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Structural constraints limit the regime of
optimal flux in autocatalytic reaction

networks
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Autocatalytic chemical networks play a predominant role in a large number of natural systems such as
in metabolic pathways and in ecological networks. Despite recent efforts, the precise impact of
thermodynamic constraints on these networks remains elusive. In this work, we present a theoretical
framework that allows specific bounds on the thermodynamic affinity and on the concentrations of
autocatalysts in mass-action autocatalytic networks. These bounds can be obtained solely from the
stoichiometry of the underlying chemical reaction network, and are independent from the numerical
values of kinetic parameters. This property holds in the specific regime where all the fluxes of the
network are tightly coupled and maximal. Our method is applicable to large networks, and can be used
to complement constraints-based modeling methods of metabolic networks, which typically do not
provide predictions about thermodynamic properties or concentration ranges of metabolites.

The dynamical properties of most systems found in nature can be traced
back to a combination of chemical reactions that are maintained out of
equilibrium. This is particularly the case in biology and ecology, where these
chemical reaction networks can reach high levels of complexity. Many such
networks involve autocatalysis, which is the ability of chemicals to catalyze
their own formation'”. Autocatalysis enables exponential growth™, self-
replications, and metabolism®.

The properties of chemical reaction networks are constrained by non-
equilibrium thermodynamics. For example, living systems are thought to
self-organize thanks to energy and matter flows, which allow them to lower
their own entropy at the expense of an entropy increase in the environment’,
as required by the second law. Thermodynamics is also believed to play a key
role in chemical evolution® and in the organization of ecological
communities'®'". Yet, understanding precisely the role played by thermo-
dynamic constraints proved difficult both for biology and ecology, despite
the many recent efforts on this issue'*"'*. Because of this, we still do not fully
understand the fundamental principles by which chemical evolution
operates, which limits our ability to design new materials with life-like
properties.

This lack of general understanding also has more practical con-
sequences. The knowledge we have about metabolic networks is rather
limited as far as kinetics is concerned. For this reason, current modeling
approaches for metabolic networks focus on predicting steady fluxes by
optimizing an objective function with linear constraints, as in flux balance
analysis'”'® or in structural kinetic modeling"’. These methods are general,
valid for any chemical network and do not require a detailed knowledge of

the kinetics, but it is not easy to use them to make predictions about
metabolite concentrations. For instance, at the moment, concentration
ranges of metabolites can be predicted from these methods but only for
mass-action networks™.

The aforementioned problems are all related to the fact that while
non-equilibrium thermodynamics is a well-established discipline, its
implications for autocatalytic networks have not been fully explored yet.
In this context, we develop a theoretical framework for autocatalytic
chemical networks operating in a stationary non-equilibrium regime.
This approach builds on a recent stoichiometric classification of auto-
catalytic chemical networks”"*, which can be used to identify such net-
works thanks to chemoinformatic techniques™™’. We find that in a
specific regime where fluxes in the network are tightly coupled and
optimal, there is a connection between the topology of a network, the
stoichiometry of its autocatalytic reactions, and the thermodynamic force
keeping this network out of equilibrium. In this regime, we show that the
force required to operate an autocatalytic network at a maximum rate
obeys universal constraints, which depend on topology and stoichio-
metry, but are independent from the kinetic rate constants of the reac-
tions. Because these constraints contain information on the topology of
the network, they can be used to rule out certain network architectures for
a given global autocatalytic reaction, even in the absence of any knowl-
edge about kinetics. In the end, our work shows how thermodynamics
constrains the chemical space accessible to autocatalysis, which is rele-
vant for chemical evolution and Origin of Life studies. It also provides
relevant information regarding the thermodynamics of autocatalytic

'Gulliver Laboratory, UMR CNRS 7083, PSL Research University, ESPCI, Paris F-75231, France. >Center for Nonlinear Phenomena and Complex Systems

(CENOLI), Université libre de Bruxelles (ULB), Campus Plaine, C.P. 231, B-1050 Brussels, Belgium.

e-mail: armand.despons@espci.fr

Communications Physics| (2024)7:224


http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-024-01704-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-024-01704-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-024-01704-8&domain=pdf
http://orcid.org/0000-0002-4321-3351
http://orcid.org/0000-0002-4321-3351
http://orcid.org/0000-0002-4321-3351
http://orcid.org/0000-0002-4321-3351
http://orcid.org/0000-0002-4321-3351
mailto:armand.despons@espci.fr

https://doi.org/10.1038/s42005-024-01704-8

Article

networks and the concentration ranges of the autocatalysts, which could
be useful in designing new chemical networks.

