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Quantum systems evolve in time in one of two ways: through the Schrödinger equation or
wavefunction collapse. So far, deterministic control of quantum many-body systems in the lab has
focused on the former, due to the probabilistic nature of measurements. This imposes serious
limitations: preparing long-range entangled states, for example, requires extensive circuit depth if
restricted to unitary dynamics. In this work, we use mid-circuit measurement and feed-forward to
implement deterministic non-unitary dynamics onQuantinuum’s H1 programmable ion-trap quantum
computer. Enabled by these capabilities, we demonstrate a constant-depth procedure for creating a
toric code ground state in real-time. In addition to reaching high stabilizer fidelities, we create a non-
Abelian defect whose presence is confirmed by transmuting anyons via braiding. This work clears the
way towards creating complex topological orders in the lab and exploring deterministic non-unitary
dynamics via measurement and feed-forward.

Long-range entangled quantum states are central to different branches of
modern physics. They appear as error correction codes in quantum
information1, emerge as topologically ordered phases in condensed
matter, and play a role in lattice gauge theories of high energy physics2.
Quantum computers and simulators provide new means of exploring
such states and tackling their open questions3. A number of quantum
algorithms have been designed for these devices, many of which can be
decomposed into two steps: a state preparation step and a processing
step, in which e.g., unitary dynamics is applied4,5. For short-range
entangled states, the adiabatic theorem guarantees an (approximate)
encoding circuit whose depth is independent of the system size. In
contrast, long-range entangled states require circuits of extensive depth
for their preparation6 due to finite Lieb-Robinson velocities, which
bound the spread of correlation in unitary dynamics7. The stakes are
further increased by emerging evidence that scalable digital quantum
simulation of (short- or long-range entangled) fermionic systems
requires long-range entangled state preparation8–11. This situation is
problematic: coherence time is a precious resource for near-term quan-
tum computers and simulators and it should not be exhausted during
state preparation.

Fortunately, there is a loophole to these constraints imposed by uni-
tarity and locality. Introducing measurement during state preparation
violates the assumption of unitarity, such that correlations can be generated
instantaneously across the whole system.However, sincemeasurements are
random,deterministic state preparation requires conditional quantumgates
to be applied based on the outcome of the mid-circuit measurement—a
capability known as feed-forward. In effect, measurement allows one
to push all the non-constant depth into the classical channel, which is
effectively ‘free’ due to the large speed of light and the comparably much
larger cost of quantum gates.

The deterministic preparation of an excitation-free state is important
for the quantumsimulationof topologically ordered systemswithnon-error
corrected devices, but is also a common prerequisite for quantum error
correction protocols that realize universal gate sets12. Moreover, feed-
forward is indispensable for the efficient preparation of certain non-Abelian
states involving multiple layers of measurement13–18.

In summary, to prepare long-range entangled states deterministically
and in constant (quantum) depth, one requires feed-forward, mid-circuit
measurement and entangling gates, all with high fidelity and fast compared
to the coherence time of the platform.
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While individual elements of this triad have been demonstrated10,19–29,
combining all of these ingredients in oneplatform todeterministically create
long-range entangled states has proven elusive since the inception of this
idea more than a decade ago10,30,31.

Here, we demonstrate the deterministic, high-fidelity preparation of
long-range entangled quantum states using a protocol with constant
depth (as conceptually represented in Fig. 1), using Quantinuum’s H1
programmable ion-trap quantum computer32. The quantum computer
contains 20 qubits encoded in two hyperfine states of 171Yb+ ions and is
based on the quantum charge-coupled device architecture33,34. Crucially,
the qubit ions in this architecture are mobile. While cross-talk can be a
formidable challenge for mid-circuit measurement-based protocols, we
will see that the ability to move qubits far apart during mid-circuit
measurements transforms cross-talk into a negligible source of error
(compared to the two-qubit gate error). To certify this, we measure
fidelities and entanglement entropies of a “toric code” ground state on
periodic boundaries. A remarkable property of this entangled state is that
it admits localized deformations behaving like emergent particles which
are neither bosonic or fermionic35. These are called Abelian anyons, due
to their exchange statistics being described by commuting phase factors.
In addition, we also create the toric code state with two lattice defects,
called non-Abelian Ising defects36,37 which we use to demonstrate anyon
transmutation and braiding interferometry.

