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Experimental observation of violent
relaxation

Check for updates
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Structures in the Universe, ranging from globular clusters to entire galaxies, are not described by
standard statistical mechanics at equilibrium. Instead, they are formed through a process of a very
different nature, called violent relaxation that is now known to be possible also in other systems that
exhibit long-range interactions. This mechanism was proposed theoretically and modelled
numerically, but never directly observed in any physical system. Here, we develop a table-top
experiment allowing us to directly observe violent relaxation in an optical setting. The resulting optical
dynamics can also be likened to the formation of an analogue 2D-galaxy through the analogy of the
underlying equations, where we can control a range of parameters, including the nonlocal interacting
potential, allowing us to emulate the physics of gravitational quantum and classical dark matter
models.

Structures of the observableUniverse, such as galaxies and globular clusters,
appear to be macroscopically stationary but are not at thermodynamic
equilibrium, i.e., the distribution of the velocity of their stars is not
Maxwellian1. Indeed, Chandrasekhar pointed out in 1941 that the time
necessary for these objects to reach thermal equilibrium is actually much
larger than their age2. This has been confirmed by observations determining
that these astrophysical structures are indeed far from thermal equilibrium3.
In 1967 Lynden-Bell proposed amechanism, violent relaxation that leads to
the formation of these out-of-equilibrium structures, called quasi-stationary
states. These structures evolve towards the quasi-stationary state on a time
much faster than that required for full thermodynamic equilibrium4.
Importantly, it has been subsequently understood that this mechanism is
generic inHamiltonian systemswith a long range interactingpotential, i.e., a
potential that is not integrable as a result of its extension over large scales5.
This phenomenon is similar also towhat arises in plasmas subject to Landau
damping, in which there is an exchange of energy between the electro-
magnetic wave generated by the particles of the plasma and the particles
themselves6. Landau damping has been observed in plasma experiments7–13

and in space plasma turbulence14. Contrary to Landau damping, violent
relaxation is more elusive and has not been observed to date, neither in a
repeatable or controllable experiment, nor in situ. Indeed, experimental
observation of the dynamics of the formation of quasi-stationary states via
violent relaxation is hinderedmostly for two reasons. First, there are systems

in which it is potentially present but it is destroyed by the stochastic noise
generally present in these systems. An example of such systems are cold
atoms confined in optical traps, in which the noise is produced by the
interaction of the photons of the lasers with the atoms15,16. Second, there are
systems in which violent relaxation is actually present, but the associated
timescales are too large to observe it. This is the case of astrophysical systems
such as galaxies, independently if it is constituted by classical (non-quan-
tum) darkmatter particles17–20, or composed by quantummatter commonly
called fuzzy dark matter21–25. In these systems violent relaxation occurs on
time scales of the order of millions of years1.

Violent relaxation has however, been studied numerically for example,
by simulating classical N-body systems with nonlocal (e.g., gravitational)
interactions that are governed by Vlasov-Poisson equations26–29. Whilst
these simulations provide confirmation of the process proposed by Lynden-
Bell, they provide no guidance of how to observe violent relaxation
experimentally.

Herewe report the experimental observation of violent relaxation in an
optical setting where we observe the evolution of an optical beam in the
presence of a self-generated long-range interaction that leads to phase-
mixing in the presence of a varying potential and final relaxation towards a
quasi-stationary state. Furthermore, the observed optical dynamics can be
viewed as an analogue of (dark matter) galaxy formation via violent
relaxation. Indeed the connecting point is the underlying Vlasov-Poisson
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equation—this describes the dynamics and violent relaxation of an N-body
system of self-gravitating particles of dark matter30,31. The Vlasov-Poisson
equation is also the semi-classical limit of the quantum description of dark-
matter evolution based on the Newton-Schrödinger equation (NSE)—the
latter therefore also describes the evolution of classical dark matter32 and
importantly, it is also the same equation that describes our optical experi-
ments. The NSE has been experimentally realised in nonlinear optical
experiments that have been used to probe gravitational lensing, tidal forces
and analogue quantum processes such as Boson star evolution33,34. By
choosing the appropriate system parameters, we show that it is possible to
experimentally observe violent relaxation and the formation of a quasi-
stationary state in the form of a table-top galaxy that bears a close resem-
blance to the result of an N-body numerical simulation.