Results

Motivating example

Our objective is to find a connection between the rate of production of an
autocatalytic process, its distance from equilibrium, and the stoichiometry
of the underlying reaction network. Consider, for illustration, the following
reactive system:

ki
F+zxAk<_—>B
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with 8> & > 0. The topology of (1) is encoded in its stoichiometric matrix,
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The species F and W act as fuel and waste for the overall production of
the other species. In what follows, we will treat their concentrations, fand w,
as constants. Only a submatrix of (2) is required to capture the autocatalytic

behavior of (1):
_Af—a B
0= B( 1 —1>' ©)

1 2

This submatrix establishes a connection between the time derivative of
the concentrations of the autocatalytic species a and b with the reaction

fluxes,
a
d =S.j 4
t(b) ) (4)

where j is a vector containing the fluxes of reactions 1 and 2,j = (ji, j,) "
For ideal isothermal solutions, each of these reaction fluxes can be
decomposed as the difference of two one-way fluxes obeying the law of mass
action:

jo =k fa% joy=k_;b, (5)

Ji2 = ki, b, ja=k, a w; (6)

and the components of j are j;=j,; — j_;. Nothing prevents this reactive
system from reaching the equilibrium state, since the concentrations of both
A and B are unconstrained. To drive the network (1) away from its equi-
librium state, we introduce a control mechanism which maintains the
concentrations a or b constant thanks to an outgoing flux.

When the concentration of species A is controlled (chemostatted), the
dynamics of the system is entirely controlled by the evolution law for b,
d;b=j; — jo. The steady state is such that j; = j,, which shows that there is a
tight coupling’® between the two reactions. Here, j, and j, are also equal to
the production rate [J of the overall reaction:

F+aA—pBA+W. 7)

This reaction has an overall affinity (which is equal to the opposite of the
Gibbs free energy AG) A= pur —puy — (B — a)up, where y; is the

chemical potential of species i. Since yr and py, are fixed, fixing p, is
essential to maintain the system in a non-equilibrium state where .4 is non-
zero. Otherwise, the system will reach equilibrium, where the affinity
vanishes. Solving for the steady-state concentration provides the expression
for the macroscopic flux of production of species A:

ki k k_ k
j: +1 ™42 |:aoc _ ( —1 —2) aﬁ W:| (8)
k_,+ky, f kiiky,
Introducing the reaction quotient Q = a® ® w/f and the equilibrium con-
stant K=k 1k »/k_1k_, of the global reaction (7), it is easy to show that the
global flux 7 has the same sign as the affinity, since A = In(K/Q) (we work

with units where R T'=1). Furthermore, the current goes through a max-
imum as a function of a whenever

af=9 _« ki ik,
f Bk,

which corresponds to the condition Q = Q= a/f x K. Thus, the maximum
rate is reached when the chemical affinity becomes

©)

A*:lng.

o

(10)

Hence, the distance from equilibrium at which the autocatalytic network
achieves its optimal production rate, namely A*, is not fixed by the
values of kinetic constants or by the equilibrium constant of the global
process. It only depends on the stoichiometry of the overall reaction.
We illustrate these results in Fig. 1, for the case a =1, f =2. Note that
this condition on the affinity can also be expressed in terms of the
concentration a. Since exp(A*) = K/Q, the point of maximum flux is

given by
* ﬁi“
) _a
(aeq> ﬂ ’

which means that optimality is reached when the concentration of the
chemostat is at half its equilibrium value.

