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Quantum lock-in amplifiers have been proposed to extract an alternating signal from a strong noise
background. However, due to the typical target signal has unknown initial phase, it is challenging to
extract complete information about the signal’s amplitude, frequency, and initial phase. Here, we
present a general protocol for achieving a quantum double lock-in amplifier by employing two
quantum mixers operating under orthogonal pulse sequences. To demonstrate the practical
implementation, we discuss the experimental feasibility using a five-level double-A coherent
population trapping system with Rb atoms. Here, each A structure acts as a quantum mixer, and two
applied dynamical decoupling sequences serve as orthogonal reference signals. Notably, the system
significantly reduces the total measurement time by nearly half and mitigates time-dependent
systematic errors compared to conventional two-level systems. Furthermore, our quantum double
lock-in amplifier is robust against experimental imperfections. This study establishes a pathway to
alternating signal measurement, thereby facilitating the development of practical quantum sensing

technologies.

The precise measurement of weak alternating signals in the presence of a
noisy background is of great significance in both fundamental scientific
research and practical applications. Typically, the desired signal is obscured
by the noise, making detection challenging. To achieve a high signal-to-
noise ratio, it is necessary to minimize the influence of noise while ampli-
fying the response to the target signal. Lock-in amplifiers have been widely
used in various fields'™ due to their ability to extract time-dependent
alternating signals from highly noisy backgrounds. In essence, a lock-in
amplifier employs a mixing process by multiplying the input signal with a
reference signal, followed by detection through an adjustable low-pass filter.
The filter effectively eliminates contributions from signals that do not share
the same frequency as the reference signal, thereby selectively rejecting all
other frequency components.

Typically, when dealing with time-dependent alternating signals of
known initial phase, conventional lock-in techniques using a single refer-
ence signal can effectively extract the characteristics of the target signal.
However, when the initial phase is unknown”?, extracting the complete
characteristics, including amplitude, frequency, and initial phase, becomes
challenging with a single reference signal alone. To address this issue, a
double lock-in amplifier, also known as phase-sensitive detector’, has been
proposed and widely used for signal measurement. In a double lock-in
amplifier, the target signal is mixed with two orthogonal reference signals.
The resulting signals from the two mixers pass through separate low-pass
filters, generating two output signals that enable the extraction of the

complete characteristics of the target signal. Quantum lock-in measure-
ments, leveraging advancements in quantum control techniques, have been
successfully demonstrated and widely employed for frequency
measurement'”", magnetic field sensing'’, vector light shift detection'’, and
weak-force detection'”. The key to realizing a quantum lock-in amplifier lies
in identifying quantum analogs of mixing and filtering operations. By uti-
lizing quantum probes, these processes can be achieved through non-
commutative operations and time-evolution, respectively. Similar to the
implementation of a quantum mixer”'*""?, dynamical decoupling sequences
can be employed as reference signals to realize a quantum lock-in amplifier.
Notably, Carr-Purcell (CP) and periodic dynamical decoupling (PDD)
sequences have been widely utilized in various quantum lock-in amplifiers,
ranging from single-particle systems'’ to many-body systems''. However,
these existing schemes only cater to target signals with known initial phases.
Extracting the complete characteristics of a target signal using a single PDD
or CP sequence becomes challenging when the initial phase is unknown.
Similar to the classical double lock-in amplifier, the question arises as to
whether a quantum counterpart can be developed to extract the complete
characteristics of a target signal. Furthermore, how can a quantum double
lock-in amplifier be realized using currently available experimental
techniques?

In this article, we propose a general protocol for implementing a
quantum double lock-in amplifier by combining double quantum inter-
ferometry with two orthogonal periodic multi-pulse sequences,
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Fig. 1 | The schematic of classical and quantum double lock-in amplifiers. a The
classical double lock-in amplifier. V(f) = S(f) + N(¢) is the input signal, where
S(t) = Asin(wt + ) is the target signal submerged within the noise N(t). V,; 5(t) are
the two orthogonal reference signals. The amplitude A, frequency w, and phase  can
be extracted after mixing with a multiplier and filtering by integration. b The
quantum double lock-in amplifier. There are two identical quantum mixers. For
each quantum mixer, the coupling between the probe and the signal is described by
i int = %M (t)o, where M(t) = S(t) + N(t) includes the target signal S(¢) and the

noise N(#). The mixing modulations H ., = %QPDD(t)&x and H,, = %QCP( )0,

(implemented by the periodic dynamical decoupling (PDD) and Carr-Purcell (CP)
sequences respectively), which do not commute with H,_,, are analog to the two
reference 51gnals V,1(t) and V»(¢). Each mixer obeys the Hamiltonian

H=H, + Hmﬂ 5> which can be regarded as a single quantum lock-in amplifier.
The mixing process is achieved by non-commutating operations, and the filtering
process is realized by time-evolution. The combination of the two quantum lock-in
amplifiers forms a quantum double lock-in amplifier, which can extract the com-
plete characteristics of the target signal S(¢) = A sin(wt + f).

characterized by orthogonal filter functions. In our protocol, each quantum
interferometry using a specific periodic multi-pulse sequence serves as a
single quantum lock-in amplifier. Specifically, we select the PDD and CP
sequences as the two orthogonal periodic multi-pulse sequences. Addi-
tionally, the XY4-N sequences'* ", with appropriate delays, can also be
employed to realize the quantum double lock-in amplifier. Further, to
demonstrate the feasibility of our protocol, we illustrate its implementation
using a five-level double-A coherent population trapping (CPT) system
consisting of ¥Rb atoms with PDD and CP pulse sequences. By appro-
priately adjusting the detuning, the five-level double-A system can be split
into two A systems' ™, serving as the quantum mixers for the quantum
double lock-in amplifier. The utilization of the five-level system offers sig-
nificant advantages, including a reduction of nearly half the total mea-
surement time and the avoidance of additional time-dependent systematic
errors compared to conventional two-level systems. Furthermore, we ana-
lyze the impact of finite pulse length and stochastic noise to demonstrate the
experimental feasibility of our approach. Numerical results indicate that the
quantum double lock-in amplifier exhibits robustness against these
imperfections. Our scheme provides a practical pathway for accurately
measuring the complete characteristics of an alternating signal within a
strong noise background.

