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Quantum lock-in amplifiers have been proposed to extract an alternating signal from a strong noise
background. However, due to the typical target signal has unknown initial phase, it is challenging to
extract complete information about the signal’s amplitude, frequency, and initial phase. Here, we
present a general protocol for achieving a quantum double lock-in amplifier by employing two
quantum mixers operating under orthogonal pulse sequences. To demonstrate the practical
implementation, we discuss the experimental feasibility using a five-level double-Λ coherent
population trapping system with Rb atoms. Here, each Λ structure acts as a quantummixer, and two
applied dynamical decoupling sequences serve as orthogonal reference signals. Notably, the system
significantly reduces the total measurement time by nearly half and mitigates time-dependent
systematic errors compared to conventional two-level systems. Furthermore, our quantum double
lock-in amplifier is robust against experimental imperfections. This study establishes a pathway to
alternating signal measurement, thereby facilitating the development of practical quantum sensing
technologies.

The precise measurement of weak alternating signals in the presence of a
noisy background is of great significance in both fundamental scientific
research and practical applications. Typically, the desired signal is obscured
by the noise, making detection challenging. To achieve a high signal-to-
noise ratio, it is necessary to minimize the influence of noise while ampli-
fying the response to the target signal. Lock-in amplifiers have been widely
used in various fields1–6 due to their ability to extract time-dependent
alternating signals from highly noisy backgrounds. In essence, a lock-in
amplifier employs a mixing process by multiplying the input signal with a
reference signal, followed by detection through an adjustable low-pass filter.
The filter effectively eliminates contributions from signals that do not share
the same frequency as the reference signal, thereby selectively rejecting all
other frequency components.

Typically, when dealing with time-dependent alternating signals of
known initial phase, conventional lock-in techniques using a single refer-
ence signal can effectively extract the characteristics of the target signal.
However, when the initial phase is unknown7,8, extracting the complete
characteristics, including amplitude, frequency, and initial phase, becomes
challenging with a single reference signal alone. To address this issue, a
double lock-in amplifier, also known as phase-sensitive detector9, has been
proposed and widely used for signal measurement. In a double lock-in
amplifier, the target signal is mixed with two orthogonal reference signals.
The resulting signals from the two mixers pass through separate low-pass
filters, generating two output signals that enable the extraction of the

complete characteristics of the target signal. Quantum lock-in measure-
ments, leveraging advancements in quantum control techniques, have been
successfully demonstrated and widely employed for frequency
measurement10,11, magnetic field sensing10, vector light shift detection12, and
weak-force detection13. The key to realizing a quantum lock-in amplifier lies
in identifying quantum analogs of mixing and filtering operations. By uti-
lizing quantum probes, these processes can be achieved through non-
commutative operations and time-evolution, respectively. Similar to the
implementation of a quantummixer7,10–12, dynamical decoupling sequences
can be employed as reference signals to realize a quantum lock-in amplifier.
Notably, Carr-Purcell (CP) and periodic dynamical decoupling (PDD)
sequences have been widely utilized in various quantum lock-in amplifiers,
ranging from single-particle systems10 to many-body systems11. However,
these existing schemes only cater to target signals with known initial phases.
Extracting the complete characteristics of a target signal using a single PDD
or CP sequence becomes challenging when the initial phase is unknown.
Similar to the classical double lock-in amplifier, the question arises as to
whether a quantum counterpart can be developed to extract the complete
characteristics of a target signal. Furthermore, how can a quantum double
lock-in amplifier be realized using currently available experimental
techniques?

In this article, we propose a general protocol for implementing a
quantum double lock-in amplifier by combining double quantum inter-
ferometry with two orthogonal periodic multi-pulse sequences,
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characterized by orthogonal filter functions. In our protocol, each quantum
interferometry using a specific periodic multi-pulse sequence serves as a
single quantum lock-in amplifier. Specifically, we select the PDD and CP
sequences as the two orthogonal periodic multi-pulse sequences. Addi-
tionally, the XY4-N sequences14–18, with appropriate delays, can also be
employed to realize the quantum double lock-in amplifier. Further, to
demonstrate the feasibility of our protocol, we illustrate its implementation
using a five-level double-Λ coherent population trapping (CPT) system
consisting of 87Rb atoms with PDD and CP pulse sequences. By appro-
priately adjusting the detuning, the five-level double-Λ system can be split
into two Λ systems19–21, serving as the quantum mixers for the quantum
double lock-in amplifier. The utilization of the five-level system offers sig-
nificant advantages, including a reduction of nearly half the total mea-
surement time and the avoidance of additional time-dependent systematic
errors compared to conventional two-level systems. Furthermore, we ana-
lyze the impact of finite pulse length and stochastic noise to demonstrate the
experimental feasibility of our approach. Numerical results indicate that the
quantum double lock-in amplifier exhibits robustness against these
imperfections. Our scheme provides a practical pathway for accurately
measuring the complete characteristics of an alternating signal within a
strong noise background.

Results
General protocol
In this section, we introduce the general protocol of a quantumdouble lock-
in amplifier, which aims to extract the complete characteristics of a target
signal within strong noise background. In general, a conventional classical
lock-in amplifier cannot effectively extract the phase information of the
target signal. However, a classical double lock-in amplifier can solve this
problem.Bymixing the input signalVS(t) = S(t)+N(t)with twoorthogonal
reference signals V r1ðtÞ ¼ sinðωmtÞ and V r2ðtÞ ¼ cosðωmtÞ respectively
and integrating the two mixed signals over a certain time, the target signal
can be extracted, see Fig. 1a. Here, SðtÞ ¼ A sinðωt þ βÞ is the target signal
submerged in the noiseN(t) and all three parameters (A,ω, β) are unknown
to be measured and unchanged in measurements. The two multipliers,
which are described by Vmix

r1 ðtÞ ¼ VSðtÞ×V r1ðtÞ and
Vmix
r2 ðtÞ ¼ VSðtÞ×V r2ðtÞ, are used for mixing input and reference signals.

The integrator is used to filter out the components whose frequencies are
different from the reference frequencyωm. One can find that, at the lock-in
point ωm =ω, the two output signals are given as I ¼ AT

2 cosðβÞ and

Q ¼ AT
2 sinðβÞ. Therefore, at the lock-in point, one can obtain A ¼

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 þ Q2

p
=T and β ¼ arctanðQ=IÞ for the target signal22,23. In particular,

if thenoise spectral components are far fromthe reference frequencyωm, the
noise effects will be averaged out through the integration (see Supplemen-
tary Note 1 for more details).