We can carry a similar analysis if, instead of A, B is the chemostatted
autocatalytic species. Now, the dynamics is ruled by d,a =fj, — «j;, and
the steady state is such that j, /8 = j,/a = J, which is the overall pro-
duction rate of species B,

(11)

BF+aB—pBB+aW. (12)
The steady-state solution now involves polynomials of different order,
making it impossible to find explicitly the conditions maximizing the rate of
production with the previous method. Nonetheless, we can determine A" by
numerically finding the value of Q" that maximizes the global reaction rate
for randomly generated values of the various kinetic constants. We find that
the optimal affinity is now bounded from below (see Supplementary
Note 12):

(13)

A*Zlng.
o

Here too, the constraint acting on the optimal distance from equilibrium
solely depends on the stoichiometry of the overall reaction. This thermo-
dynamic constraint translates into a threshold for the value of the con-
centration of the controlled species, b as

i < -,
beq /3

(14)
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Fig. 1 | Selected properties of the autocatalytic system (1) for « =1 and = 2.
a Representation of a reactor in which the concentrations of F, W, and A are
maintained constant thanks to exchanges with external reservoirs (chemostats).

b The corresponding global flux 7 as a function of Q vanishes when Q = K (on the
black circle) and reaches a maximum at the same location Q" = K/2 (red triangles).
c Species F, W are still chemostatted, but now B is chemostatted instead of A. d Now
the maxima of the corresponding global reaction rate are reached at different

locations such that 1/4 < Q"/K < 1/2 (shaded gray area). Note that all the fluxes still
vanish when Q = K. e Cloud of points for the exponential of the global affinity A", for
randomly chosen sets of kinetic rate constants indexed by N. When species A is
controlled (red triangles), the optimal affinity always equals In 2, as explained in the
main text. When species B is controlled (blue squares), the optimal affinity admits
both a lower and upper bound, which corresponds to the gray area in the lower
plot of b.

where beq is the equilibrium concentration of B. Note the importance of the
condition f3 > & > 0, which guarantees the invertibility of the stoichiometric
matrix S and leads to equalities or inequalities Eqs. (10-14).

Figure 1 summarizes the behavior of the network Eq. (1) in the
particular case « =1 and 3 = 2. It also reveals that, on top of the upper
bound Eq. (14), the location of the global flux is also lower-bounded, Q'
K = 1/4, yielding an upper bound for the affinity .A*. This behavior can be
recovered analytically for arbitrary values of a and 8 (see Supplementary
Notes 11, 12).

General approach for autocatalytic chemical reaction

networks (CRNs)

In what follows, we present a general approach that enables the computation
of the overall affinity A" corresponding to a condition of the local extremum
of the global production rate. Our method relies on the stoichiometry of the
reaction network, and circumvents the need to explicitly evaluate the steady
states or reaction rates of the system under consideration.

Following a recent stoichiometric characterization of autocatalysis™', a
general autocatalytic network should contain one or several autocatalytic
cores. An essential feature of these cores is that they are described by an
invertible stoichiometric submatrix. The existence of this invertible sub-
matrix is a sufficient condition for autocatalysis, which implies the absence
of mass-like conservation laws'*”’** thanks to Gordan’s theorem®. In the
following, we assume that the full stoichiometric matrix V contains a square
submatrix S that is invertible:

(15)

Reactions of S will be called autocatalytic reactions, species of S will be
called autocatalytic species, while other species will be called external. Note
that we do not require that the matrix S corresponds necessarily to one of
the autocatalytic cores listed in Table 1 of the Methods Section. Further, we
also allow the network to contain catalytic reactions, (i.e., reactions where

the same species can be both reactants and products) in contrast with the
assumptions of ref. 21. The presence of a block matrix of zero in the lower
right part of the matrix V in Eq. (15) means that there is no boundary flux to
or from external species. Such a splitting of species into internal and external
ones is a standard assumption in metabolic network analysis™.

Similar to the example above, the concentrations of all external species
are assumed to be constant, either because these species are in excess, which
is typically the case for food or fuel species, or because they are in contact
with a reservoir (chemostatted). Given the structure of the full stoichio-
metric matrix of Eq. (37), one can show that the network can satisfy detailed
balance (see Eq. (38) and Supplementary Note 1). To break detailed balance,
in addition, the concentration of at least one of the autocatalytic species
should be controlled, by actively maintaining its concentration constant
with an outgoing flux.

We call this special species the X species, and we call the remaining
non-controlled autocatalytic ones the Y species. The stoichiometric matrix
S splits into a row vector $* and a matrix S**":

S=(§). (16)

The corresponding kinetic equations are given by
dx=8"j+I1=0 17)
d,y=5S"-j, (18)

where x denotes the concentration of species X and y is the concentration
vector of all the Y species. The vector j contains the rates of the autocatalytic
reactions, and [ is a scalar function describing the exchange of matter with
the chemostat.