Results

General protocol

In this section, we introduce the general protocol of a quantum double lock-
in amplifier, which aims to extract the complete characteristics of a target
signal within strong noise background. In general, a conventional classical
lock-in amplifier cannot effectively extract the phase information of the
target signal. However, a classical double lock-in amplifier can solve this
problem. By mixing the input signal V(f) = S(f) + N(t) with two orthogonal
reference signals V,(¢) = sin(w,,t) and V,(¢) = cos(w,,t) respectively
and integrating the two mixed signals over a certain time, the target signal
can be extracted, see Fig. 1a. Here, S(t) = A sin(wt 4 f3) is the target signal
submerged in the noise N(f) and all three parameters (A, w, §) are unknown
to be measured and unchanged in measurements. The two multipliers,
which are described by VIX(t) = V(£) X V()
V(1) = V(t) X V,(t), are used for mixing input and reference signals.
The integrator is used to filter out the components whose frequencies are
different from the reference frequency w,,,. One can find that at the lock-in

cos([i) and
Q= TSm(ﬁ). Therefore, at the lock-in point, one can obtain A =
2+4/I* + Q*/T and B = arctan(Q/I) for the target signal*>*’. In particular,

and

point w,, =w, the two output signals are given as I =

if the noise spectral components are far from the reference frequency w,,,, the
noise effects will be averaged out through the integration (see Supplemen-
tary Note 1 for more details).

In analogy to a classical double lock-in amplifier, a quantum double lock-
in amplifier can be realized by using two orthogonal multi-pulse sequences,
which act the role of two orthogonal reference signals. Generally, to realize the
quantum double lock-in amplifier, one can choose any two multi-pulse
sequences whose filtering functions are orthogonal. The spacing of the adja-
cent 77 pulses is 7,,, and one can define the carrier frequency w,, = 71/7,,,. As the
applied multi-pulse sequences (acting as the reference signal) are non-
commutating with the target signal”'*", one can mix the input signal and the
reference signal. And then the following time-evolution filters out the noise
spectral components different from the reference frequency w,,,.

To illustrate our protocol, we consider two individual two-level systems
such as NV center”*"* and single trapped ion'’ whose energy levels are
labeled by | 1) and | | ). For each two-level system, the coupling between
the probe and the external signal is described by the Hamiltonian H,, =
h 5 M(t)o, with the Pauli operators 6, v . The external signal M(t) = S(¢) +
N(t) consists of the target signal S(f) = A sin(w? + ﬁ) and the stochastic
noise N(t). Here, we consider the mixing term H,; = B Q(#)6,, which does

not commute with H, . Thus, the whole Hamiltonian reads

. h
H = mt + Href = 5 [M(t)ﬁz + Q(t)&x] . (1)
The time-evolution obeys the Schrédinger equation,
a W(t
| B(t) s 1 [M(t)a + Q(1)5, ] 1¥(1))s, (2)

where |‘I’(t)> denotes the system state. In the interaction picture with
respecting to H,; (See Supplementary Note 2 for more details), the time-
evolution obeys

ref

al\g(:) ) 1M(t) [cos(a(t))a + sin(a(t)) ] vy, G
with a(t) = fot Q(t")dt'. The instantaneous state at time f reads
(1)), = G o=t [8.05, 46,05, 1¥(0)),, (4)

where 7 denotes the time- ordering operator, and ¢,(t) = Jo w,(t")dt’ and
(/)Y(t) = fo w. (t )dt’ with angular frequencies w, () = M(t) cos(a(t)) and
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Fig. 2 | The parameter dependence of the two total accumulation phases ¢:DD and
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¢SP. a The variations of ¢?°P versus (7 — 7,,,) and 8. b The variations of the phase
¢5DD versus (7 — T,,) with =0, 7/6, 71/2. The phase ¢£DD is symmetric (or anti-
symmetric) with respect to the lock-in point 7 = 7,,, when =0 (or = 71/2), and is
not symmetric with respect to the lock-in point 7 = 7,, when 8 = 71/6. ¢ The variations
of (bSP versus (T — T,,,) and f. d The variations of ¢SP versus (T — T,,,) with =0, 71/
6, 71/2. The phase ¢C” is antisymmetric (or symmetric) with respect to the lock-in
point 7= 7, when 3 = 0(or = 71/2), and is not symmetric (or antisymmetric) with
respect to the lock-in point 7= 7,,, when f8 = 71/6. Here, A = 1/100, w = w and n = 50.

w,(t) = M(t) sin(a(t)). In our scheme, the time-dependent modulation
Q(f) is designed as a sequence of 7 pulses with equidistant spacings. This
technique is mature and has been widely used in quantum sensing for
measuring an oscillating signal in the presence of noises'”'""*'***™*, In
experiments, the 77 pulse sequences can usually be approximated as square
waves,

n/Tq, |t —t<Tq/2,
0, others,

O(t, T) = { 5)

where T, denotes the pulse length. In the limit of T, — 0, the 7-pulse
sequences can be described by hard pulses