Results
Self-gravitating systems
The temporal evolution of self-gravitating particles of dark matter, of mass
m, defined by a wavefunction ψ(r, t), is described in 3D by the
Newton–Schrödinger equations (NSE):

i_∂tψ þ _2

2m
∇2ψ þmϕψ ¼ 0 ð1aÞ

∇2ϕ ¼ �4πGjψj2; ð1bÞ

where ∣ψ∣2 is themass density,G the gravitational constant and∇2 the three-
dimensional (3D) Laplacian. The gravitational potential,ϕ, generated by the
mass distribution itself, depends on the constant G and the mass density.
When the system is in the semi-classical regime, which corresponds to
ℏ/m≪ 1, the process of violent relaxation can be observed. This process
leads the system towards its quasi-stationary state1.

The features of violent relaxation
Violent relaxation consists in the evolution of the energy distribution due to
the variation in timeof thepotentialϕ(r, t). The evolution towards thequasi-
stationary state is accompanied by phase mixing due to the evolution of the
wavefunction in the non-harmonic potential ϕ(r, t). We underline that
mixing alone is a relaxation process by itself i.e., when violent relaxation is
present, mixing is also generically present, whilst the opposite is not gen-
erally true as mixing may occur in the absence of a time-varying potential.
Indeed, the concomitant presence of mixing and a time-varying potential
leads to significantly accelerated and abrupt relaxation dynamics, hence the
naming ‘violent’ (see also Supplementary Note 3). Therefore, any demon-
stration of violent relaxation requires as aminimum, the presence of both of
these ingredients.

In the semi-classical regime, the quasi-stationary solution for violent
relaxation process corresponds to the formation of an oscillating solitonic
core in the center of the system (defined as the ground state of Eq. (1),35–37)
surrounded by the stationary solution of the classical Vlasov-Poisson
equation, which is also the semi-classical limit of the NSE (i.e., the limit
ℏ/m→ 0 of Eq. (1))22,32. In order to be in the appropriate regime, the soliton
should to be small compared to the size of the whole system. When this
happens, the system can be considered to be sufficiently semi-classical
(ℏ/m→ 0) to observe violent relaxation. Therefore, we monitor the degree
of classicality with the parameter χ = ξ/s, where ξ is the characteristic size of
the soliton. ξ can be estimated by calculating the scale for which the kinetic
and potential energies are of the same order of magnitude, giving ξ = ℏ2/
(8πGMm2) in the case of a 3D gravitational system and whereM is the total
mass, and s the size of the whole system. The goal then is (differently from
previous studies looking at soliton evolution) to study the behaviour of the
broad semi-classical background solution, corresponding to the galaxy, in
the potential generated by the total field. In order to do this, we take
advantage of the formal identity of Eq. (1) to that describing our optical
system.

Optical system
The optical system is based on a slab of glass or crystal that exhibits strong
thermo-optical nonlinearity. Briefly,when an intense laser beampropagates
inside the crystal, it induces a nonlocal interaction (heating) of themedium.
This heat profile in turn acts on the laser beamwith a focusing action—this
therefore can emulate for example the nonlocal self-attractive gravitational
force. In the paraxial approximation, the propagation of a monochromatic
laser beam with amplitude, Eðr?; zÞ, in a thermally focusing nonlinear
medium is described by33,34,38,39:

i∂zE þ 1
2k0nb

∇ 2
?E þ k0ΔnE þ i α

2 E ¼ 0;

∇ 2
?Δn ¼ � αβ

κ jEðr?; zÞj2;
ð2Þ

where r⊥ = (x, y) is the two-dimensional (2D) position in the plane
transverse to the propagation direction z. The operator∇ 2

? is the transverse
2D Laplacian, k0 ¼ 2π

λ the wave-number of the incident laser with nb the
background refractive index of the medium. The non-local nonlinear
refractive index change, Δn, is induced by the beam itself heating the
medium. β is the medium thermo-optic coefficient, κ its thermal
conductivity and α its absorption coefficient. The last term of Eq. (2)
accounts for the absorption in the crystal and in our parameter space, has
little effect on the violent relaxation dynamics40 (see discussion in
Supplementary Note 6). We hence neglect it in the following discussion.