The inverse S™" plays an important role:

S_l = {gJ}ZJeZ’

where g, is the column of S™' associated to species Z,, which denotes
autocatalytic species of the X or of the Y type, and Z is the set of all the

(19)
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Table 1 | Bounds on the chemical affinities at the maximum of the macroscopic flux for the five autocatalytic cores®

Motif S s Overall equation along gx Bound on A*
Typel Af-1 2 11 2 A+B%2Aa+B o
BL1 -1 2\1 1 > A* >1In2
1 2 A B 2A+B=2A+2B
Typell A/-1 0 1 1/0 1 1 BLCBALBLC A* =1n2
B[ 1 -1 1 211 2 FRmARE A" > In2
c\o 1 -1 3\1 1 1 A+B+C->A+2B+C A" >1In2
12 3 A B C A+2B+CEA12B+2C
Typelll A/-1 0 1 1/1 1 1 A+B+CEIALBLC A* > 1n2
B 1 -1 1 21 0 1 oL AATE A > 1n2
c\o 1 -1 3\1 10 A+C—>A+B+C A* > 1n2
12 3 ABC A+BEA+BYC
Type IV A/-1 1 0 1/0 1/2 1/2 BrC¥%AiBLC A*>In3
B 1 -1 1 2(1 12 12 o 9% 4. g 4> N3
c\1 1 -1 3\1 1 0 2A+3B+C—>5A+3B+C =
12 3 A B C 1A+1BEIA+IB+C 4> n3
Type V A/-1 1 1 1 0 1/2 1/2 iBric¥atiBric A" >1In3
Bl 1 -1 1 2(12 0 12 2= e gt 2m e A*>1n3
c\1 1 -1 3\1/2 1/2 0 JA+3C3IA+B+3C A*>In3
1 2 3 A B C

1IA+1BEIA+IB+C

autocatalytic species. It follows from the property of the inverse that g,
represents a reaction pathway that produces a single unit of species Z,
without affecting the other species (see Supplementary Note 2). For this
reason, g, is the elementary mode of production of species Z,”'. From all the
elementary modes of production, one can build a reaction vector g =>_.g,,
which represents a combination of elementary modes that increases the
amount of all the autocatalytic species by one unit:

S-g=1, (20)
where 1 is a column vector full of ones. The existence of this vector is a
sufficient condition for autocatalysis.

The steady-state of Eq. (18) is a vector belonging to the right
nullspace of S****, which is spanned by gy, the elementary mode of pro-
duction associated with species X. Thus, the stationary flux vector can be
written as

@1

which we call a tight coupling condition, since all elementary fluxes are
proportional to the global production rate [ with constant coefficients of
proportionality. Since in general, gx has rational components, it is
convenient to rescale this vector to facilitate its interpretation as a mode
of production. We show in the Methods section that, after the rescaling, the
bounds on the global affinity are also rescaled by the same amount.

We now introduce assumptions about the dynamics of the network at
the level of elementary reactions. Every such reaction denoted p is assumed
to be reversible, with a net flux given by

j:jgx,

jp :j+p _jfp’ (22)
Here, one-way fluxes j., obey mass-action kinetics*"';
. s,
Jtpzkip Hzo ) (23)
o

where z, is the concentration of species Z,, and S (resp. S_) is the stoi-
chiometric matrix associated to forward (resp. reverse) reactions, such that
S =S_—S,. Note that the constant concentrations of the fuel/food
species have been absorbed in the effective rate constants ... We choose to
work with ideal solutions for clarity of presentation, but we show in Sup-
plementary Note 4 that the results presented below remain valid for non-
ideal solutions.

Overall affinity

The affinity of an elementary reaction is connected to fluxes by means of the
flux-force relationship: A, = In(j,,/j_,). Taking the linear combination of
the elementary affinities, we obtain the global affinity

A=zp:g§(,4p=zp:g§(1n(jﬂ> =ln<g),

. (24)
J-p

where K and Q are, respectively, the equilibrium constant and the reaction
quotient Q. Here, the reaction quotient coincides with the concentration of
the controlled autocatalytic species (Q = x) because the concentrations of
food species have been incorporated in the rate constants, and the stationary
global flux is a function of this quantity, 7 = J(Q).