NP
Qty=mY_ ot —(—MNr,], (6)
=1

with §(¢) being the Dirac ¢ function, N, denoting the pulse number, 7,,
describing the spacing of the adjacent 7 pulses, and the parameter A
determining the relative phase with respect to the target signal. Here, as an
example for realizing our quantum double lock-in amplifier, we choose two
orthogonal sequences: a PDD sequence (A =0) and a CP sequence (A =1/
2)"”, which can be easily realized with current experimental
techniques'*'""* (see Supplementary Note 2 for more details). In addition
to the above sequences, the XY4-N sequences with suitable delay can also be
applied to realize the quantum double lock-in amplifier. For hard 7 pulses,
one can easily find a(t) = f(; Q(t')dt’ = N,m, therefore we have
sinfa(t)] = 0. Initializing each quantum system into the state
W), = (| T> + | ¢>)/ V2, in the interaction picture, the instantaneous
state at time ¢, = n7,, becomes

—i [ M) coslat)dt &
M(t,)), =e i [ coslat)] ),

(7)
=(11)+e*11)/V2,

with 7 chosen as a even number to suppress DC noise'”. For the results
determined by the density matrix p = [¥) ([, the global phase e~*#»/? can
be ignored. Back to the Schrédinger picture'®"!, the output state is

(1)) = (1) +eC070] 1)/V2, (8)

with the pulse number N, For PDD and CP sequences, the total accumu-
lation phases are

o _ 24 {w + ,3}
o |@ (T —7)] sin [nw - (1, — 1)/2] ©)
COS{ 2 } sin[w~(‘rm—‘r)/2] ’
and
oo _ 24 g [7"“’ =7 /3}
‘ (10)

« . (w- (1, —71)\] sin[nw - (r,, — 1)/2]
{1 " S‘“( 2 )} sinfw - (7, — /2]’

respectively (see Supplementary Note 2 for more details). Here 7 = 7r/w is the
half period of the target signal. Obviously, given =0 (8 =7/2), $tPP is
symmetric (anti-symmetric) and ¢ is anti-symmetric (symmetric) with
respect to the lock-in point 7, = 7, see Fig. 2. However, the symmetry of
@PPPCP) will be destroyed when 8 # 0 (or B # 71/2), see Fig. 2. Different from
the classical lock-in amplifier, which defines the lock-in point based on the
reference frequency w,,, the lock-in point of our scheme is defined according
to the half period of target signal 7'°.

In the stage of signal extraction, an unitary operation U = e~ is

applied for recombination and the readout state becomes |¥), =
[—isin(%;ﬂ M+ cos(¢—2;‘)| ¢>] with ¢/ = (—1)"r¢, . Hence the final
— cos(¢FPP)]/2 and
[1 — cos(¢SP)]/2 respectively. The corresponding expectations of z-
component Pauli operator are (UZ)PDD cos(([)PDD ) and (o, )SP =
— cos(¢S?) respectively. For =0 (or B = /2), PPDD(CP) and (6 Z)EDD(CP) are
both symmetric with respect to the lock-in pomt T=Ty,. Thus through
modulating the pulse repetition period T,,, one can determine the lock-in
point from the pattern symmetry, and the amplitude can be extracted from
Eq. (9) or Eq. (10) via a fitting procedure’'*"'***, However, when f8 # 0 (or

probability of the probe in the state | T> are P[T’%D =1
PP =

B # 7/2), the phase ¢"PP(P) is not symmetric with respect to the lock-in

PDD(CP) and (&Z)gDD ©P) are destroyed,

point 7= 7,,. Thus the symmetry of Py
see Fig. 3. This means that one cannot determlne the lock-in point from the
spectrum and extract the target signal S(f) only by means of a single PDD or
CP sequence. Below, we introduce how to solve this issue via the quantum
double lock-in amplifier. To analyze our protocl analytica]ly, we divide the
target signals into two types: (i) the weak signals of 2 < 5-and (ii) the strong
signals of 4> 5L

For weak 31gnals, ie., A < 2 - we choose the sum of PPDD and PCP asa

measurement signal to recover the spectrum symmetry, that 1s,
__ pPDD CP
PYw =Pra + Py,

- (A)2 {sin[mu (1, —1)/2]]"

w sin[w - (1,, — 7)/2]

(11)

Obviously, Py} is symmetric with respect to the lock-in point 7,, =7
again, see Fig. 3e, f. Thus, one can determine the lock-in point from the
symmetric pattern of PST‘“; versus (7,, — 7), which can be obtained by
adjusting the spacing 7,,, of adjacent 7 pulses. Our analytical results are well
consistent with the numerical ones, even for the case of % = ﬁ Once the
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Fig. 3 | Extraction of a weak target signal. a, bThe variations of the measurement
signals PYOP versus (7., — 7)/7. The measurement signals PXOP is not symmetric
with respect to the lock-in point 7,, = Tand it is well con31stent with the analytically
approximate result. ¢, d The variations of the measurement signals PCP versus

(7,, — 7)/7. The measurement signals P ', is not symmetric with respect to the lock-
in point 7, = 7 and it is well consistent w1th the analytically approximate result.

e, f The variations of the measurement signals PS“m versus (T, — 7)/7. The mea-
surement signals P! is symmetric with respect to the lock-in point 7,, = Tand it is
well consistent w1th the analytically approximate result Eq. (11). Here, we choose
2nAlw =0.1 [left: (a), (c), and (e)] and the critical case 2nA/w = 1 [right: (b), (d), and
(f)] with n=100, f=— 71/6 and w = 7.

value of w is determined via the the lock-in point 7,, = 7, one can extract A
from Eq. (11) via a fitting procedure’*”’. Moreover, due to the value of w and
A are both extracted, one can determine 3 from PPDD or PCP Thus the
complete characteristics of the target signal can be obtarned w1th1n our
scheme.