In analogy to a classical double lock-in amplifier, a quantumdouble lock-
in amplifier can be realized by using two orthogonal multi-pulse sequences,
which act the role of two orthogonal reference signals. Generally, to realize the
quantum double lock-in amplifier, one can choose any two multi-pulse
sequences whose filtering functions are orthogonal. The spacing of the adja-
cent π pulses is τm and one can define the carrier frequencyωm = π/τm. As the
applied multi-pulse sequences (acting as the reference signal) are non-
commutating with the target signal7,10,11, one canmix the input signal and the
reference signal. And then the following time-evolution filters out the noise
spectral components different from the reference frequency ωm.

To illustrate ourprotocol,we consider two individual two-level systems
such as NV center7,8,14 and single trapped ion10 whose energy levels are
labeled by ∣ "� and ∣ #�. For each two-level system, the coupling between
the probe and the external signal is described by the Hamiltonian Ĥint ¼
_
2MðtÞσ̂z with the Pauli operators σ̂x;y;z. The external signal M(t) = S(t)+
N(t) consists of the target signal SðtÞ ¼ A sinðωt þ βÞ and the stochastic
noiseN(t). Here, we consider themixing term Ĥref ¼ _

2ΩðtÞσ̂x, which does
not commute with Ĥint. Thus, the whole Hamiltonian reads

Ĥ ¼ Ĥint þ Ĥref ¼
_

2
MðtÞσ̂z þΩðtÞσ̂x
� �

: ð1Þ

The time-evolution obeys the Schrödinger equation,

i
∂∣ΨðtÞ�S

∂t
¼ 1

2
MðtÞσ̂z þΩðtÞσ̂x
� �

∣ΨðtÞ�S; ð2Þ

where ∣ΨðtÞ�S denotes the system state. In the interaction picture with
respecting to Ĥref (See Supplementary Note 2 for more details), the time-
evolution obeys

i
∂∣ΨðtÞ�I

∂t
¼ 1

2
MðtÞ cosðαðtÞÞσ̂z þ sinðαðtÞÞσ̂y

h i
∣ΨðtÞ�I ð3Þ

with αðtÞ ¼ R t0 Ωðt0Þdt0. The instantaneous state at time t reads

∣ΨðtÞ�I ¼ T̂ e�i12 ϕzðtÞσ̂zþϕyðtÞσ̂y
� �

∣Ψð0Þ�I; ð4Þ

where T̂ denotes the time-ordering operator, and ϕzðtÞ ¼
R t
0 ωzðt0Þdt0 and

ϕyðtÞ ¼
R t
0 ωyðt0Þdt0 with angular frequencies ωzðtÞ ¼ MðtÞ cosðαðtÞÞ and

Fig. 1 | The schematic of classical and quantum double lock-in amplifiers. a The
classical double lock-in amplifier. Vs(t) = S(t)+N(t) is the input signal, where
SðtÞ ¼ A sinðωt þ βÞ is the target signal submergedwithin the noiseN(t).Vr1,2(t) are
the two orthogonal reference signals. The amplitudeA, frequencyω, and phase β can
be extracted after mixing with a multiplier and filtering by integration. b The
quantum double lock-in amplifier. There are two identical quantum mixers. For
each quantummixer, the coupling between the probe and the signal is described by
Ĥint ¼ _

2MðtÞσ̂z where M(t) = S(t)+N(t) includes the target signal S(t) and the
noise N(t). The mixing modulations Ĥref1 ¼ _

2ΩPDDðtÞσ̂x and Ĥref2 ¼ _
2ΩCPðtÞσ̂x

(implemented by the periodic dynamical decoupling (PDD) and Carr-Purcell (CP)
sequences respectively), which do not commute with Ĥint, are analog to the two
reference signals Vr1(t) and Vr2(t). Each mixer obeys the Hamiltonian
Ĥ ¼ Ĥint þ Ĥref1;2, which can be regarded as a single quantum lock-in amplifier.
The mixing process is achieved by non-commutating operations, and the filtering
process is realized by time-evolution. The combination of the two quantum lock-in
amplifiers forms a quantum double lock-in amplifier, which can extract the com-
plete characteristics of the target signal SðtÞ ¼ A sinðωt þ βÞ.
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ωyðtÞ ¼ MðtÞ sinðαðtÞÞ. In our scheme, the time-dependent modulation
Ω(t) is designed as a sequence of π pulses with equidistant spacings. This
technique is mature and has been widely used in quantum sensing for
measuring an oscillating signal in the presence of noises10,11,13,14,24–26. In
experiments, the π pulse sequences can usually be approximated as square
waves,

ΩSðt;TΩÞ ¼
π=TΩ; jt � tjj<TΩ=2;

0; others;

�
ð5Þ

where TΩ denotes the pulse length. In the limit of TΩ→ 0, the π-pulse
sequences can be described by hard pulses

ΩðtÞ ¼ π
XNp

j¼1

δ½t � ðj� λÞτm�; ð6Þ

with δ(t) being the Dirac δ function, Np denoting the pulse number, τm
describing the spacing of the adjacent π pulses, and the parameter λ
determining the relative phase with respect to the target signal. Here, as an
example for realizing our quantum double lock-in amplifier, we choose two
orthogonal sequences: a PDD sequence (λ = 0) and a CP sequence (λ = 1/
2)15,27, which can be easily realized with current experimental
techniques10,11,15 (see Supplementary Note 2 for more details). In addition
to the above sequences, the XY4-N sequenceswith suitable delay can also be
applied to realize the quantum double lock-in amplifier. For hard π pulses,
one can easily find αðtÞ ¼ R t0 Ωðt0Þdt0 ¼ Npπ, therefore we have
sin½αðtÞ� ¼ 0. Initializing each quantum system into the state
∣Ψiin ¼ ð∣ "�þ ∣ #�Þ= ffiffiffi

2
p

, in the interaction picture, the instantaneous
state at time tn = nτm becomes

∣ΨðtnÞ
�
I ¼ e�i

R tn

0
1
2Mðt0 Þ cos½αðt0Þ�dt0 σ̂z ∣Ψiin;

¼ ∣ "�þ eiϕn ∣ #�� �
=
ffiffiffi
2

p
;

ð7Þ

with n chosen as a even number to suppress DC noise15. For the results
determined by the density matrix ρ ¼ ∣Ψi Ψh ∣, the global phase e�iϕn=2 can
be ignored. Back to the Schrödinger picture10,11, the output state is

∣ΨðtnÞ
�
S ¼ ð∣ "�þ eið�1ÞNpϕn ∣ #�Þ= ffiffiffi

2
p

; ð8Þ

with the pulse number Np. For PDD and CP sequences, the total accumu-
lation phases are