We expect that in the cases of interest, this flux will present at least one
maximum when the CRN is brought out of equilibrium. Indeed, due to the
tight coupling condition, the total entropy production rate (EPR) in the
steady-state has a simple expression'****;

z= Xp:j”A” =JA 25)
The second law of thermodynamics dictates that £ >0, and equality is
achieved at equilibrium, where Q = K and both 7 and A vanish. It follows,
from Eq. (24), that J(Q) =0 when Q € [0, K]. Let us consider a class of
autocatalytic networks, for which species X has a nucleating role™. In that
case, the flux [7(0) is zero when this species is absent (in other words, for
Q =0). This was the case, for example, with the simple autocatalytic system
discussed earlier (see Fig. 1). For these networks, there must be at least one
local extremum of the global flux in the interval Q € [0, K]. This regime is
optimal, in the sense that species X is produced at a maximal rate. Impor-
tantly, the extremum of the global flux and that of the EPR do not coincide
because A in Eq. (24) is a non-linear function of Q which also enters in Eq.
(25). This is in agreement with the observation that the optimal regime of
operation of non-equilibrium systems generally does not correspond to a
point where the EPR is extremum®.

Response coefficients at maximum flux

We call Q” the value of Q which makes the global flux maximal, with a zero
derivative: d, J = 0. Due to the tight coupling condition Eq. (21), all
reaction fluxes are also atan extremumat Q : d j, = dgj, — dgj_, = 0, for
any reaction p. To characterize this configuration, we introduce the log-

Communications Physics| (2024)7:224



https://doi.org/10.1038/s42005-024-01704-8

Article

Fig. 2 | Structural constraints acting on the log-derivatives of the steady uni-
directional fluxes with mass-action kinetics. a When a species Z; ; is connected by
unimolecular pathways upstream and downstream, the two outgoing one-way fluxes
have equal log-derivative, F_, = F,, .bInabranched pathway, a species Z, is
connected to various species Z;, and the sum of the log-derivative of the forward
flux of all products balances the log-derivative of the reverse branched reac-

. _ i
tion, F_, =38 F,,.

derivative of the stationary elementary fluxes, which we call F.,:

F.,=dglnj,,=> 8%, dylnz,. (26)

These are the response coefficients of the steady unidirectional fluxes with
respect to a change in Q. Because the F, s are log-derivatives, all the factors
entering rate laws that do not depend on Q will not contribute to these
coefficients. This includes the rate constants, which do not appear explicitly.
Crucially, the coefficients F,s satisfy structural constraints related to the
topology of the network. A graphical illustration of these structural relations
is provided in Fig. 2 for the particular case of a linear and a branched reaction
pathway. In the linear pathway, an arbitrary species Z; is transformed into a
product species Z;, ; by a reversible and unimolecular reaction p;, and then
Zi11 undergoes a similar reaction p;, . In such case, both j_, and j,,
depend solely on the concentration z;,, of species Z;,,. Consequently,
F_, =F,, ,becausebothtermsareequaltod,Inz;,,. For the branched
pathway, a species Z, splits through the reaction + p, into several products
Z; with multiplicity S' p,» and Eq. (20) leadsto F_, = st oo Fipr

For a general network, these structural relations take a form analogous
to Kirchoff’s laws (see Supplementary Note 3):
F_=F, . (Sll . Sf)v

(27)

provided S is invertible, which is the case in most networks of interest.
Note that the definition of the coefficients F., and the structural constraints
Eq. (27) are valid even when Q # Q. The structural constraints acting on the
F.,s play a key role in our framework, because these coefficients are inti-
mately related to the affinities at the optimal current. Indeed, when Q = Q
one has:

j+p F+p =j—p F—p7 (28)
because dg j, = 0. Using the definition of A, and Eq. (28), we obtain:
F
A —P
e =—— (29)
F.,

At this point of optimal current, Eq. (27) defines a linear system of the form
M - F, = 0, because the elements of F. can be expressed in terms of those
of F., by using the local affinities. The solutions of this system will be trivial if
M, which contains information on both the topology and the affinities, is
not singular. Enforcing that the determinant of this matrix is zero results in a
constraint involving solely the values of the optimal affinities and the ele-
ments of the stoichiometric matrices (see Supplementary Note 5). It does
not require an explicit evaluation of the steady-state rates or concentrations,
nor does it involve kinetic parameters. We illustrate this approach in the
next section.