For strong signals, i.e., 2>, the Taylor expansion is no longer valid
and one cannot obtain the target signal via the measurement signal Py To
resolve this problem, we choose the sum of (g, )PDD and (0, ) as a new
measurement signal, that is,

(@)

= (G P+ (6,5

= — [cos(ngDD) + cos(gbsp)]. (12)

At the lock-in point 7,, = 7, it reads

(&Z);‘f;";:T = —cos {% cos(B) - n} — cos {% sin(f) - n] , (13)
which is an exactly bisinusoidal oscillation. By using a fast Fourier transform
(FFT), one can determine the lock-in point by judging whether (5,)7"™ has
bisinusoidal oscillatory pattern. In comparison to PST“?, the FFT of (4,))™
does not contain the zero-frequency component and it is easy to determine
the lock-in point from the FFT. In our analysis, we consider a series of
measurement results (5,)5"" for different evolution times t, = nt,,. As
shown in Fig. 4a, we give the FFT spectrum of (6,))"" versus 7,,. When
T,, =T, the FFT spectrum has only four peaks and therefore we can
determine the lock-in point via its inverse participation ratio (IPR)*™,
which is defined as

Ny /2 4
21

IPR —T
I Bl

(14)

IPR
0 0.1 02
- (b) 2x107
Lock in point|
w
0
0.2 g
(C) 2x107° &
R F2x1073
2x10
-5
(E) 3x10
o
3107
400 1200 2000
nm

Fig. 4 | Extraction of a strong target signal. a The fast Fourier transform (FFT)
spectrum of (g, )S“m versus (7,, — 7) with even positive integers n up to n,, = 400.
Given 7 = 7, the FFT spectrum just has four peaks and one can use it to determine
the lock-in point. b The inverse participation ratio (IPR) versus (7,, — 7). The
maximum of IPR can be used to determine the lock-in point. ¢ The inset for the local
amplification region in (b) and denotes the shift of lock-in point D. d The FFT of
(6,)3™ at 7,,, = 7. The four peaks locate at wiiry/w = 2 2 Alsin(B)| = 0.637,

WEpP /w = 2 Al cos(B)| = 1.103, wipy /o = (m — w{:’FD-P/w) and W5 /0 =
(m — w§py/w) respectively. e The variation of the shift D versus the maximum
sensing scanning time n,,. Here, we choose A =2, f = —7/6, and w = 7.

with F = 307 cen (0,00 e (_""k) |Fy| is the FFT amplitude corre-
sponding to FFT angular frequency wp = kZ2(k=1,2,-+,n,/2) and
t, =n,t, is the maximum sensing time. Affer some algebra, when
w(n‘rm - T) <« 1 and n,, — oo, we have IPR = 1/4 for 1,, = 7 and IPR = 0 for
T, # T (see Supplementary Note 3 for more details). Given 7,, = 7, the four
peaks appear at WS = 24| sin(B)|, wiEP = 2A| cos(B)], WreR = (mw —

wfPP) and @ wFFT = (mw — W) respectively, see Fig. 4c. In which, the two
peaks at w$h. and wERP correspond to the two oscillation frequencies of the

measurement 51gnal ( n|r - Thus, the values of A and B are given as

1
A= + oy "
and
|B| = arctan (wFFT/ ‘UEETD) (16)

which is similar to a classical double lock-in amplifier. Moreover, one can
determine the sign of parameters f3 from (0. )pDD or (0 ) .Thesign of S can
be uniquely determined by the derivation of (O'Z)l;D or (oz)nP with respect
to the pulse repetition period 7,, for three different modulation periods
T, = (T — d1), T,y = 7 and 7, = (1 + d7), in which dr is the spacing of two
adjacent pulse repetition periods (see Supplementary Note 2 for more
details). Considering the coherence time of a quantum system is limited in
experiments, we numerically calculate the systems under moderate n,,
satisfying n,,, < 2 with the coherence time T,”'*"”. It is shown that IPR = 1/4
for 7,,,= Tand IPR ~ 0 for 7,, # T, thus we can still extract the frequency w by
finding the maximum of IPR, see Fig. 4b. Further, given the measurement
signal (3,);"™|; _.,wecanextract A and 8 via Egs. (15) and (16), see Fig. 4d.

In experlments, the coherence time T, is finite and thus the value of ,,,
should satisfy T, > n,,7. Given the value of #,,, the frequency wggr can only
take discrete values w, = k 2”"J(k 1,2,++, n,,,/2), and thus the lock-in point
may be shifted. In Fig. 4c, we show the frequency shift D of the lock-in point.
We numerically calculate how the frequency shift D varies with #,,, and find
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Fig. 5 | Schematic of the quantum double lock-in amplifier via five-level double-A
coherent population trapping (CPT) in *Rb. a Five-level double-A configuration
of “Rb atom which includes |1) = |[F = 1,m; = —1),2) = |F = 2,m; = —1),
13)=|F=1,m;=1),|4) =|[F=2,m;=1)and |5) = |F' = 1,m; = 0).

b Realization of the quantum double lock-in amplifier. Initialization: preparing the
two dark states as the initial states. Sensing: coupling the two ground states {|1), |2)}
and {|3), |4)} through the periodic dynamical decoupling (PDD) and Carr-Purcell
(CP) sequences respectively. Here, T, denotes the 7 pulse length, 7,,, is the pulse
repetition periods and the total sensing time is ¢, = n7,,. Detection: a CPT pulse with
2 ps is imposed to detect the common excited state population via fluorescence or
transmission spectrum.

that the envelop of D decreases with 7,, due to the resolution ratio of FFT
frequency wgpr is (W, — @) = zr’[’—m‘” « 1/n,,, see Fig. 4e.