Results
Toric code preparation with feed-forward
We target the ground state of Kitaev’s toric code Hamiltonian35. For nota-
tional convenience, we represent the qubits as living on the vertices of a
square lattice38, described by

H ¼ �
X
p2A

Ap �
X
p2B

Bp; ð1Þ

where the operatorsA =X⊗4 andB = Z⊗4 areproductsofPauli operators that
act on the four-qubit plaquettes of the square lattice andA andB denote the
sets of X-type and Z-type plaquettes (cf. Fig. 2a). In the ground state,
Ap = Bp = 1 for all plaquettes. Any excited plaquette corresponds to
one of the aforementioned anyons: Ap =−1 (Bp =−1) is typically called
an e-anyon (m-anyon). Enabled by the effective all-to-all connectivity of the
ion-trap, we implement periodic boundary conditions.

This Hamiltonian realizes Z2 topological order
39,40, with four ground

states—while these all satisfy 〈Ap〉 = 〈Bp〉 = 1, they can be distinguished by
logical string operators that wrap around the torus.

To be specific, we target the unique ground state with logical expec-
tation values Zhori

� � ¼ Zvert
� � ¼ 1, as defined in Fig. 2. The expectation

value of the string and commuting plaquette operators certify the quality of
the state preparation, with an average of+1 indicating perfect ground state
preparation.

To prepare the ground state deterministically and in constant depth,
we use a three-step procedure: First, all ions are initialized in ∣0i, such that
hBpi ¼ 1. Second, we measure the Ap operator on all odd plaquettes,
effectively implementing the projectors ðI±X�4Þ=2 with equal probability.
This can be done with or without ancillae and we choose to demonstrate
both strategies, preparing plaquettes 4, 6, 12, and 14 with an ancilla-free
procedure while the measurements on plaquettes 1, 3, 9, and 11 are per-
formed with one ancilla each (Methods, see also Fig. 2 for our labeling
convention). Finally, we apply conditional single-qubit Z gates to flip all
plaquettes at which Ap =−1 has been measured, which one can physically
interpret as pairing up and annihilating the e-anyons. To find the location at
which the conditionalZ-gatesmust be applied, we use a simple lookup-table
decoder (Methods).

The topology of the toric code requires anyonic defects to come in
pairs; however, errors in the syndrome measurement process can result in
measuring an odd number of excitations. Therefore, we employ a state
preparation strategy—common to many quantum error correction or

repeat-until-success protocols—in which odd defect numbers are heralded
and the associated data is discarded. We note that unlike post-selection
on each plaquette individually, the fraction of retained data is not
exponentially small in the system size; thus we can view the discarding of
erroneous runs as a scalable part of the state preparation procedure itself,
and we report fidelities constructed from the retained data in the main text
(see Supplementary Fig. 3 for the raw data).

We test the quality of the state prepared in the above manner in two
ways. First, wemeasure the expectation values of theX⊗4 and Z⊗4 stabilizers
by performing destructive single-qubitmeasurements in theX- andZ-basis.
Their average plays the role of the energy density of (1) and is closely related
to the overlapwith the ground statemanifold41.We report an energy density
of −0.929 ± 0.004, indicating that a ground state has been prepared with
high fidelity. The expectation value of the two logical string operators
averaged over translations is close to 1 and equal up to statistical fluctua-
tions, Zhori ¼ 0:916 ± 0:0065;Zvert ¼ 0:914 ± 0:0064, indicating that the
target logical state is indeed responsible for the bulk of the overlap with
the ground space manifold. The average expectation of the X-type
plaquettes hApi ¼ 0:944 ± 0:0049 exceeds that of the Z-type plaquettes
hBpi ¼ 0:914 ± 0:0063. This is compatible with the fact thatmemory errors
in the device slightly bias the noise towardsZ-type phaseflips: The only two-
qubit gates in the circuits occur during the measurement of the X⊗4-
operator. Any Z-errors that occur on the data qubits during the ancilla-
based measurement circuit are transformed into X-error by the Hadamard
gates at the end of the subroutine. In turn, these bit flip errors corrupt the
neighboring Z-type plaquettes, while being invisible to the X⊗4-operators
(cf. SupplementaryFigs. 1, 3a).Toarrive at thesenumbers,we executed1240
repetitions of the state preparation procedure of which roughly 10% were
discarded via the heralded state preparation procedure. Half of the shots
were used to measure the X- and Z-stabilizers, respectively.