The condition on the determinant is useful, but cannot easily be applied
to large CRNs. However, using Eq. (29), the affinity of the overall reaction
can be expressed only in terms of the F.,, at the optimal flux:

A"ng‘iln(i—j).

(30)

Finding a bound (a minimum or a maximum) for this global affinity cor-
responds to solving an optimization problem with Eq. (27) acting as linear
constraints and additional constraints due to tight coupling and the second
law as detailed in the Methods section below (see Eq. (39)). More details are
provided in the Supplementary Note 11, where we establish conditions
under which this optimization problem becomes concave. The solution to
this optimization problem provides the thermodynamic bounds as well as
information on the response coefficients using only the topology of the
reaction network. As was the case with the method based on determinants,
this link does not rely on an explicit evaluation of the steady-state fluxes or
concentrations, nor does it require knowledge of kinetic parameters. In
addition to this, the optimization approach can easily be used with
large CRN.

Since the bounds on the optimal affinity do not depend explicitly on the
expressions of the steady-state concentrations or reaction rates, our method
is applicable to large and complex networks, in which these concentrations
and rates are too complex to be computed. For the same reason, the bounds
hold even if the system features multistability, which is often found in
autocatalytic networks'. We show this explicitly for the bistable Schlogl
model™ in Supplementary Note 15.

As an illustration of our approach, we derive lower bounds satisfied by
the global affinity of the Hinshelwood autocatalytic cycle™ with intermediate
species, as represented in Fig. 3a. When the intermediate species, B or D, are
controlled, the constraints on the F. scan be satisfied and the global flux has
a zero-derivative maximum (see the blue curve in Fig. 3b). In that case, the
affinity at the optimum of the current is lower-bounded,

A* 2 1n4, (31)
and the bound can be approached as closely as desired with an appropriate
choice of rate constants, as shown in Fig. 3¢ (blue triangles). When, instead,
the concentration of A or Cis maintained constant, the constraints acting on
the F, s cannot be satisfied (see Supplementary Note 14). As a consequence,
the global flux, 7, has no zero-derivative maximum and, then, is a
decreasing function of Q whose largest value occurs at Q = 0 (see red curve in
Fig. 3b), where the definition of the F.,s and Eq. (28) do not apply. As a
result, exp(A”) diverges. In addition to the Hinshelwood cycle, we also
analyzed in Supplementary Note 13 all the autocatalytic cores™; the results
are summarized in Table 1. Importantly, the bound found for the five
autocatalytic cores remains valid if unimolecular segments of reactions are
added to any of these networks (see Supplementary Note 10 and
Supplementary Fig. 1).

Bounds for type | and type Il networks
Now, two situations arise depending on whether species X appears or not as
areactant in the overall reaction. When species X is a reactant in the overall
equation, the reaction vector gx defines a seed-dependent mode of
production””. In that case, the overall reaction is
aX 4+ (0)—BX+ (o), (32)
with « and 8 being integers such that 8>« >0, and (¢) represents all the
spectator species. Note that in our formalism, the concentrations of the
external species are absorbed in the rate constants, so these species do not
appear explicitly in the overall reaction. The simplest network obeying Eq.
(32) is a generalized version of the Type I core presented in example (1) with
an arbitrary number of intermediate species. As shown in Supplementary
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Fig. 3 | Optimal properties of the Hinshelwood cycle. a Schematic representation of
the Hinshelwood cycle with two types of species: red species (A or C) and blue species
(B or D). b Global flux normalized by its maximum value J* as a function of Q/K
when a specific species of the cycle is chemostatted. This flux has a zero-derivative
maximum (blue triangle) if a blue species is chemostatted or simply reaches its
maximal value at Q = 0 (red square) if a red species is chemostatted. ¢ Cloud of points
for the exponential of the global affinity .A*, for randomly chosen sets of kinetic rate
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constants indexed by N. If a blue species is chemostatted, points are lower-bounded by
4 (blue triangles) otherwise, the affinity diverges (red squares). d Global flux nor-
malized by its maximum value 7" as a function of the degradation rate « of a specific
species. When a blue species is degraded, a zero-derivative maximum exists and is
reached at a finite value of x, while if a red species is degraded, the global flux is
monotonously increasing and reaches its maximal value at infinity. Simulation
parametersforbanddarek, =k, 3=1landk =k, 4=k =k ;=k 3=k 4=0.1.