Experimental feasibility

Our quantum double lock-in amplifier can be realized via a double-A CPT
system, in which each A system is employed as a quantum mixer. As shown
in Fig. 5a, the double-A CPT system can be realized by simultaneously
coupling two independent two-level systems ({|1), |2)} and {|3), |4)}) witha
common excited state (|5)), which has been extensively observed in alkali
atoms such as Cs***** and Rb'***, Moreover, such a system can be divided
into two single- A systems by splitting the Zeeman sublevels of their ground
states'””’, which provide the two independent physical channels. For every
single- A structure, the population of the excited state reflects the coherence
information of two ground states"’”'. Therefore, for this double-A CPT
system, the population of the common excited state includes two groups of
ground states coherence information, and it may act the role of the sum of
two-level systems with PDD and CP sequence modulation”. The simulta-
neous coupling of these two physical channels can be achieved by lin||lin
CPT scheme, in which two CPT light fields are linearly polarized to the same
direction and orthogonal to the applied magnetic field"*~*".

In general, for a single-A system, the CPT lasers will pump the atoms
into a dark state which is a coherent superposition of two ground states”>***".
To achieve our quantum double lock-in amplifier, we can simultaneously
prepare two dark states as the initial states of two physical channels by a CPT
pulse with just one laser and a fiber-coupled electro-optic modulator (EOM)
for different tones and such a CPT system has been realized in several
laboratories”. After the initialization via CPT pulse, the prepared two dark
states can independently accumulate phases under the control of PDD and
CP sequences, respectively. During the signal interrogation process, the
applied PDD and CP sequences only couple the ground states in the same
quantum mixer, see Fig. 5a. Due to the action times of PDD and CP
sequence pulses are different, one can utilize just one microwave synthesizer

or just a laser beam to realize 7 pulses via the microwave or Raman lasers,
which are both very mature with current experimental technology* ™. In
comparison to the protocol via separately applying different sequences on
the same two-level system”*'""**%, in our protocol with a five-level system,
the two orthogonal sequences are applied simultaneously and thus one can
save near a half of the total measurement times. Meanwhile, the relative
phase of the two orthogonal sequences in five-level system can be tuned
easily. Then through applying the CPT pulse, the coherent property of
ground states becomes proportional to the population of the common
excited state, which can be experimentally detected by fluorescence or
transmission spectrum'’~"**, In particular, the summed signal in our
quantum double lock-in amplifier can be directly obtained by only one
single measurement on the common excited-state population. In the fol-
lowing, we show an example of quantum double lock-in amplifier via a five-
level double-A system constructed by the D1 line of “Rb atoms. The
involved energy levels include two groups of magneto-sensitive states {|1) =
|F=1,m;=—1),12) = |F =2,m; = —1)} and {13) =
|F=1,mp = 1>, |[4) =|F=2,mp = 1>} coupling with a common
excited state |5) = [F' = 1, m; = 0), as shown in Fig. 5a. Their eigen fre-
quencies are respectively labeled as wj(j= 1,2, 3,4, 5). The total decay rate
from the excited state (|5)) to the four ground states is I' = 27 x 5.746 MHz.
To perform the simultaneous coupling, the CPT pulse should contain four
frequency components (wp;, Wiy w3, wre) Wwith Rabi  frequencies
(Q1, Q, Q3, Q4), which can be generated by modulating a single laser with a
fiber-coupled EOM. For convenience, one can set the four Rabi frequencies
Q= Q are real and the four decay rates y;=I/4 (j = 1,2, 3,4)""*. The time-
evolution obeys the Lindblad master equation®,

op i ST/ Lape . 1 t.
g=_£[H,,J}+ZZ(L].,)LJ, —LLp—2pLiL; ). (17)

where I:]- = |j)(5| is the Lindblad operator, and p is the density matrix. In
the rotating frame, the Hamiltonian matrix is given as

-8 -5 0 0 0 oy
0 -6 +5 0 0o o
H=h 0 0 S -% o o | (1
A *
0 0 0 &L+2 Q
Q Q 0

where A; = (w; + wr;) — (w1 + wry) and Ay = (w4 + wry) — (w3 + @ 3) are
the two-photon detunings, and &) = [ws — (w, + wr, + w1 + wr;)/2] and
6, = [(wg + w4 + w3 + w1 3)/2 — ws] are the average detunings.

In order to realize the quantum double lock-in amplifier, we input two
dark states |D12> =(|1) — |2))/+/2 and |D34> = (|3) — |4))//2 as two
probe states which can be prepared via CPT procedure. In experiments, one
can prepare the two dark states via setting a big gap between the average
detunings &; and &, which satisfy the far detuning condition:
&, = 01> {Q, A1 5}, see Fig. 5b. Thus the corresponding density matrix reads
pp = 1 (ID13) (D, + ID3y)(Dsy]). During the signal interrogation pro-
cess, due to the two physical channels have different resonance frequencies
and there is a strong bias field magnetic field By;,s, the two dark states |D12>
and |D,,) will independently accumulate phases ¢*°° and ¢3” under the
corresponding PDD and CP sequences (see Supplementary Note 4 for more
details).

In our calculations, the two physical channels {|1), |2)} and {|3), [4)}
are decoupled in the whole process due to the far detuning condition, and
the detunings are set as §; =0, =2mx1MHz. At time t, =nt,, before

detection, the density matrix is pr=
(11a(t)) (¥l W)Vt ) 2 with  [¥(t,)) =
(11) — € 12))/+/2 and [¥3,(t,)) = (I3) — € |4))/4/2. At last, a CPT

query pulse of 2 ps is imposed to obtain the population of the common
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Fig. 6 | Numerical results of the quantum double lock-in amplifier via five-level
double-A coherent population trapping (CPT) in ¥Rb. a Locking of a weak target
signal via the normalized common excited-state population pss versus (7, — 7). The
numerical results of pss/a (dashed red line) fit well with the sum of excited-state
populations given by two independent A configurations (solid blue line), and they
are both consistent with the analytical approximation (dotted green line). Here,
By=1nT, n=200, w=2m x 50 kHz (7= 10 ps), f = — 71/6, and Tq, = 2 us. b Locking
of a strong target signal via the IPR versus (7,, — 7). The inverse participation ratio
(IPR) approach its maximum at the lock-in point 7,, = 7. ¢ The fast Fourier transform
(FFT) spectrum of p55 . for 7, = 7. The first two peaks are 0.587 and 0.968 which are
very close to the theoretical ones wSr; /w = 2A] sin(B)|/w = 0.561 and