Provided that z plays the role of time t, the similarity between Eqs. (1)
and (2) underpins the opportunity to directly observe 2D violent relaxation
in a laboratory experiment. Especially, the presence of violent relaxation is
independentof thedimensionof space, andoccurs also in1D41 and, as inour
case, in 2D42. The main difference between the 2D optical and 3D gravita-
tional systems is the shape of the potential being logarithmic in the 2D
system.However, themechanism that governs the physics in both systems is
the same, i.e., modes or particles that live in a confining potential that is
evolving in time canundergomodemixing andviolent relaxation, leading to
the formation of a quasi-stationary state. The optical equivalent of the
above-mentioned semi-classical regime is obtained when χ = ξ/s≪ 1. In the
optical case, ξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
znl=ð2k0nbÞ

p
is the soliton size, defined as the transverse

length scale for which both the linear and nonlinear effects are of the same
order. znl = κ/(αβk0P) is the longitudinal length over which the effect of the
nonlinear term becomes substantial and P ¼ R

dr?∣Eðr?; zÞ∣2 is the power
of the laser beam. The initial beam with transverse width s dictates the
propagation regime of the system. We note that we do not work in the
soliton-dominated regimes studied in the past. There, the waist s was
typically chosen to be close to the soliton waist ξ, so as to generate as little
background (i.e., surrounding radiation that is not converted into the soli-
ton) as possible38,43. Instead, the present work relies on the formation of a
significant, surrounding ‘background’, i.e., the analogue galaxy, hence
with s≪ ξ.

We define the following spatially dependent quantity for the optical
system

Uðr?; zÞ ¼
∣∇?Eðr?; zÞ∣2
2k∣Eðr?; zÞ∣2

� k0Δnðr?; zÞ; ð3Þ

where k = k0nb. The first term is a kinetic (linear) energy density Kðr?; zÞ,
the second term is a potential (nonlinear) energy density Vðr?; zÞ. Uðr?; zÞ
is the energy needed to add or remove a particle from the system and is
therefore effectively a spatially dependent chemical potential. Particles will
tend to reduce the free energy of the system by moving from high to lower
chemical potential regions44 and therefore, in keeping with the N-body
analogy,Uðr?; zÞ quantifies the redistribution of particles and energy due to
violent relaxation.

In order to then characterise and quantify violent relaxation in optical
experiments, we consider two quantities: firstly, we define the evolution of
the distribution of the chemical potential density νðUÞ of the optical field E
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(see Supplementary Note 1 for details), that captures the main signature of
the violent relaxation process, i.e., the change in the distribution of the
energy due to the variation in the potential Vðr?; zÞ ¼ �k0Δnðr?; zÞ
along z. Secondly, we consider the Wigner transform45 F(r⊥, k⊥, z) of the
optical field E, i.e., the density of probability to find a portion of the optical
beam at the position r⊥with wavevector k⊥. We use the evolution of Fwith
respect of z to study the mixing of the phase-space.

Experimental setup
Figure 1a shows a schematic representation of the experiment. A
continuous-wave laser beamwithaGaussianprofile andwavelengthλ = 532
nmpropagates in a thermo-opticalnonlinearmediummadeof threealigned
identical slabs of lead-doped glass for a total length L = 30 cm, represented
here as a single slab.

The beam width s = 350 μm at the sample input facet is chosen
experimentally by a system of lenses such that χ ¼ 2:3 × 10�2=

ffiffiffi
P

p
, with P

measured in Watts and is of order 10−2≪ 1 over the full evolution. This
therefore ensures that we satisfy the semi-classical regime requirement.

The beam at the output facet of the medium is imaged onto a camera,
where we collect its interference with a reference beam. By using the Off-
Axis Digital Holography technique46, we measure the spatial distribution of
both the intensity and the phase of the output field. To explore the full
dynamics of the laser beam, we tune the initial power from 0.2W to 5.5W.
The insets in Fig. 1a show the experimental beam intensity profile at the
input and output crystal facets for an input power P = 5 W.

Experimentally, it is only possible to access the field at the output
facet of the sample and not the full nonlinear propagation inside the
material.