A second test for the quality of the state is the topological entanglement
entropy42,43. For short-range entangled phases, order parameters can usually
bedefined in termsof local linear functionals of thedensitymatrix. For long-
range entangled states, by definition, no such observables exist. Instead, it is
customary to partition a region into areas A, B, and C and compute the
topological entanglement entropy by measuring

γ ¼ �ðSA þ SB þ SC � SAB � SAC � SBC þ SABCÞ ð2Þ

Fig. 1 | Schematic representation of the toric code ground state from wave-
function collapse.We initialize a system of trapped-ion qubits (encoded in
hyperfine states of 171Yb+) in a product state where all stabilizers Bp = Z⊗4 = 1 (blue)
are satisfied. We measure Ap = X⊗4 on every other plaquette, randomly leading to
Ap = 1 (gold) or Ap =−1 (black, denoting an e-anyon). We use feed-forward to pair
up and annihilate the e-anyons in real time, deterministically producing a clean toric
code wavefunction using a finite-depth circuit and nonlocal classical processing.
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where SX is the von-Neumann entropy of the reduced density matrix of
subsystemX.While any state ofmatter which is related to a product state by
a finite-depth cirucit has γ = 0, in a phase with Z2-topological order
(implying the existence of e- and m-anyons), γ ¼ ln 2 for all Rényi
entropies44. Due to their non-linear nature, entanglement entropies are
expensive to measure in practice, requiring a number of shots that is
exponential in the size of the subsystem. Here, we employ the randomized
measurement scheme45–48 to measure γ for connected regions of up to six
qubits by computing the second Rényi entropies of their subsystems as
shown in Fig. 2d (Methods). We report average topological entanglement
entropies of γ= ln 2 ¼ 0:93± 0:055 and γ= ln 2 ¼ 1:05 ± 0:093 for the 2 × 2
and 2 × 3 regions, respectively, indicating that a state consistent with Z2
topological order has been prepared.

Anyon transmutation and interferometry
Having established a deterministic procedure to prepare toric code ground
states at constant depth with high fidelity, we are now in a position to study
simple dynamics on top of the ground state. To this end, we consider a
slightly modified geometry, introducing two defects into the system
(Fig. 3a)36,37. This defective state is only slightly harder to prepare than the
toric code ground state (Methods), and we report an average expectation
value per plaquette of 0.925 ± 0.0039 (Fig. 3b), comparable to the toric code
ground state considered before. The geometrywith defects lends itself to the
study of two types of dynamics.

In the first experiment, we study the transmutation of anyons. The
elementary excitations of the defect-free toric code are electric and
magnetic anyons (the aforementioned e- and m-anyons, respectively) as
well as their bound state. While such particles can be moved diagonally
through the systemand annihilated in pairs, their type isfixed throughout
the evolution. The insertion of a defect changes this situation: Moving an
anyon across the line connecting the two defective plaquettes allows the
particle to skip a square, moving between X-type and Z-type plaquettes,
and thus change its nature. We choose to create a pair of magnetic par-
ticles and move one of them across the defect on the path shown in
(Fig. 3c), performing a measurement on all qubits after each step. We