ϕPDDn ¼ 2A
ω

cos
nω � ðτm � τÞ

2
þ β

	 


× cos
ω � ðτm � τÞ

2

	 

sin nω � ðτm � τÞ=2� �
sin ω � ðτm � τÞ=2� � ;

ð9Þ

and

ϕCPn ¼ 2A
ω

sin
nω � ðτm � τÞ

2
þ β

	 


× 1þ sin
ω � ðτm � τÞ

2

� �	 

sin½nω � ðτm � τÞ=2�
sin½ω � ðτm � τÞ=2� ;

ð10Þ

respectively (see SupplementaryNote 2 formore details).Here τ = π/ω is the
half period of the target signal. Obviously, given β = 0 (β = π/2), ϕPDDn is
symmetric (anti-symmetric) and ϕCPn is anti-symmetric (symmetric) with
respect to the lock-in point τm = τ, see Fig. 2. However, the symmetry of
ϕPDDðCPÞn will be destroyedwhen β ≠ 0 (or β ≠ π/2), see Fig. 2. Different from
the classical lock-in amplifier, which defines the lock-in point based on the
reference frequencyωm, the lock-inpoint of our scheme is definedaccording
to the half period of target signal τ10.

In the stage of signal extraction, an unitary operation U ¼ e�iπ4σ̂y is

applied for recombination and the readout state becomes ∣Ψire ¼
�i sinðϕ0n2 Þ∣ "

�þ cosðϕ0n2 Þ∣ #
�h i

with ϕ0n ¼ ð�1ÞNpϕn. Hence the final

probability of the probe in the state ∣ "� arePPDD
";n ¼ ½1� cosðϕPDDn Þ�=2 and

PCP
";n ¼ ½1� cosðϕCPn Þ�=2 respectively. The corresponding expectations of z-

component Pauli operator are hσ̂ziPDDn ¼ � cosðϕPDDn Þ and hσ̂ziCPn ¼
� cosðϕCPn Þ respectively. For β = 0 (or β = π/2),PPDDðCPÞ

";n and hσ̂ziPDDðCPÞn are
both symmetric with respect to the lock-in point τ = τm. Thus through
modulating the pulse repetition period τm, one can determine the lock-in
point from the pattern symmetry, and the amplitude can be extracted from
Eq. (9) or Eq. (10) via a fitting procedure7,10,11,15,28. However, when β ≠ 0 (or
β ≠ π/2), the phase ϕPDDðCPÞn is not symmetric with respect to the lock-in

point τ = τm. Thus the symmetry of PPDDðCPÞ
";n and hσ̂ziPDDðCPÞn are destroyed,

see Fig. 3. This means that one cannot determine the lock-in point from the
spectrum and extract the target signal S(t) only bymeans of a single PDDor
CP sequence. Below, we introduce how to solve this issue via the quantum
double lock-in amplifier. To analyze our protocl analytically, we divide the
target signals into two types: (i) the weak signals of Aω ≤ 1

2n and (ii) the strong
signals of Aω >

1
2n.

For weak signals, i.e., Aω ≤ 1
2n, we choose the sum of PPDD

";n and PCP
";n as a

measurement signal to recover the spectrum symmetry, that is,

Psum
";n ¼ PPDD

";n þ PCP
";n

≈
A
ω

� �2 sin½nω � ðτm � τÞ=2�
sin½ω � ðτm � τÞ=2�

	 
2
:

ð11Þ

Obviously, Psum
";n is symmetric with respect to the lock-in point τm = τ

again, see Fig. 3e, f. Thus, one can determine the lock-in point from the
symmetric pattern of Psum

";n versus (τm− τ), which can be obtained by
adjusting the spacing τm of adjacent π pulses. Our analytical results are well
consistent with the numerical ones, even for the case of A

ω ¼ 1
2n. Once the

Fig. 2 | The parameter dependence of the two total accumulationphasesϕPDD
n and

ϕCP
n . a The variations of ϕPDDn versus (τ− τm) and β. b The variations of the phase

ϕPDDn versus (τ− τm) with β = 0, π/6, π/2. The phase ϕPDDn is symmetric (or anti-
symmetric) with respect to the lock-in point τ = τm when β = 0 (or β = π/2), and is
not symmetric with respect to the lock-in point τ = τmwhen β = π/6. cThe variations
of ϕCPn versus (τ− τm) and β. d The variations of ϕCPn versus (τ− τm) with β = 0, π/
6, π/2. The phase ϕCPn is antisymmetric (or symmetric) with respect to the lock-in
point τ = τm when β = 0(or β = π/2), and is not symmetric (or antisymmetric) with
respect to the lock-in point τ = τm when β = π/6. Here, A = 1/100, ω = π and n = 50.
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value of ω is determined via the the lock-in point τm = τ, one can extract A
fromEq. (11) via afitting procedure26,29.Moreover, due to the value ofω and
A are both extracted, one can determine β from PPDD

";n or PCP
";n. Thus the

complete characteristics of the target signal can be obtained within our
scheme.

For strong signals, i.e., Aω >
1
2n, the Taylor expansion is no longer valid

and one cannot obtain the target signal via themeasurement signalPsum
";n . To

resolve this problem, we choose the sum of hσ̂ziPDDn and hσ̂ziCPn as a new
measurement signal, that is,

hσ̂zisumn ¼hσ̂ziPDDn þ hσ̂ziCPn
¼ � cosðϕPDDn Þ þ cosðϕCPn Þ� �

:
ð12Þ

At the lock-in point τm = τ, it reads

hσ̂zisumn;τm¼τ ¼ � cos
2A
ω

cosðβÞ � n
	 


� cos
2A
ω

sinðβÞ � n
	 


; ð13Þ

which is an exactly bisinusoidal oscillation. Byusing a fast Fourier transform
(FFT), one can determine the lock-in point by judging whether hσ̂zisumn has
bisinusoidal oscillatory pattern. In comparison to Psum

";n , the FFT of hσ̂zisumn
does not contain the zero-frequency component and it is easy to determine
the lock-in point from the FFT. In our analysis, we consider a series of
measurement results hσ̂zisumn for different evolution times tn = nτm. As
shown in Fig. 4a, we give the FFT spectrum of hσ̂zisumn versus τm. When
τm = τ, the FFT spectrum has only four peaks and therefore we can
determine the lock-in point via its inverse participation ratio (IPR)30–34,
which is defined as