WhRP /w = 2A| cos(B)|/w = 0.971. Here, By =2 uT, n=2,4,-,400, w = 27 x 50
kHz(r =10 ps), B = — 7/6, and T =2 ps.

excited state. Here, the transmission of CPT light can be converted as the
transmission signal (TS) via a photodetector'*’, which is proportional to
(1 — pss), i.e., the absorption is proportional to the excited-state population
pss. Moreover, the common excited-state population can be expressed as

QZ
PSS‘nzF [1 + 20(py ) + 25)t(P34‘n)i|

NQZ ) cos((pEDD) cos(gbgp)
fo{ S22 }

(19)

where $R(x) denotes the real part of xand p;; , is the density matrix element at
time t,, reflecting the coherence of p;, , and ps4, (see Supplementary Note 4
for more details). Further, according to Eq. (19), for a weak signal, we have
the common excited-state population

Q? (A)2 [sin[nw(fm—f)/Z]] g

pSS,n: T \w sin[w-(7,,—7)/2]

(20)
which is proportional to the measurement signal P! given in Eq. (11).
According to Eq. (20), one can extract the weak signal from the common
excited-state population pss,, which is proportional to the CPT light

absorption and can be detected via a photodetector'™"’. For a strong signal,
we define

used to extract the strong signal (see Supplementary Note 4 for more
details).

Therefore, according to Eqs. (19) and (20), one can successfully
extract the target signal from the population of the common excited-state
in a five-level double-A CPT system. In experiment, one can obtain the
common excited-state population pss, and further obtain p,;, by
adjusting the spacing T,, of adjacent 7 pulses. In our consideration, we
chose {|1),]2)} and {|3), |4)} to form two groups of magneto-sensitive
transitions with gyromagnetic ratios y;;=—yss=ys=—(g — g)us/
h=—1.0014 x 27 x 1.4 MHz/G, where yy is the Bohr magneton, {g;, &}
are the Landég factors for ground states F={1,2}, and pp/h=2mx 14
MHz/G and (g, — g1) = 1.0014. Below, for a target AC magnetic field in
form of By sin(wt + B), we use A = yB, to denote its amplitude. Based
upon currently available experimental techniques, we set the frequency
w =27 x 50 kHz, the initial phase f = —n/6, the 7 pulse length T =2 ps,
and the Rabi frequencies Q = 0.035 x £ for simulation'*'******, To split
the Zeeman sublevels, a bias magnetic field By, =0.143 mT is applied
while the two-photon detunings are set as A; = A, =0, leading to the
average detunings §; = §, = 27 x 1 MHz.

Our numerical results from the Lindblad master equation (17) are well
consistent with the analytical ones given by Egs. (19) and (21), see Fig. 6. For
a weak target signal, such as a magnetic field of By =2 x 10~° T satisfying
4 < L one can obtain the information of the target signal by measuring
Pssns see Fig. 6a. Based upon the numerical simulation of Lindblad master
equations, the normalized common excited-state population (pss/a with the
normalization coefficient a = %z) given by a five-level double-A system (red
dashed line) fit well with the sum of excited-state populations given by two
independent A systems (blue line). Moreover, these numerical results are
both well consistent with the analytical ones of Eq.(19) (green dotted line).
Thus one can determine the lock-in point to extract the frequency w from
the common excited-state population. In addition, one can determine the
initial phase via only performing extra independent CP or PDD measure-
ments for three specific modulation periods 7,,= (7 —dr), 1,,=7 and
T, = (T+ dr) (see Supplementary Note 2 for more details). For a strong
target signal, such as a magnetic field By=2x 10~° T satisfying 2 >, one
can determine the value of w via the IPR given by the FFT spectrum of the
measurement signal p; ., see in Fig. 6b. Therefore one can extract A and 8
from the FFT spectrum of p, . at the lock-in point 7,,= 7, see Fig. 6c.
Similarly, we find the numerical results are well consistent with the analy-
tical ones, see Fig. 6b, c. The little deviation of numerical between analytical
results is because that the pulse is not a ideal Dirac § function but a square
pulse of a finite length T = 2 ps. Overall, comparing with the protocol with
two-level systems, our protocol with five-level double-A system can dra-
matically reduce the total measurement times and avoid additional time-
dependent systematic errors (see Supplementary Note 4 for more details). In
addition, a single NV center in diamond is a system with electron spin
(S=1) and nuclear spin (I = 1), thus it may be able to realize the double-A
five-level via delicate design’™".