report final stabilizer expectation values of −0.92 ± 0.017 and
−0.89 ± 0.020 on adjacent plaquettes. The creation of a single electric-
magnetic pair is impossible in a defect-free toric code and is related to the
non-Abelian nature of the defect. Indeed, such an e−m composite is a
fermion (due to the mutual statistics of e and m anyons), and the defect
can be thought of as a Majorana zero mode whose fermion parity can be
toggled by pulling out a single fermion49. The data indicates that the
creation and movement of the anyons does not affect the bystanding
plaquettes beyond statistical fluctuation, showing that cross-talk is neg-
ligible as it is expected from a quantum charge coupled device in which
ions are stored ≥180 μm apart. In principle, we can also trace the anyon
non-destructively by performing parity measurements instead of col-
lapsing the full wavefunction at every step. This procedure reduces the
required number of shots by a factor that is equal to the number of steps,
at the cost of introducing extra gates. The results of this strategy are
reported in Supplementary Fig. 4.

As shown in the transmutation experiment, the presence of the non-
Abelian defect allows for the creation of a single fermionic excitation (in the
form of an e−m composite). Here we explicitly confirm that we have
created a fermion by checking that its wavefunction picks up a minus sign
upon rotating it by 360∘. Equivalently, the two anyons making up the
composite have non-trivial mutual braiding: the wavefunction acquires a
global phase Ubraid∣emi ¼ �∣emi when braiding one particle around
the other. This phase is naively inaccessible, but it can bemeasured using the
Hadamard test: A controlled version of Ubraid is applied, conditioned on
the state of an ancilla which is initially prepared in ∣þi ¼ ð∣0i þ ∣1iÞ= ffiffiffi

2
p

.
The phase emjUbraidjem

� �
is then directly related to the expectation value

Xh i on the ancilla. Specifically, in the experiment, we create a single electric-
magnetic pair adjacent to the defect by acting with Y10 on the ground state
(i.e., ∣emi :¼ Y10∣ gs i) andbraid the electric around themagnetic excitation
on the path shown in Fig. 3d.Wefind Re hemjUbraidjemi ¼ �0:87 ± 0:018,
verifying the fermionic exchange statistics. Similarly, in the absence of the
fermionic excitation, we find Re h gs jUbraidj gs i ¼ þ0:87 ± 0:018. The
strength of the interferometric signal can be attributed to themobility of the
qubits in the device:While conditional dynamics usually requires the use of

Fig. 2 | Toric code ground state preparation. aDefinition of the stabilizer operators
(1) on the unraveled torus. Numbers denote the different ions and specify the
boundary conditions. Plaquettes are labeled by their upper left qubits. The state
comprises 4 × 4 qubits and periodic boundary conditions. b Logical Z string
operators are Zhori = Z0Z1Z2Z3 (Z

vert = Z0Z4Z8Z12) and their vertical (horizontal)
translations. Zhori and Zvert denote expectation values of the logical string operators,
averaged over translations. c Expectation values of the stabilizers obtained from

collapsing the wavefunction in the single-qubit X- and Z-bases. Error bars denote
one standard error on the mean. d Entanglement entropy measurement on 2 × 2
(top) and 2 × 3 regions (bottom). Colored bars denote Sð2ÞX for different subsystems of
a region with shapes as shown in the inset and γ is defined in Eq. (2). Dashed lines
show exact values. Error bars denote one standard error on themean. Themaximum
error in the estimates of Sð2ÞX for 2 × 2 (2 × 3) regions is ±0.056 (±0.091). Hatched
white bars denote average topological entanglement entropies.
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many SWAP gates to bring the ancilla close to the target qubits, we achieve
the same effect here with only four two-qubit gates.

Discussion
We have demonstrated the combined use of mid-circuit measurement,
feed-forward and low-error gates to prepare topologically ordered states on
periodic two-dimensional geometries deterministically, in constant depth
andwithhighfidelity, providing experimental data fromQuantinuum’sH1-
1 programmable ion-trap quantum computer50. The presented data shows
that mid-circuit measurements can now be used with the same fidelity cost
as two-qubit gates, considerably broadening the scope of experiment design
in the future.