IPR ¼
Pnm=2

k¼1 jFkj4

∣
Pnm=2

k¼1 jFkj2∣
2 ; ð14Þ

with Fk ¼
Pnm

n¼2;evenhσ̂zisumn e�i 2π
nm

nk
� �

, ∣Fk∣ is the FFT amplitude corre-
sponding to FFT angular frequency ωk ¼ k 2πω

nm
(k = 1, 2,⋯, nm/2) and

tnm ¼ nmτm is the maximum sensing time. After some algebra, when
ω(τm− τ)≪ 1 and nm→∞, we have IPR = 1/4 for τm = τ and IPR = 0 for
τm ≠ τ (see Supplementary Note 3 for more details). Given τm = τ, the four
peaks appear at ωCP

FFT ¼ 2Aj sinðβÞj, ωPDD
FFT ¼ 2Aj cosðβÞj, ωPDD

FFT ¼ ðπω�
ωPDD
FFT Þ and ωCP

FFT ¼ ðπω� ωCP
FFTÞ respectively, see Fig. 4c. In which, the two

peaks atωCP
FFT andω

PDD
FFT correspond to the two oscillation frequencies of the

measurement signal hσ̂zisumn jτm¼τ . Thus, the values of A and β are given as

A ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωPDD

FFT Þ2 þ ðωCP
FFTÞ2

q
ð15Þ

and

jβj ¼ arctan ωCP
FFT=ω

PDD
FFT

� �
; ð16Þ

which is similar to a classical double lock-in amplifier. Moreover, one can
determine the signofparametersβ from hσ̂ziPDDn or hσ̂ziCPn .The signofβ can
be uniquely determined by the derivation of hσ̂ziPDDn or hσ̂ziCPn with respect
to the pulse repetition period τm for three different modulation periods
τm = (τ− dτ), τm = τ and τm = (τ+ dτ), in which dτ is the spacing of two
adjacent pulse repetition periods (see Supplementary Note 2 for more
details). Considering the coherence time of a quantum system is limited in
experiments, we numerically calculate the systems under moderate nm
satisfyingnm ≤ T2

τ with the coherence timeT2
7,10,19. It is shown that IPR ≈ 1/4

for τm = τ and IPR ≈ 0 for τm ≠ τ, thuswe can still extract the frequencyω by
finding the maximum of IPR, see Fig. 4b. Further, given the measurement
signal hσ̂zisumn jτm¼τ , we can extractA andβ via Eqs. (15) and (16), see Fig. 4d.

In experiments, the coherence timeT2 is finite and thus the value of nm
should satisfy T2 > nmτ. Given the value of nm, the frequency ωFFT can only
take discrete valuesωk ¼ k 2πω

nm
(k = 1, 2,⋯, nm/2), and thus the lock-in point

may be shifted. In Fig. 4c,we show the frequency shiftDof the lock-in point.
We numerically calculate how the frequency shift D varies with nm and find

Fig. 3 | Extraction of a weak target signal. a, bThe variations of the measurement
signals PPDD

";n versus (τm− τ)/τ. The measurement signals PPDD
";n is not symmetric

with respect to the lock-in point τm = τ and it is well consistent with the analytically
approximate result. c, d The variations of the measurement signals PCP

";n versus
(τm− τ)/τ. The measurement signals PCP

";n is not symmetric with respect to the lock-
in point τm = τ and it is well consistent with the analytically approximate result.
e, f The variations of the measurement signals Psum

";n versus (τm− τ)/τ. The mea-
surement signals Psum

";n is symmetric with respect to the lock-in point τm = τ and it is
well consistent with the analytically approximate result Eq. (11). Here, we choose
2nA/ω = 0.1 [left: (a), (c), and (e)] and the critical case 2nA/ω = 1 [right: (b), (d), and
(f)] with n = 100, β =− π/6 and ω = π.

Fig. 4 | Extraction of a strong target signal. a The fast Fourier transform (FFT)
spectrum of hσ̂zisumn versus (τm− τ) with even positive integers n up to nm = 400.
Given τ = τm, the FFT spectrum just has four peaks and one can use it to determine
the lock-in point. b The inverse participation ratio (IPR) versus (τm− τ). The
maximum of IPR can be used to determine the lock-in point. cThe inset for the local
amplification region in (b) and denotes the shift of lock-in point D. d The FFT of
hσ̂zisumn at τm = τ. The four peaks locate at ωCP

FFT=ω ¼ 2
ωAj sinðβÞj ¼ 0:637,

ωPDD
FFT =ω ¼ 2

ωAj cosðβÞj ¼ 1:103, ωPDD
FFT =ω ¼ ðπ � ωPDD

FFT =ωÞ and ωCP
FFT=ω ¼

ðπ � ωCP
FFT=ωÞ respectively. e The variation of the shift D versus the maximum

sensing scanning time nm. Here, we choose A = 2, β =−π/6, and ω = π.
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that the envelop of D decreases with nm due to the resolution ratio of FFT
frequency ωFFT is ðωkþ1 � ωkÞ ¼ 2πω

nm
/ 1=nm, see Fig. 4e.

Experimental feasibility
Our quantum double lock-in amplifier can be realized via a double-Λ CPT
system, in which eachΛ system is employed as a quantummixer. As shown
in Fig. 5a, the double-Λ CPT system can be realized by simultaneously
coupling two independent two-level systems (f∣1i; ∣2ig and f∣3i; ∣4ig)with a
common excited state (∣5i), which has been extensively observed in alkali
atoms such as Cs3,35,36 and Rb19,37,38. Moreover, such a system can be divided
into two single-Λ systems by splitting the Zeeman sublevels of their ground
states19,39, which provide the two independent physical channels. For every
single-Λ structure, the population of the excited state reflects the coherence
information of two ground states19–21. Therefore, for this double-Λ CPT
system, the population of the common excited state includes two groups of
ground states coherence information, and it may act the role of the sum of
two-level systems with PDD and CP sequence modulation19. The simulta-
neous coupling of these two physical channels can be achieved by lin∣∣lin
CPTscheme, inwhich twoCPT lightfields are linearly polarized to the same
direction and orthogonal to the applied magnetic field19–21.