Robustness

In experiments, there are many imperfections that may influence the lock-in
signal. Below we discuss two key imperfections: the finite pulse length T
and the stochastic noises'****’. Firstly, we consider square pules and analyze
the influence of their pulse length T, on our scheme. According to Eq. (4),

for a weak target signal, we can ignore the time-ordering operator 7, that is,

(), = e 400705 (o)), with 1¥(0)), = 111)

. Hence, after

~ 1 M an unitary operation U = ¢~ for readout, the population in the state | )
Pssn = Pssn — m Z Ps50 reads
m n’'=2,even (21)
o PDD cp
~— —|cos + cos /
2r2 [ (¢n ) (¢n )] 1— COS( ¢y(tn)2 + ‘pz(tn)z) (22)
Py~ :
’ 2
which is proportional to (6,)5"™ given in Eq. (12). At the point of 7,,, = 7, we
have ps; = — & [cos(Z cos(B) - n) + cos(2sin(B) - n)], which can be
Communications Physics| (2024)7:189 6
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Fig. 7 | The influence of finite pulse length on the quantum double lock-in
amplifier. a For the weak target signal measurement, the normalized excited state
population pss/a versus (7, — 7) with different pulse length T, = 0 (solid blue line),
T =2 ps (dashed red line) and Tq, = 4 us (dotted green line). It indicates that the
pulse length does not affect the lock-in point when T < 0.4 7. Here,By = 1 nT,

w =27 x 50 kHz (=10 ps), f = —n/6, n =200 (n7 =2 ms). b For the strong target
signal measurement, the inverse participation ratio (IPR) versus (t,,, — 7) with dif-
ferent pulse length T, = 0 (solid blue line), T, = 2 ps (dashed red line) and T =4 ps
(dotted green line). It also indicates that the pulse length does not affect the lock-in
point. ¢ The fast Fourier transform (FFT) results of p, , in the case of 7,, = 7 with
different pulse length T = 0 (solid blue line), T, =2 ps (dashed red line) and

Tq =4 ps (dotted green line). d The relative error relative deviation of the amplitude
By and the phase 8 versus the pulse length Tq. The effect of pulse length T, can be
ignored if T < 0.4 7. Here, By =2 T, w = 2 x 50 kHz (=10 us), f = —7n1/6

and n=0, 2, 4,--+, n,,(n,, =400, n,,v =4 ms).

The analytical results of Eq. (22) are well consistent with the corre-
sponding numerical ones (see Supplementary Note 5 for more details). To
show the influences of the pulse length T, we numerically calculate the
common exited-state population pss, in double-A system with
T =1{0,0.2 7, 0.47}. It indicates that the finite pulse length T, almost has no
effects on the lock-in point, see Fig. 7a. For a strong target signal, one can still
extract the frequency via the periodicity of the measurement signal (6,,)5"™
When 7,, =T, we have H(t + 27,,) = H(t) and the IPR reaches its max-
imum. We also numerically verify that the pulse length T, indeed does not
affect the lock-in point, as shown in Fig. 7b. Moreover, we numerically
calculate the FFT spectrum for different T, at the lock-in point 7,,, = 7, see
Fig. 7c. In addition, in order to estimate the influence of the pulse length T,
we numerically calculate the relative deviation of the amplitude B, and the
phase B for different To. They are OB = (Bf'—B,) and
811" = (IBI** — |PI). In general, the pulse length need satisfy 0 < T, < T
to avoid the mixing term become a continuous driving. Here, By and |f]|
denote the exact values, and B and || correspond to the estimated values
according to Egs. (15) and Eq. (16), respectively. Our numerical results show
that the effect of pulse length Ty, is small enough to be ignored when
To<0.4 7, as shown in Fig. 7d.

Below we will illustrate the robustness of our quantum double lock-
in amplifier against stochastic noise. In experiments, one of the most
common and most dominant types of noise is white noise. The white
noise is a random signal equably distributed in the whole frequency
domain and it is also called f; noise for its constant power spectral density.
Due to the PDD and CP sequences can enhance the part with frequency
fi= (szr—“)(k =0,1,2,---)", the signal-to-noise ratio (SNR) can be
effectivefy improved by these two sequences (see more details in Sup-
plementary Note 8). Here, we consider the signal and the noise couple to
the probe through the same channel, that is, the system obeys the
Hamiltonian ~ H(#, Tq,0)= gA sin(wt + ) + N(o,g)(t)] 6, + %Q(t)&x.
Here, N, () = 0N(o,1)(¢) denotes the Gaussian random noise with the

time-averaged value N, () = 0, and o= N/S is the standard deviation.
Thus, we have the corresponding SNR = — 10lg(N/S) dB*>”. To illustrate
the robustness of our scheme, we numerically calculate the two mea-
surement signals versus the modulation period 7,, under different noise
strengths. For a weak target signal, we calculate the population pss ,, versus
the difference (7, — 7) for different noise strengths o=0, o=100, and
0= 300, as shown in Fig. 8a. The stochastic noise almost do not affect the
lock-in point even under a large noise strength ¢ =100. Our protocol is
still hold for SNR > —20 dB after averaging over 20 times. For a strong
target signal, we calculate the IPR versus (7,, — 7) and the FFT spectra of
[355,“ for different noise strengths 0=0, 0 =5, and ¢ = 10, see Fig. 8b. Our
results show that the maximum IPR and the FFT amplitude decrease with
the noise strength. When SNR> —10 dB, one can still determine the lock-
in point via the IPR and extract the target signal via performing FFT on
Pss. (averaging over 20 times), see Fig. 8c. In addition, our scheme is also
robust against decoherence phenomenon causing by the population
decay, the depolarization noise arising from the optical pumping effect
(see Supplementary Note 6 for more details) and 50 Hz noise which
originates from the electrical power for a lab (see Supplementary Note 7
for more details).

In general, different quantum systems have different environments
and therefore different noise sources. For trapped-ion system, except for the
white noise and 50 Hz noise, the 150 Hz noise is also one of the most
common noise and can limit the ultimate measurement precision™**. For
the NV centers, the photon shot noise always exists and can affect the the
measurement’. Moreover, since the NV centers near the surface, the
interaction with external materials and spins also can affect the ultimate
measurement precision™”’. Their influences within our scheme are worthy
studied in future.