For example, we have considered the efficient preparation of Abelian
topological orders and of defects with non-Abelian character within the
Abelian phases in thiswork.This lays the groundwork for the preparationof
true non-Abelian topological orders in a quantum device, some of which,
surprisingly, require the same overhead as their Abelian counterparts
despite their richerproperties51.Namely, only a single roundof feed-forward
and low-error gates suffices to deterministically prepare such states.
Moreover, multiple rounds of measurements and feed-forward can access
even more exotic and powerful non-Abelian states13–17 which open up new
avenues for fault tolerant quantum information processing.

To be clear, we do not see the replacement of unitary encoding circuits
on small surface code blocks as the main application of our work. Rather,
simulating quantum dynamics on top of long-range entangled states or
involving fermions with coherence time-limited near-term devices will
profit directly from the scheme presented here. While the present work
considered discrete transformations between eigenstates of the system, our
demonstration opens up the possibility of studying quenches and varia-
tional circuits in topologically ordered systems on digital quantum com-
puters with minimal resources52,53. These, in turn, can be used to study, e.g.,
lattice gauge theories at finite temperatures and energies5. Since classical
simulation of these problems generically requires exponential resources,
there is a potential for quantum advantage. While the device noise is small
and its characterization agrees well with our experimental findings, the
capacity of the H1-1 system must be extended beyond 20 qubits for this to
become a reality.

In conclusion, this work has demonstrated a powerful application of
measurements and feed-forward. These capabilities open up a multitude of
directions for further exploration, ranging from quantum information
processing and simulating the ground states and dynamics of many-body
quantum systems, to uncovering the emergent structures in monitored
circuits54,55.

Methods
Entropy measurements from randomized measurements
While the deterministic measurement of non-linear quantities, like the
entanglement entropy, generally requires full state tomography, recently,
robust probabilistic algorithms have been devised45–48,56. These can be used
to measure the second-order Renyi entropy

Sð2ÞðρAÞ ¼ � ln Tr ρ2A: ð3Þ

We follow the protocol from48 where it is shown that the purity of a
reduced quantum state can be estimated by

Tr ρ2A ¼ 2NA

X
sA ;s

0
A

ð�2ÞDðsA ;s0AÞPðsAÞPðs0AÞ; ð4Þ

whereNA is the subsystemsize andDðsA; s0AÞdenotes theHammingdistance
between the bitstrings corresponding to the computational basis states sA
and s0A.P(sA) is theprobability ofmeasuring sA in the state ρA after applying a
random unitary, i.e., P(sA) = 〈sA∣UρAU†∣sA〉, and the overline denotes the
average over randomunitaries. Importantly, each of the randomunitaries is
a tensor product of local unitaries u1⊗ u2… which are drawn from the
circular unitary ensemble. In principle, one can also choose to simply
measure each of the qubits in theX-,Y- or Z-basis with equal probability, at
the cost of larger statistical fluctuations25. That is because random Pauli
measurements are equivalent to random Clifford gates followed by com-
putational basis measurements and the Clifford group forms a unitary
3-design56,57.

In the experiment, we compute the purity by averaging over NU = 72
random local unitary settings, and for each setting we execute
NM = 256 shots to estimate the probability distributionP(s). The parameters

Fig. 3 | Anyon dynamics on a state with two non-Abelian defects. aGeometry. The
lack of the central qubit and the redefinition of the stabilizers leads to two defective
plaquettes.bExpectation values of the stabilizers obtained from the state preparation
andmeasurement routine described in “Anyon Transmutation and Interferometry”
in the Results section. Error bars denote one standard error on the mean. c Anyon
transmutation. A pair of magnetic anyons (m) is created and one partner is