In general, for a single-Λ system, the CPT lasers will pump the atoms
into a dark statewhich is a coherent superposition of two ground states20,36,40.
To achieve our quantum double lock-in amplifier, we can simultaneously
prepare twodark states as the initial states of twophysical channels by aCPT
pulsewith just one laser and afiber-coupled electro-opticmodulator (EOM)
for different tones and such a CPT system has been realized in several
laboratories41. After the initialization via CPT pulse, the prepared two dark
states can independently accumulate phases under the control of PDD and
CP sequences, respectively. During the signal interrogation process, the
applied PDD and CP sequences only couple the ground states in the same
quantum mixer, see Fig. 5a. Due to the action times of PDD and CP
sequence pulses are different, one can utilize just onemicrowave synthesizer

or just a laser beam to realize π pulses via the microwave or Raman lasers,
which are both very mature with current experimental technology42–44. In
comparison to the protocol via separately applying different sequences on
the same two-level system7,10,11,14,26, in our protocol with a five-level system,
the two orthogonal sequences are applied simultaneously and thus one can
save near a half of the total measurement times. Meanwhile, the relative
phase of the two orthogonal sequences in five-level system can be tuned
easily. Then through applying the CPT pulse, the coherent property of
ground states becomes proportional to the population of the common
excited state, which can be experimentally detected by fluorescence or
transmission spectrum19–21,45,46. In particular, the summed signal in our
quantum double lock-in amplifier can be directly obtained by only one
single measurement on the common excited-state population. In the fol-
lowing, we show an example of quantumdouble lock-in amplifier via a five-
level double-Λ system constructed by the D1 line of 87Rb atoms. The
involved energy levels include twogroups ofmagneto-sensitive states f∣1i ¼
∣F ¼ 1;mF ¼ �1

�
; ∣2i ¼ ∣F ¼ 2;mF ¼ �1

�g and f∣3i ¼
∣F ¼ 1;mF ¼ 1

�
; ∣4i ¼ ∣F ¼ 2;mF ¼ 1

�g coupling with a common
excited state ∣5i ¼ ∣F0 ¼ 1;mF ¼ 0

�
, as shown in Fig. 5a. Their eigen fre-

quencies are respectively labeled as ωj(j = 1, 2, 3, 4, 5). The total decay rate
from the excited state (∣5i) to the four ground states is Γ = 2π × 5.746MHz.
To perform the simultaneous coupling, the CPT pulse should contain four
frequency components (ωL1,ωL2,ωL3,ωL4) with Rabi frequencies
(Ω1,Ω2,Ω3,Ω4), which can be generated bymodulating a single laser with a
fiber-coupled EOM. For convenience, one can set the four Rabi frequencies
Ωj =Ω are real and the four decay rates γj = Γ/4 (j = 1, 2, 3, 4)19,20. The time-
evolution obeys the Lindblad master equation20,

∂ρ̂

∂t
¼ � i

_
Ĥ; ρ̂
� �þX4

j¼1

Γ

4
L̂jρ̂L̂

y
j �

1
2
L̂
y
j L̂jρ̂�

1
2
ρ̂L̂

y
j L̂j

� �
; ð17Þ

where L̂j ¼ ∣j
�
5h ∣ is the Lindblad operator, and ρ̂ is the density matrix. In

the rotating frame, the Hamiltonian matrix is given as

Ĥ ¼ _

�δ1 � Δ1
2 0 0 0 Ω�

0 �δ1 þ Δ1
2 0 0 Ω�

0 0 δ2 � Δ2
2 0 Ω�

0 0 0 δ2 þ Δ2
2 Ω�

Ω Ω Ω Ω 0

0
BBBBBBB@

1
CCCCCCCA
; ð18Þ

where Δ1 = (ω2+ωL2)− (ω1+ωL1) and Δ2 = (ω4+ωL4)− (ω3+ωL3) are
the two-photon detunings, and δ1 = [ω5− (ω2+ωL2+ω1+ωL1)/2] and
δ2 = [(ω4+ωL4+ω3+ωL3)/2−ω5] are the average detunings.

In order to realize the quantum double lock-in amplifier, we input two
dark states ∣D12

� ¼ ð∣1i � ∣2iÞ= ffiffiffi
2

p
and ∣D34

� ¼ ð∣3i � ∣4iÞ= ffiffiffi
2

p
as two

probe states which can be prepared via CPT procedure. In experiments, one
can prepare the two dark states via setting a big gap between the average
detunings δ1 and δ2 which satisfy the far detuning condition:
δ2 = δ1≫ {Ω,Δ1,2}, see Fig. 5b. Thus the corresponding densitymatrix reads
ρ̂D ¼ 1

2 ∣D12

�
D12



∣þ ∣D34

�
D34



∣

� �
. During the signal interrogation pro-

cess, due to the two physical channels have different resonance frequencies
and there is a strong bias field magnetic field Bbias, the two dark states ∣D12

�
and ∣D34

�
will independently accumulate phases ϕPDDn and ϕCPn under the

correspondingPDDandCP sequences (see SupplementaryNote 4 formore
details).

In our calculations, the two physical channels f∣1i; ∣2ig and f∣3i; ∣4ig
are decoupled in the whole process due to the far detuning condition, and
the detunings are set as δ1 = δ2 = 2π × 1MHz. At time tn = nτm before
detection, the density matrix is ρ̂f ¼
∣Ψ12ðtnÞ

�
Ψ12ðtnÞ



∣þ ∣Ψ34ðtnÞ
�
Ψ34ðtnÞ



∣
� �

=2 with ∣Ψ12ðtnÞ
� ¼

ð∣1i � eiϕ
PDD
n ∣2iÞ= ffiffiffi

2
p

and ∣Ψ34ðtnÞ
� ¼ ð∣3i � eiϕ

CP
n ∣4iÞ= ffiffiffi

2
p

. At last, a CPT
query pulse of 2 μs is imposed to obtain the population of the common

Fig. 5 | Schematic of the quantumdouble lock-in amplifier via five-level double-Λ
coherent population trapping (CPT) in 87Rb. a Five-level double-Λ configuration
of 87Rb atom which includes ∣1i ¼ ∣F ¼ 1;mF ¼ �1

�
, ∣2i ¼ ∣F ¼ 2;mF ¼ �1

�
,

∣3i ¼ ∣F ¼ 1;mF ¼ 1
�
, ∣4i ¼ ∣F ¼ 2;mF ¼ 1

�
and ∣5i ¼ ∣F0 ¼ 1;mF ¼ 0

�
.

b Realization of the quantum double lock-in amplifier. Initialization: preparing the
two dark states as the initial states. Sensing: coupling the two ground states f∣1i; ∣2ig
and f∣3i; ∣4ig through the periodic dynamical decoupling (PDD) and Carr-Purcell
(CP) sequences respectively. Here, TΩ denotes the π pulse length, τm is the pulse
repetition periods and the total sensing time is tn = nτm. Detection: a CPT pulse with
2 μs is imposed to detect the common excited state population via fluorescence or
transmission spectrum.
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excited state. Here, the transmission of CPT light can be converted as the
transmission signal (TS) via a photodetector19,20, which is proportional to
(1− ρ55), i.e., the absorption is proportional to the excited-state population
ρ55. Moreover, the common excited-state population can be expressed as

ρ55;n≈
Ω2

Γ2
1þ 2<ðρ12;nÞ þ 2<ðρ34;nÞ
h i

≈
Ω2

Γ2
1� cosðϕPDDn Þ

2
� cosðϕCPn Þ

2

	 

;

ð19Þ

whereℜ(x) denotes the real part ofx and ρij,n is thedensitymatrix element at
time tn reflecting the coherence of ρ12,n and ρ34,n (see SupplementaryNote 4
for more details). Further, according to Eq. (19), for a weak signal, we have
the common excited-state population

ρ55;n≈
Ω2

Γ2
A
ω

� �2 sin½nω�ðτm�τÞ=2�
sin½ω�ðτm�τÞ=2�
h i2

; ð20Þ

which is proportional to the measurement signal Psum
";n given in Eq. (11).