Discussion

In conclusion, we propose a comprehensive framework for implementing a
quantum double lock-in amplifier utilizing two orthogonal dynamical
decoupling sequences: PDD and CP sequences. This scheme establishes a
quantum counterpart to the classical double lock-in amplifier. We mathe-
matically derive a general formula for measuring an AC signal in the pre-
sence of strong noise using our quantum double lock-in amplifier, which
relies on two quantum mixers subjected to orthogonal modulations. Our
protocol enables the extraction of the complete characteristics, including
frequency, amplitude, and initial phase, of the target AC signal. In the case of
a weak target signal, the lock-in point can be determined by exploiting the
symmetry of the combined measurement signal, allowing for subsequent
extraction of the amplitude and, the phase through a fitting procedure. For a
strong target signal, the target signal can be extracted from the FFT spectrum
of the combined measurement signal. We also compare the measurement
sensitivity of the amplitude A achieved by two methods for weak and strong
signals at the lock-in point (see supplementary Note 9). In the previous
scheme®, the frequency is measured via sweeping MW strength Q firstly,and
then measure the amplitude and the phase via Rabi oscillation. Differently,
our scheme measures the frequency via modulating the pulse repetition
period 7, and can extract complete information about the signal’s ampli-
tude, frequency, and initial phase simultaneously.

Furthermore, we illustrate the realization of a quantum double lock-in
amplifier using a five-level double-A CPT system of Rb as an example. In
this five-level double-A CPT system, the common excited state population
can be measured to obtain two measurement signals: pss, and ps; .
Compared to implementations using two-level systems, our experimental
proposal based on a five-level system can significantly reduce the total
measurement time and avoid additional time-dependent systematic errors.
Moreover, the system control complexity does not increase appreciably and
all necessary techniques are compatible with current experimental cap-
abilities. Our scheme also demonstrates strong robustness against finite
pulse length and stochastic noise. Owing to the highly developed quantum
control methods, various physical systems are well-suited for realizing
quantum double lock-in amplifiers. These include Bose condensed
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Fig. 8 | Robustness of the quantum double lock-in amplifier against white noises.
The parameters for the target signal are chosen as wo = 27 x 50 kHz (7= 10 ps) and
3 = —mn/6.a For a weak target signal with By = 1 nT, the normalized common excited-
state population pss/a after 200 7-pulses versus (7, — 7) under different signal-to-
noise ratio (SNR = —101Ig(N/S) dB) with N/S =0 (solid blue line, without noise),
N/S =100 (dashed red line) and N/S = 300 (dotted green line). b For a strong target
signal with B, =2 pT, the inverse participation ratio (IPR) versus (z,, — 7) under
different SNR N/S = 0 (solid blue line, without noise), N/S = 5 (dashed red line) and
N/S =10 (dotted green line). ¢ The fast Fourier transform (FFT) spectrum of Pss.q i
the case of 7, = T under different SNR N/S = 0 (solid blue line, without noise),

N/S =5 (dashed red line) and N/S = 10 (dotted green line). In (b) and (c), the pulse
number is chosen as n =0, 2, 4,-+-,400.
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atoms™™®, trapped ions**, nitrogen-vacancy centers in diamond™
doped spins in semiconductors””, and even “artificial atoms” like super-
conducting qubits”"*”* and so on. Meanwhile, how to realize the five-level
structure in other quantum systems for achieving our scheme still have open
questions, and should be carefully analyzed and studied in future. Fur-
thermore, our protocol could enable the development of practical quantum
sensors, such as magnetometers'””>”", atomic clocks™™®', weak-force
detectors", and noise spectroscopy detector”*"*,

Methods

Calculation of the common excited-state population

According to Egs. (17) and (18), we can obtain the time-evolution of the
density matrix p (see Supplementary Note 4 for more details). After the
adiabatic elimination (¢>> § and %Pss = 0) and assuming the four Rabi
frequencies satisfy Q= and {(, 6} <T, we can derive the common
excited-state population

Q
Pss
In our consideration, p;3, 14, P23, and pp4 are almost 0 before detection,
hence the population ps5 can be approximately given as Eq. (19). Due to the

two A configurations {|1),[2),[5)} and {|3),[4),]5)} have their density
matrix elements satisfying p5, = 2p,, and p}, = 2p,,, we have

1+ Z ‘h(p,)) (23)

ij=1i%j

QZ
Pss= T2 [(1 + N(p},) + g)‘(1321)) (1 + N(py,) + m(P:;s))]?

_9 — (14 2%(p;,) + 2%R(ps,))-

(24)

According to the above equation, we find that the five-level double A
configuration can be divided to such two A configurations.

Dyson expansion of quantum evolution .
In order to simplify the calculation of the time-ordering operator 7 in Eq.
(4), we consider the case of At < 7 and utilize the Dyson expansion

Ulty, 1) =7

[
o (=\" [f b
=1+ - <7> /ro dt, A dt

: / () B - (1),
(25)

with H(') = % [a)z(t/)frZ + wy(t’)&y] . In units of 7 = 1, one can obtain

000,0)=1~ 116,06, + 9,3

_i { / w,(t),(t,)dt, 62 + /0 wy(tl)gby(tl)dtl&f,}

_:11 UO w, (t,)¢,(t,)dt, 6,0, +/0' w, (£, (t,)dt, Erzay]
+ O0(¢*)

~1- i'[¢>Z(t)az +9,(6,] - 1[¢>§( 0+ 0]

L 8.06,(06,6, - / w (), (t)d[6,,5,)

+0(¢*)
(26)

and

- ‘H(Y) o,
Ug(O,t):exp/ Tdt

ty

— 1 [6.006, + 9,005,
- [¢>§(r)&§ + g0 + ¢y(t)¢z(r){ay, 51| +0@)

~1— *[ﬁb (o, + ¢, (o] — [¢§(t) +95(1)] + O(g).

27)

Thus, through using {6y, 6;} = 6,0; + 6,6 = 28, (i, j = x, y, 2), the time-
ordering operator T in Eq. (26) ¢ an be removed when ¢<2nA <1
corresponding to At < 7.
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