transmuted into an electric anyon (e) bymoving it across the line connecting the two
defects. The maximum and minimum standard error on the mean for the expec-
tation values of stabilizers are ±0.023 and ±0.0066 respectively. Color bars from
panel (b) apply. d Anyon Interferometry. A fermionic e−m composite anyon is
created next to the defect and a controlled-Z10Z8Z4Z7 braiding operation is applied
with the help of an ancilla.
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NU and NM have been chosen by using the grid search procedure as
described in48 on the emulator of H1-1 ion-trap. We use the unbiased
estimator P(PNM− 1)/(NM− 1) for evaluating P2(s) in (4) as described in47.
As discussed in the main text, we discard shots where an odd number of
anyons was heralded during the error correction. Even without discarding
such shots, we get estimates for γ= ln 2 of 0.87 ± 0.055, and 1.00 ± 0.090 for
2 × 2 and 2 × 3 regions respectively.

To evaluate Rényi entropies, Sð2ÞX , for each subsystem X, we consider
different regions of size 2 × 2 and 2 × 3, as shown in the Supplementary
Fig. 2a, b. In Supplementary Fig. 2c, d, we show the estimated values of the
topological entanglement entropy for each region. The values of Sð2ÞX , as
reported in the main text in Fig. 2d, have been obtained by taking the
mean of subsystemRényi entropies for each region. The error bars for Sð2ÞX
and γ have been computed by bootstrapping new samples from the given
dataset (which is specified by UN = 72 different randomized measure-
ment settings) and then by evaluating the standard deviation of the
resulting distribution.

Effects of measurement error mitigation
While we have not employed any State Preparation and Measurement
(SPAM) error mitigation in the main text, we show here the impact of
SPAM mitigation on the state preparation procedure.

SPAM error mitigation accounts for the state preparation and
read out errors, and in its simplest form, it models the effects of SPAM
noise processes on the ideal probability distribution from the quantum
device, as

Pnoise ¼ A�nPideal; ð5Þ

whereA is the transitionmatrix that acts locally on each of the n qubits. It is
characterized by the probabilities ofmisreading state ∣0i as state ∣1i and vice
versa. According to prior characterization of the measurement error in the
H1-1 ion-trap, a ∣0i state onan ionhas a 0.1%-chanceof being readout as ∣1i
and there is a 0.5%-chance of ∣1i erroneously being read as ∣0i58.We can use
that information to construct the transition matrix as,

A ¼ 1� 0:001 0:005

0:001 1� 0:005

� �
: ð6Þ

Note that in (5), we ignore the effects of correlated SPAM errors which
occur onmultiple sites.We can recoverPideal by applying ðA�1Þ�n

on Pnoise,
and this can done efficiently since the action of transition matrix A is local.
The resulting performance of SPAM error mitigation with and without
discarding heralded errors can be seen in Supplementary Fig. 5a–d.Without
discarding,we get an improvement in energy density from− 0.89 to− 0.91,
while SPAM correction boosts energy density from −0.93 to −0.95 using
the heralded procedure employed in the main text.

Measurement and decoding of the Ap-operator with and without
ancillae
The key advantage of measurement-based over unitary state preparation
is the ability to project the state onto an eigenstate of all Ap operators
simultaneously. These parity check measurements can be done in one of
two ways. More commonly, the parity of the four data qubits on the
plaquettes is transferred onto an ancilla using four maximally entangling
gates, e.g., to apply the projector ðIþ X�4Þ=2, we apply 4 CNOT gates
where the control qubit is an ancilla prepared in ∣þi. It is, however, also
possible to obtain constant depth circuits without introducing ancillae. In
that case, an ancilla-free parity check needs to be executed, using six two-
qubit gates. Both procedures are shown in Supplementary Fig. 3a, b. In
either case, the state is projected into the even (odd) eigenspace of the
stabilizerX⊗4 uponmeasuring+1 (−1). However, in the ancilla-free case,
we can remove the classically controlled-Z gate to our advantage, as
described below. We call the new construction modified ancilla-free
parity check. The action remains unchanged when the measurement

outcome is +1, but, when the outcome is −1, the action of the modified
ancilla-free circuit is given by the projector ZtargetðI� X�4Þ=2, where
Ztarget accounts for the removed classically controlled-Z gate by acting on
the target qubit (i.e., the qubit that is measured). The Ztarget autocorrects
the measured plaquette at the cost of moving a potential error to an
adjacent plaquette. This autocorrection ensures that errors can only
accumulate on half of the X-type plaquettes and reduces the cost of the
subsequent decoding.We emphasize that the use of modified ancilla-free
parity checks is done out of convenience - its use is not essential to obtain
high-fidelity results.