According to Eq. (20), one can extract the weak signal from the common
excited-state population ρ55,n, which is proportional to the CPT light
absorption and can be detected via a photodetector19,47. For a strong signal,
we define

~ρ55;n ¼ ρ55;n �
1

ðnm=2Þ
Xnm

n0¼2;even

ρ55;n0

≈� Ω2

2Γ2
cosðϕPDDn Þ þ cosðϕCPn Þ� � ð21Þ

which is proportional to hσ̂zisumn given in Eq. (12). At the point of τm = τ, we
have ~ρ55;n≈� Ω2

2Γ2 cos 2A
ω cosðβÞ � n� �þ cos 2A

ω sinðβÞ � n� �� �
, which can be

used to extract the strong signal (see Supplementary Note 4 for more
details).

Therefore, according to Eqs. (19) and (20), one can successfully
extract the target signal from the population of the common excited-state
in a five-level double-Λ CPT system. In experiment, one can obtain the
common excited-state population ρ55,n and further obtain ~ρ55;n by
adjusting the spacing τm of adjacent π pulses. In our consideration, we
chose f∣1i; ∣2ig and f∣3i; ∣4ig to form two groups of magneto-sensitive
transitions with gyromagnetic ratios γ12 =−γ34 = γg =−(g2− g1)μB/
ℏ =−1.0014 × 2π × 1.4MHz/G, where μB is the Bohr magneton, {g1, g2}
are the Landég factors for ground states F = {1, 2}, and μB/ℏ = 2π × 1.4
MHz/G and (g2− g1) = 1.0014. Below, for a target AC magnetic field in
form of B0 sinðωt þ βÞ, we use A = γgB0 to denote its amplitude. Based
upon currently available experimental techniques, we set the frequency
ω = 2π × 50 kHz, the initial phase β =−π/6, the π pulse length TΩ = 2 μs,
and the Rabi frequencies Ω ¼ 0:035 × Γ

4 for simulation18,19,42,48,49. To split
the Zeeman sublevels, a bias magnetic field Bbias = 0.143mT is applied
while the two-photon detunings are set as Δ1 = Δ2 ≈ 0, leading to the
average detunings δ1 = δ2 ≈ 2π × 1MHz.

Our numerical results from the Lindbladmaster equation (17) are well
consistent with the analytical ones given by Eqs. (19) and (21), see Fig. 6. For
a weak target signal, such as a magnetic field of B0 = 2 × 10−9 T satisfying
A
ω ≤ 1

2n, one can obtain the information of the target signal by measuring
ρ55,n, see Fig. 6a. Based upon the numerical simulation of Lindblad master
equations, the normalized common excited-state population (ρ55/awith the
normalization coefficient a≈ Ω2

Γ2
) given by a five-level double-Λ system (red

dashed line) fit well with the sum of excited-state populations given by two
independent Λ systems (blue line). Moreover, these numerical results are
both well consistent with the analytical ones of Eq.(19) (green dotted line).
Thus one can determine the lock-in point to extract the frequency ω from
the common excited-state population. In addition, one can determine the
initial phase via only performing extra independent CP or PDD measure-
ments for three specific modulation periods τm = (τ− dτ), τm = τ and
τm = (τ+ dτ) (see Supplementary Note 2 for more details). For a strong
target signal, such as a magnetic field B0 = 2 × 10−6 T satisfying A

ω >
1
2n, one

can determine the value of ω via the IPR given by the FFT spectrum of the
measurement signal ~ρ55;n, see in Fig. 6b. Therefore one can extract A and β
from the FFT spectrum of ~ρ55;n at the lock-in point τm = τ, see Fig. 6c.
Similarly, we find the numerical results are well consistent with the analy-
tical ones, see Fig. 6b, c. The little deviation of numerical between analytical
results is because that the pulse is not a ideal Dirac δ function but a square
pulse of a finite lengthTΩ = 2 μs. Overall, comparing with the protocol with
two-level systems, our protocol with five-level double-Λ system can dra-
matically reduce the total measurement times and avoid additional time-
dependent systematic errors (see SupplementaryNote 4 formoredetails). In
addition, a single NV center in diamond is a system with electron spin
(S = 1) and nuclear spin (I = 1), thus it may be able to realize the double-Λ
five-level via delicate design50,51.

Robustness
In experiments, there aremany imperfections thatmay influence the lock-in
signal. Below we discuss two key imperfections: the finite pulse length TΩ
and the stochastic noises18,48,49. Firstly, we consider square pules and analyze
the influence of their pulse length TΩ on our scheme. According to Eq. (4),

for a weak target signal, we can ignore the time-ordering operator T̂ , that is,

∣ΨðtÞ�I ¼ e�i12 ϕzðtÞσ̂zþϕyðtÞσ̂y
� �

∣Ψð0Þ�I with ∣Ψð0Þ�I ¼ ∣"iþ∣#iffiffi
2

p . Hence, after

an unitary operationU ¼ e�iπ4σ̂y for readout, the population in the state ∣ "�
reads

P";n≈
1� cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕyðtnÞ2 þ ϕzðtnÞ2

q� �
2

:
ð22Þ

Fig. 6 | Numerical results of the quantum double lock-in amplifier via five-level
double-Λ coherent population trapping (CPT) in 87Rb. a Locking of a weak target
signal via the normalized common excited-state population ρ55 versus (τm− τ). The
numerical results of ρ55/a (dashed red line) fit well with the sum of excited-state
populations given by two independent Λ configurations (solid blue line), and they
are both consistent with the analytical approximation (dotted green line). Here,
B0 = 1 nT, n = 200, ω = 2π × 50 kHz (τ = 10 μs), β =− π/6, and TΩ = 2 μs. b Locking
of a strong target signal via the IPR versus (τm− τ). The inverse participation ratio
(IPR) approach itsmaximumat the lock-in point τm = τ. cThe fast Fourier transform
(FFT) spectrum of ~ρ55;n for τm = τ. The first two peaks are 0.587 and 0.968 which are
very close to the theoretical ones ωCP

