Table 1 Parameters of the two-orbital Hubbard model

From: Strain-tuned incompatible magnetic exchange-interaction in La2NiO4

System

a

c

Δeg

tαα

tββ

tαβ

\({t}_{\alpha \alpha }^{{\prime} }\)

\({t}_{\beta \beta }^{{\prime} }\)

Uαα

Uββ

Uαβ

JH

\({J}_{1}^{{{{{{{{\rm{cal}}}}}}}}}\)

\({J}_{2}^{{{{{{{{\rm{cal}}}}}}}}}\)

\({J}_{1}^{{{{{{{{\rm{cal,corr}}}}}}}}}\)

 

[Å]

[Å]

[eV]

[eV]

[eV]

[eV]

[meV]

[meV]

[eV]

[eV]

[eV]

[eV]

[meV]

[meV]

[meV]

La2NiO4

3.890

12.55

0.48

−0.070

−0.403

−0.161

−8.6

74.9

3.06

3.15

1.97

0.52

60.7

1.57

51.0

LNO/STO

3.905

12.62

0.48

−0.067

−0.395

−0.156

−8.3

74.5

3.01

3.14

1.94

0.52

59.5

1.56

49.7

LNO/LSAT

3.868

12.69

0.55

−0.065

−0.410

−0.156

−7.4

76.3

3.00

3.11

1.92

0.51

62.2

1.65

51.8

LNO/NGO

3.859

12.71

0.58

−0.064

−0.414

−0.155

−7.1

76.7

3.03

3.16

1.97

0.51

62.3

1.65

51.9

LNO/LAO

3.793

12.78

0.74

−0.060

−0.447

−0.156

−5.5

80.5

3.02

3.08

1.93

0.50

71.6

1.83

56.8

  1. Crystal-field splitting Δeg, (next-)nearest-neighbor hopping \({t}_{ij}^{({\prime} )}\) between ith and jth Ni orbitals (α and β here denote the z2 and x2 − y2 orbital, respectively), the inter- and intra-orbital Coulomb interaction Uij, and Hund’s exchange JH between the two orbital as calculated by DFT and cRPA with the in-plane lattice constant a of the three substrates; note that \({t}_{\alpha \beta }^{{\prime} }=0\) by symmetry. From these ab initio calculated parameters, the spin couplings J1 and J2 are calculated from superexchange (second-order perturbation theory), i.e., from Eq. (1) with t and \({t}^{{\prime} }\), respectively. Estimating higher-order terms using a one-orbital analogy, yields the reduced \({J}_{1}^{{{{{{{{\rm{cal,corr}}}}}}}}}\) couplings—see text. The bulk lattice parameters refer to the low-temperature tetragonal polymorph of La2NiO4, after ref. 29.