Since the H1-1 ion-trap is capable of handling up to 20 qubits, using
the ancilla-based strategy on fourX-type plaquettes allows us to save eight
two-qubit gates in the state preparation circuit for free, and those pla-
quettes are shown in Supplementary Fig. 3c by hatching with slanted(\)
lines. The remaining four X-type plaquettes are measured by using the
modified ancilla-free measurement circuit and they are shown in Sup-
plementary Fig. 3c by hatching with crossed (×) lines, the red arrows
pointing to the target qubits. With this construction, whenever we
measure -1 (indicating error or the presence of anyon in the plaquette) on
themodified ancilla-free plaquette, the additionalZtarget actionmoves the
error/anyon into the diagonally adjacent plaquette in which the arrow is
pointing.

To remove the anyon pairs, we have implemented a simple lookup-
table decoder which handles each of the 24/2 = 8 error possibilities
explicitly. We have implemented a decoder that is compatible with
OpenQASM 2.0 for the all the results that we present in the main text59.
OpenQASM 2.0 does not support conditioning on individual bits in the
classical register and this causes a substantial increase in the number of
classically conditioned single-qubit gates during the correction. Later in
the development, we also considered a more optimal decoder (i.e., with
significantly less conditional gates in total and asymptotically linear cost in
system size). The resulting energy densities achieved by the former and
later decoders are given in Supplementary Fig. 5b and Supplementary
Fig. 5e respectively. We find that both decoders give almost the same
energy density. We also test the case where every X-type plaquette is
prepared bymeasurement with an ancilla circuit (Supplementary Fig. 3a),
measuring four stabilizers using available ancillae and then reuse those
ancillae to measure remaining X-plaquettes. Although this implementa-
tion requires 4 × (6− 4) = 8 fewer two-qubit gates, reuse of ancilla qubits
in this fashion generally increases the circuit depth, execution time, and
potential for memory errors. The results for this procedure are given in
Supplementary Fig. 5f showing a slight improvement in the energy den-
sity, in particular for the X-type plaquettes, since the noise in the ancilla-
based preparation strategy is biased towards corrupting Z-type plaquettes
(cf. main text and Supplementary Fig. 3).

We also consider a decoder where we do not measure one of the X⊗4

stabilizers. Since in the noiseless case, anyonic excitations occur in pairs, we
can deduce the state of unmeasured X-type plaquette from the parity of
measured stabilizers and apply the corresponding error correction steps.
Expectation values of stabilizers for this decoder are shown Supplemen-
tary Fig. 5g.

State preparation and dynamics of the model with a defect
The state preparation strategy for the defective model proceeds similarly to
the defect-free state. Since the model requires 15 data qubits, we have five
leftover qubits on the 20 qubit H1-1 ion-trap which we use as ancilla qubits
to prepare the X-type plaquettes 1, 3, and 4 and the two defect-plaquettes.
The remaining three X-type plaquettes (cf. Fig. 3a) are prepared using the
modified ancilla-freeparity check circuits (cf. subsection “Measurement and
Decoding of the Ap-operator” in the Methods). Again, we use a simple
lookup-table decoder to remove the errors while exploiting the fact that
errors never occur in plaquetteswhich are prepared bymodified ancilla-free
measurement.

While in the defect-free case only two settings are necessary to
measure all stabilizers using single-qubit measurements, for the defective

https://doi.org/10.1038/s42005-024-01698-3 Article

Communications Physics |           (2024) 7:205 5



case, we use four settings to obtain one observation for all stabilizers.
Wemeasure plaquettes (0, 2, 5, 7, 14), (3, 5, 10, 11, 13), (1, 3, 4, 6, 11), and
(0, 6, 8, 12, 14) in the first, second, third, and fourth setting respectively.
This splitting has the advantage that eachmeasurement contributes to the
expectation value and the corner anddefect plaquettes aremeasured twice
(cf. Fig. 3a).

