hard cylinder (as
a defect) has the same size as that in Fig. 2g, where l ¼ 2 cm and d ¼ 0:35 cm.

dMeasured pressure fields (f ¼ 4:16 kHz) of the sample. Note that the sound signal
attenuates as its propagation due to the inevitable absorption. For the clarity of
demonstration, the data of each layer are normalized by the corresponding max-
imum value. e The same as d, but for the sample with defects. The 2D presentations
of the data of d and e can be found in Supplementary Fig. 9. The cyan circles and
black arrows in d and e represent the point sources and the propagations of sound,
respectively.
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in Fig. 2d is obtained by intersecting the dispersion surface of cornermodes
with the blue plane at frequency f ¼ 4:16 kHz in Fig. 2c. The pressure field
distributions in Figs. 2f, g, and 4c are simulated for finite-sized samples.

Experiments
Experimental samples are fabricated by 3D printing with a fabrication error
of ~0:1mm. The circular holes are perforated on cavities for inserting the
point sound sources or sound probes. In the experiment, all the samples are
surrounded by absorbers to eliminate boundary reflections. To obtain the
measured pressure field distributions in Figs. 3d, e and 4d, sound waves are
launched from a point source and detected hole-by-hole through a micro-
phone of diameter ~1:0mm (B&K Type 4182). The amplitudes of the
pressure fields are recorded and frequency-resolved by a multi-analyzer
system (B&K Type 3560B).

Data availability
The data that support the plots in this work are available from the corre-
sponding author upon reasonable request.

Code availability
Simulations in this work are all performed using the acoustic module of
COMSOL MULTIPHYSICS. All related codes can be built with the
instructions in the “Methods” section. The codes can be accessed from the
corresponding author upon reasonable request.
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