FFT=ω ¼ 2Aj sinðβÞj=ω ¼ 0:561 and
ωPDD
FFT =ω ¼ 2Aj cosðβÞj=ω ¼ 0:971. Here, B0 = 2 μT, n = 2, 4,⋯, 400, ω = 2π × 50

kHz(τ = 10 μs), β =− π/6, and TΩ = 2 μs.
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The analytical results of Eq. (22) are well consistent with the corre-
sponding numerical ones (see Supplementary Note 5 for more details). To
show the influences of the pulse length TΩ, we numerically calculate the
common exited-state population ρ55,n in double-Λ system with
TΩ = {0, 0.2 τ, 0.4τ}. It indicates that thefinite pulse lengthTΩ almost has no
effects on the lock-in point, see Fig. 7a. For a strong target signal, one can still
extract the frequency via the periodicity of the measurement signal hσ̂zisumn .
When τm = τ, we have Ĥðt þ 2τmÞ ¼ ĤðtÞ and the IPR reaches its max-
imum.We also numerically verify that the pulse length TΩ indeed does not
affect the lock-in point, as shown in Fig. 7b. Moreover, we numerically
calculate the FFT spectrum for different TΩ at the lock-in point τm = τ, see
Fig. 7c. In addition, in order to estimate the influence of the pulse lengthTΩ,
we numerically calculate the relative deviation of the amplitude B0 and the
phase β for different TΩ. They are δBest

0 ¼ Best
0 � B0

� �
and

δjβjest ¼ jβjest � jβj� �
. In general, the pulse length need satisfy 0 < TΩ < τ

to avoid the mixing term become a continuous driving. Here, B0 and ∣β∣
denote the exact values, andBest

0 and ∣β∣est correspond to the estimated values
according toEqs. (15) andEq. (16), respectively.Ournumerical results show
that the effect of pulse length TΩ is small enough to be ignored when
TΩ≤ 0.4 τ, as shown in Fig. 7d.

Below we will illustrate the robustness of our quantum double lock-
in amplifier against stochastic noise. In experiments, one of the most
common and most dominant types of noise is white noise. The white
noise is a random signal equably distributed in the whole frequency
domain and it is also called f0 noise for its constant power spectral density.
Due to the PDD and CP sequences can enhance the part with frequency
f k ¼ ð2kþ1Þ

2τm
ðk ¼ 0; 1; 2; � � �Þ15, the signal-to-noise ratio (SNR) can be

effectively improved by these two sequences (see more details in Sup-
plementary Note 8). Here, we consider the signal and the noise couple to
the probe through the same channel, that is, the system obeys the
Hamiltonian Ĥðt;TΩ; σÞ ¼ _

2A sinðωt þ βÞ þ N ð0;σÞðtÞ
h i

σ̂z þ _
2ΩðtÞσ̂x.

Here, N(0, σ)(t) = σN(0,1)(t) denotes the Gaussian random noise with the

time-averaged value N ð0;σÞðtÞ ¼ 0, and σ =N/S is the standard deviation.
Thus, we have the corresponding SNR =− 10lg(N/S) dB52,53. To illustrate
the robustness of our scheme, we numerically calculate the two mea-
surement signals versus the modulation period τm under different noise
strengths. For a weak target signal, we calculate the population ρ55,n versus
the difference (τm− τ) for different noise strengths σ = 0, σ = 100, and
σ = 300, as shown in Fig. 8a. The stochastic noise almost do not affect the
lock-in point even under a large noise strength σ = 100. Our protocol is
still hold for SNR ≥−20 dB after averaging over 20 times. For a strong
target signal, we calculate the IPR versus (τm− τ) and the FFT spectra of
~ρ55;n for different noise strengths σ = 0, σ = 5, and σ = 10, see Fig. 8b. Our
results show that the maximum IPR and the FFT amplitude decrease with
the noise strength. When SNR≥−10 dB, one can still determine the lock-
in point via the IPR and extract the target signal via performing FFT on
~ρ55;n (averaging over 20 times), see Fig. 8c. In addition, our scheme is also
robust against decoherence phenomenon causing by the population
decay, the depolarization noise arising from the optical pumping effect
(see Supplementary Note 6 for more details) and 50Hz noise which
originates from the electrical power for a lab (see Supplementary Note 7
for more details).

In general, different quantum systems have different environments
and therefore different noise sources. For trapped-ion system, except for the
white noise and 50 Hz noise, the 150 Hz noise is also one of the most
common noise and can limit the ultimate measurement precision54,55. For
the NV centers, the photon shot noise always exists and can affect the the
measurement8. Moreover, since the NV centers near the surface, the
interaction with external materials and spins also can affect the ultimate
measurement precision56,57. Their influences within our scheme are worthy
studied in future.

Discussion
In conclusion, we propose a comprehensive framework for implementing a
quantum double lock-in amplifier utilizing two orthogonal dynamical
decoupling sequences: PDD and CP sequences. This scheme establishes a
quantum counterpart to the classical double lock-in amplifier. We mathe-
matically derive a general formula for measuring an AC signal in the pre-
sence of strong noise using our quantum double lock-in amplifier, which
relies on two quantum mixers subjected to orthogonal modulations. Our
protocol enables the extraction of the complete characteristics, including
frequency, amplitude, and initial phase, of the targetAC signal. In the case of
a weak target signal, the lock-in point can be determined by exploiting the
symmetry of the combined measurement signal, allowing for subsequent
extraction of the amplitude and, the phase through afitting procedure. For a
strong target signal, the target signal canbe extracted fromtheFFTspectrum
of the combined measurement signal. We also compare the measurement
sensitivity of the amplitudeA achieved by twomethods for weak and strong
signals at the lock-in point (see supplementary Note 9). In the previous
scheme8, the frequency ismeasuredvia sweepingMWstrengthΩfirstly, and
then measure the amplitude and the phase via Rabi oscillation. Differently,
our scheme measures the frequency via modulating the pulse repetition
period τm and can extract complete information about the signal’s ampli-
tude, frequency, and initial phase simultaneously.