However, there is a direct mapping between the power P and the
propagation length z, when χ≪ 1 and the beam initial phase is negligible
(see Supplementary Notes 1 and 5). This mapping allows us to follow the z-
evolution of the amplitude E by varying the input power of the beam and
measuring the intensity at fixed z = L (L is the sample length). We then re-
scale the propagation coordinate z in terms of a relevant dynamical char-
acteristic scale zdyn ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nbκ=ðαβPÞ

p
. Therefore, varying the initial power P

and measuring the intensity at fixed z = L is equivalent to measuring the

intensity at different steps z/zdyn inside thematerial at fixed P. Hereafter, we
will use P to parameterize the system evolution along z.

Observation of violent relaxation and formation of the quasi-
stationary state
Figure 1b, d depict the numerical and experimental intensity profiles (along
y = 0) measured at the output of the glass sample as a function of power P,
respectively. We observe good qualitative agreement: the initial beam col-
lapse is then followed by a stabilization in the sense that a central high
intensity (or N-body particle density) peak is formed that, despite some
oscillations, persists for the rest of the propagation. In nonlinear optics
terms, the optical beam is undergoing self-focusing and is trying to stabilize
on the central solitonic peak that acts as an attractor for the dynamics, by
expelling energy in the form of a broader, lower amplitude surrounding
field. The presence of nonlocality prevents the light from undergoing a
catastrophic collapse in this system47–49. The semi-classical regime chosen is
not ideal for the formationof a soliton, but insteadmaximizes the generation
of the surroundingbackground that indeed is the result of phase-mixing and
violent relaxation (in a gravitational context, this corresponds to the galaxy).
A plot of the simulated intensity distribution for an incident powerP = 5W
is shown in Fig. 1c, and is in good agreement with the experimental inset
in Fig. 1a).

Violent relaxation can be identifiedby looking at the distribution of the
chemical potential density νðU=U0Þ and at the phase-space behaviour along
the evolution. We expect a variation in the chemical potential due to a
variation in the overall potentialVðr?; zÞ1. Figure 2 shows the experimental
(a) and numerical (b) distribution of the normalized chemical potential
density, UðEÞ=U0, obtained for various input powers, P, as well as the
potentialV=V0 evolution (c), computed at z = L. The initial region (0–2W)
is where the variation in the potential is strongest and corresponds to the
same region inwhich the chemical potential density variation andmixing is
also strongest, as expected for violent relaxation. In contrast, after the col-
lapse (after P = 3W), the distribution of the chemical potential density
exhibits two characteristic ‘structures’, which persist for the whole sub-
sequent evolution: one at smaller values, which corresponds to the centre of
the beamnear the solitonic core; a second ‘structure’ at higher values related

Fig. 1 |Overviewof the experimental setup and results. a Sketch of the experiment.
A Gaussian laser beam propagates in a lead-doped glass slab. Fully detailed
experimental layout is shown in SM. The diffusion of heat inside the nonlinear
medium is represented by the glowing red profile. Insets show measured input and
output experimental light intensity profiles (analogues of particle density) at
power P = 5 W. b y = 0 slice of the beam intensity profile as a function of one
transverse coordinate x and power, obtained from the numerical simulation (the
fields have sufficient azimuthal symmetry for these lineouts to be representative of
the evolution). c Simulation of the full transverse plane distribution, ∣Eðr?; zÞ∣2 at
z = L for input powerP = 5W.We observe the soliton (red dot indicated by the black
arrow) surrounded by the classical part corresponding to χ→ 0. d y = 0 slice of the

beam intensity profile as a function of one transverse coordinate x and power,
obtained from experimental data. e N-body simulation result under the same
conditions, performed evolving self-gravitating particles of dark matter. We have
used 217 N-body particles and the parameters map directly on to those used in the
experiments (see Supplementary Note 2 for details), i.e., this galaxy is the particle
version of the optical galaxies shown in a (experiment) and c (numerical simula-
tion). All simulations represent the optical field evolution (based on Eq. (2)) with the
exception of e that shows the result of the equivalentN-body particle simulation (see
Supplementary Note 2)). All simulations are implemented in Matlab or C (see
Supplementary Note 2).
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to the more external rings. It is worth noticing that, after the collapse, the
distribution of the chemical potential density does not vary significantly,
tending asymptotically to a constant profile associated to the quasi-
stationary state, formed by the narrow solitonic core plus the broad back-
ground analogue galaxy. Therefore, the region in which violent relaxation
takes place can be identified between P ~ 0.5W and P ~ 3W. After this, the
evolution tends to a quasi-stationary state where the chemical potential
distribution of the system is constant, despite the fact that the intensity
profile keeps evolving (see Fig. 1a). A similar behaviour is observed in the
astrophysical context: galaxies can present a slowly evolving chemical
potential, despite showing a continuing evolution in time of the over-
all shape.