For the anyon transmutation, the sequence X12X13Z6Z5 has been
applied after the state preparation (cf. Fig. 3c). After each of the single-
qubit gates, the corner and the defect stabilizers are measured 1200 times
and all other plaquettes are measured 600 times. For the anyon inter-
ferometry, the circuit HancY10CZ7CZ4CZ8CZ10Y10∣þianc � ∣ gs

�
has

been applied where the control qubit is the ancilla. The real part of the
braiding phase is the measured Zh i expectation value of the ancilla at the
end of this sequence.

We have also examined the transmutation of a magnetic anyon into
an electric anyon while utilizing quantum nondemolition (QND) mea-
surements of stabilizers60, see Supplementary Fig. 4. This has the advan-
tage that one canmeasure the whole transmutation trajectory in one shot,
while not destroying the anyon. We construct the circuit such that it
begins by preparing the toric code with defects. Then we applyX12, which
creates a pair offlux anyons, andmeasure the stabilizers on plaquettes 1, 4,
6, 8, and 12 using the circuit shown in Supplementary Fig. 3a. Then, we
apply X13, to move one of the flux anyon into the defect plaquette and
repeat theQNDmeasurement of the same stabilizers. Finally, we apply Z6
which moves the anyon out of the defect plaquette, and again do a QND
measurement of the same stabilizers as above. Afterward, we measure all
other stabilizers destructively.

Circuit construction, gate count, and error budget
The native gate set of H1-1 ion-trap consists of the single-qubit gates

U1q θ ¼ π
2 ; π

� �
; ϕ

	 
 ¼ e�iðcosϕXþsinϕYÞθ=2;

RzðλÞ ¼ e�iZλ=2

and the arbitrary-angle entangling gate RZZ(θ) = e−iθ/2Z⊗Z 61. Specifications
at the time of the experiment (November and December 2022) indicated
average two-qubit gate fidelity of 99.7%, one-qubit fidelity of 99.996%,
SPAM fidelity of 99.6%, and memory-error per depth-1 circuit time per
qubit of 1−99.97%.

The state preparation circuit for toric code including the decoder
requires 484 one-qubit gates and 4 × 4+ 6 × 4 = 40 two-qubit gates. In the
case of toric code with defects, after compilation into native gate set, the
circuit contains 423 one-qubit gates and 3 × 4+ 5 × 2+ 6 × 3 = 40 two-
qubit gates. The circuits were compiled to the native gate set and sent to the
device using TKET62.

We estimate the global fidelity with the target state using the same
randomized measurement data set that we also use to compute topolo-
gical entanglement entropies (cf. the “Entropy measurements from
randomized measurements” subsection in the Methods) by using the
framework of shadow density matrices56. We construct shadow density
matrix for each randomized measurement setting, take its overlap with
the target wavefunction and then calculate the mean value. We report a
global fidelity with the Zhori

� � ¼ Zvert
� � ¼ 1 toric code ground state

of h gs jρpreparedj gs i ¼ 0:80 ± 0:049.
Multiplying the gate error of all 40 two-qubit gates (0.99740 ≈ 0.887),

484 one-qubit gates (0.99996484 ≈ 0.981) the memory error on all of the 20
qubits accumulating during 6 depth-1 circuit times (0.99976×20 ≈ 0.965) and
the SPAM error on 20+ 4 (reused) qubits (0.99624 ≈ 0.9082) leads to a
global damping factor of ~0.762 which is compatible with the estimated
global fidelity.

Data availability
The numerical data that support the findings of this study, including a full
list of shots is available on the Zenodo repository63.

Code availability
The code used for quantum circuit construction, submission and data
analysis is available on the Zenodo repository63.
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