Furthermore, we illustrate the realization of a quantum double lock-in
amplifier using a five-level double-Λ CPT system of 87Rb as an example. In
this five-level double-Λ CPT system, the common excited state population
can be measured to obtain two measurement signals: ρ55,n and ~ρ55;n.
Compared to implementations using two-level systems, our experimental
proposal based on a five-level system can significantly reduce the total
measurement time and avoid additional time-dependent systematic errors.
Moreover, the system control complexity does not increase appreciably and
all necessary techniques are compatible with current experimental cap-
abilities. Our scheme also demonstrates strong robustness against finite
pulse length and stochastic noise. Owing to the highly developed quantum
control methods, various physical systems are well-suited for realizing
quantum double lock-in amplifiers. These include Bose condensed

Fig. 7 | The influence of finite pulse length on the quantum double lock-in
amplifier. a For the weak target signal measurement, the normalized excited state
population ρ55/a versus (τm− τ) with different pulse length TΩ = 0 (solid blue line),
TΩ = 2 μs (dashed red line) and TΩ = 4 μs (dotted green line). It indicates that the
pulse length does not affect the lock-in point when TΩ≤ 0.4 τ. Here,B0 = 1 nT,
ω = 2π × 50 kHz (τ = 10 μs), β =−π/6, n = 200 (nτ = 2ms). b For the strong target
signal measurement, the inverse participation ratio (IPR) versus (τm− τ) with dif-
ferent pulse length TΩ = 0 (solid blue line), TΩ = 2 μs (dashed red line) and TΩ = 4 μs
(dotted green line). It also indicates that the pulse length does not affect the lock-in
point. c The fast Fourier transform (FFT) results of ~ρ55;n in the case of τm = τ with
different pulse length TΩ = 0 (solid blue line), TΩ = 2 μs (dashed red line) and
TΩ = 4 μs (dotted green line). d The relative error relative deviation of the amplitude
B0 and the phase β versus the pulse length TΩ. The effect of pulse length TΩ can be
ignored if TΩ≤ 0.4 τ. Here, B0 = 2 μT, ω = 2π × 50 kHz (τ = 10 μs), β =−π/6
and n = 0, 2, 4,⋯, nm(nm = 400, nmτ = 4ms).
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atoms58–61, trapped ions62–66, nitrogen-vacancy centers in diamond56,67–70,
doped spins in semiconductors71,72, and even “artificial atoms” like super-
conducting qubits27,73,74 and so on. Meanwhile, how to realize the five-level
structure in other quantumsystems for achieving our scheme still have open
questions, and should be carefully analyzed and studied in future. Fur-
thermore, our protocol could enable the development of practical quantum
sensors, such as magnetometers11,75–78, atomic clocks79–81, weak-force
detectors13, and noise spectroscopy detector27,81,82.

Methods
Calculation of the common excited-state population
According to Eqs. (17) and (18), we can obtain the time-evolution of the
density matrix ρ (see Supplementary Note 4 for more details). After the
adiabatic elimination (t≫ 1

Γ and
∂
∂t ρ55 ¼ 0) and assuming the four Rabi

frequencies satisfy Ωj =Ω and {Ω, δ}≪ Γ, we can derive the common
excited-state population

ρ55≈
Ω2

Γ2
1þ

X4
i;j¼1;i≠j

<ðρijÞ
 !

: ð23Þ

In our consideration, ρ13, ρ14, ρ23, and ρ24 are almost 0 before detection,
hence the population ρ55 can be approximately given as Eq. (19). Due to the
two Λ configurations ∣1i; ∣2i; ∣5if g and ∣3i; ∣4i; ∣5if g have their density
matrix elements satisfying ρ021 ¼ 2ρ21 and ρ034 ¼ 2ρ34, we have

ρ55≈
Ω2

2Γ2
1þ<ðρ012Þ þ <ðρ021Þ
� �þ 1þ<ðρ034Þ þ <ðρ043Þ

� �� �
;

¼Ω2

Γ2
1þ 2<ðρ12Þ þ 2<ðρ34Þ
� �

:

ð24Þ

According to the above equation, we find that the five-level double Λ
configuration can be divided to such two Λ configurations.

Dyson expansion of quantum evolution
In order to simplify the calculation of the time-ordering operator T̂ in Eq.
(4), we consider the case of At ≤ π

2 and utilize the Dyson expansion

Ûðt0; tÞ ¼ T̂ exp
Z t

t0

Ĥðt0Þ
i_

dt0

¼ 1 þ
X1

n¼0

�i
_

� �n Z t

t0

dt1

Z t1

t0

dt2 � � �
Z tn�1

t0

dtnĤð t1Þ Ĥð t2Þ � � � Ĥð tnÞ;

ð25Þ

with Ĥðt0Þ ¼ _
2 ωzðt0Þσ̂z þ ωyðt0Þσ̂y
h i

. In units of ℏ = 1, one can obtain

Ûð0; tÞ≈ 1� i
2
½ϕzðtÞσ̂z þ ϕyðtÞσ̂y�

� 1
4

Z t

0
ωzðt1Þϕzðt1Þdt1σ̂2z þ

Z t

0
ωyðt1Þϕyðt1Þdt1σ̂2y

	 


� 1
4

Z t

0
ωyðt1Þϕzðt1Þdt1σ̂y σ̂z þ

Z t

0
ωzðt1Þϕyðt1Þdt1 σ̂zσ̂y

	 

þOðϕ3Þ

≈ 1� i
2
½ϕzðtÞσ̂z þ ϕyðtÞσ̂y� �

1
8
½ϕ2z ð tÞ þ ϕ2yðtÞ�

� 1
4
ϕzðtÞϕyðtÞσ̂y σ̂z �

1
4

Z t

0
ωzðt1Þϕyðt1Þdt1½σ̂z; σ̂y�

þOðϕ3Þ
ð26Þ

and

Ûgð0; tÞ ¼ exp
Z t

t0

Ĥðt0Þ
i_

dt0

≈1� i
2

ϕzðtÞσ̂z þ ϕyðtÞσ̂y
h i

� 1
8

ϕ2z ðtÞσ̂2z þ ϕ2yðtÞσ̂2y þ ϕyðtÞϕzðtÞfσ̂y; σ̂zg
h i

þOðϕ3Þ

≈1� i
2
½ϕzðtÞσ̂z þ ϕyðtÞσ̂y� �

1
8
½ϕ2z ðtÞ þ ϕ2yðtÞ� þOðϕ3Þ:

ð27Þ

Thus, through using fσ̂I; σ̂ jg ¼ σ̂Iσ̂ j þ σ̂ jσ̂I ¼ 2δi;jði; j ¼ x; y; zÞ, the time-
ordering operator T̂ in Eq. (26) can be removed when ϕ≤ 2n A

ω ≤ 1
corresponding to At ≤ π

2.
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