We study the existence of mixing in the system by analysing the evo-
lution of the phase-space. Figure 3 shows the experimental Wigner dis-
tribution F(r⊥, k⊥, z) of the full complex-valued optical field45. At the input,
the systemhas aGaussian spatial distributionwith a very narrow dispersion
along the kx-axis. As P increases, the phasemixing starts by first twisting the
phase-space (indicated by the white arrows) and then forming filaments
characteristic of violent relaxation1. We have also verified that in a system
where only mixing is present (without violent relaxation), such as in the
Snyder-Mitchell model50, the evolution of the system is significantly dif-
ferent (see Supplementary Note 4).

Conclusions
Violent relaxation was first formulated by Lynden-Bell in 19674 in the
context of galaxy formation but subsequent studies highlighted its very

general nature that extends also to other systems. However, violent
relaxation dynamics have never been observed experimentally before. We
have provided experimental evidence of violent relaxation in an optical
system that exhibits the required long-range interactions. The observed
dynamics can also be likened to those of a gravitational system through the
optical-gravitational analogy of the underlying equations. Indeed, we can
directly connect our optical experimental parameters to those of a particle-
based dark matter galaxy, as shown in Fig. 1e, where we plot the galaxy
distribution for a particle system with parameters equivalent to those of the
experiment, to be compared with Fig. 1c. This additional connection
between the experiments and actual N-body particle systems arises as a
result of the fact that the Schrödinger-Poisson equations (that underly our
optical system) converge to the Vlasov-Poisson equations (that describe
N-body system in the limit of large N).

A possible merit in this experimental evidence of violent relaxation is
that these results extend beyond the original astrophysical setting (where in
any case we would not be able to carry out repeatable experiments). Violent
relaxation and related phenomena therefore can occur more readily than
expected in other long-range systems and where these might actually
dominate in the temporal or length scales that are relevant to the experiment
itself. These experiments, aside from demonstrating violent relaxation for
the first time in any experimental setting, to the best of our knowledge,
provide a generic and easily accessible platform inwhichexperiments can be
carried out and tunes so as to recreate for example analogues of galaxy
evolution or analogues of plasma evolution, where violent relaxation
experiments and the underlying dynamics are less accessible.

Fig. 2 | Distribution of the chemical potential
density νðU=U0Þ. Experiment a and simulation b.
The chemical potential is normalised to
U0 ¼ αβk0P

� �
= 2πκð Þ. c Numerical y = 0 slice of the

normalized potential V=V0, computed at z = L, as a
function of transverse coordinate x and power P
(V0 ¼ k0P). t0 is the light propagation time through
the sample.
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Methods
Experimental setup
A CW laser with wavelength λ = 532 nm is split into 2 beams: a reference
and a target beam.The reference beam is expanded by a systemof lenses and
collectedby aCMOScamera. See SupplementaryNote1 for adetailed image
of the setup. The target beam is shaped to have waist s = 350 μm (waist
calculated where the intensity falls of 1/e2—the value has been obtained by a
Gaussian fit of the beam intensity at the sample input face—see Supple-
mentaryNote 2) and shines onto three aligned identical slabs of lead-doped
glass (height D = 5mm, width W = 40mm and length L0 = 100mm each,
hence a total length L = 300mm).

The glass is a self-focusing nonlinear opticalmediumwith background
refractive index nb = 1.8, thermal conductivity κ = 0.7Wm−1K−1, absorp-
tion coefficient α = 1m−1, thermo-optic coefficient β ¼ ∂n

∂T ¼ 2:2 � 10�5 K−1

and transmission coefficient at the sample interface T = 0.92. The value of
the coefficient β is found by a fit of the experimental beam evolution and
results to be 1.6 times larger than the value provided by the manufacturer.
The target beam input powers range from 0.2W to 5.5W, with a 0.25W
step. Bymeans of the off-axis digital holography technique46, we reconstruct
the amplitudes and phases of the target beam.

Data availability
The data that supports the findings of this study is available in a public
repository51.

Code availability
The codes are available from the corresponding authors upon reasonable
request.
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