Note 8, the global production rate in a generalized Type I attains its max-

imum when
A" =1In (E) .
o

Let us now consider a specific class of networks that we call non-intersecting,
for which the stoichiometric matrix of the products, S_, is lower triangular
up to permutations of species and reactions (see Supplementary Note 6).
This means that in non-intersecting networks, each reaction only produces
downstream species. We have shown that for non-intersecting networks,
Eq. (33) represents the lowest achievable bound for A* when the overall
reaction is seed-dependent. We conjecture that this proposition is not
restricted to non-intersecting networks but may hold in general.

Conversely, when species X is not present as a reactant in the overall
reaction, the reaction vector gy defines a seed-independent mode of pro-
duction. In that case, the overall reaction reads

(33)

(0)—BX + (o), (34)
where f3 is a strictly positive integer. It should be noted that Eq. (34) can
describe overall reactions that are not necessarily derived from an auto-
catalytic network. However, the presence of an optimal flux and the bounds
on the corresponding affinity can only be guaranteed if there is an under-
lying autocatalytic network present. The simplest topology compatible with
Eq. (34) is a generalization of the Type II core:
-2Y,2Y, + X (35)
This network is also non-intersecting (see Supplementary Note 9) and the
global affinity associated with the maximum of 7 is

A" =1n (ﬁ + 1).
Discussion

o

We presented a theoretical framework that allows to derive constraints on
the affinity and on the concentrations of autocatalysts, in the regime where
all the fluxes in the network are tightly coupled and the rate of autocatalytic
production is maximal. In this specific regime and assuming mass-action
law, the constraints can be derived using only the knowledge of the topology
of the underlying reaction network but do not require a knowledge of the
kinetics. In this final section, we discuss the potential applications of our
work, its relation to non-equilibrium thermodynamics, and potential
extensions.

(36)

Besides the tight coupling condition, the core ingredient of our work is
the presence of a maximum for the macroscopic flux with respect to a
certain control parameter. For simplicity, we derived our results assuming
this parameter was directly related to a fixed concentration of one auto-
catalytic species, Q. However, there exists flexibility in selecting this para-
meter, as long as the tight coupling property Eq. (21) is preserved. In
particular, tuning the concentration of a single autocatalyst, may not be very
practical experimentally. A more manageable control parameter could be,
for instance, a selective degradation using specific enzymes. For that case, we
have checked that the property of tight coupling of the reaction fluxes is
indeed preserved (see Eq. (44) in the Methods section). The macroscopic
flux, 7, becomes now a function of a degradation rate constant x and
becomes zero for k = 0 at equilibrium, and above a critical value .. (provided
k. < oo), where degradation overcomes the production of the X species by the
autocatalytic network (see Eq. (45) in the Methods section). This threshold
k. is experimentally accessible and has been considered before as a possible
measure of fitness for autocatalytic networks®. Importantly, because the
constraints on the F., and the steady-state are unaffected by the control
procedure (chemostat or degradation), the bounds remain unchanged if one
considers a degradation instead of chemostat. We illustrated this point with
the Hinshelwood cycle in Fig. 3d: when B or C are being degraded, the
current has a zero-derivative maximum verifying A" > In 4. While, on the
contrary, when A or D undergoes degradation, the current has no zero-
derivative maximum and the overall affinity diverges.

The various bounds that we have encountered in this work measure
how far from equilibrium a given network should be in order to deliver a
maximal flux of autocatalytic production. It is advantageous for a given
network to operate close to this point not only because the global reaction is
fast, but also because the system is then robust: at this point, variations in the
concentration of the autocatalytic species are buffered and hardly affect the
flux, which is thus stable.

The affinity can also be interpreted as the entropy production associated
with a steady production of species X or, equivalently, as the production of
entropy per autocatalytic cycle®. The bounds for the optimal affinities can thus
be seen as the minimal cost required to maintain an optimal rate of auto-
catalytic production. We also observed that this minimal cost increases
dramatically when certain reactions within the network are at equilibrium or
when certain key species are depleted, as we have illustrated in the case of the
Hinshelwood cycle. This is consistent with the idea that the thermodynamic
cost should increase in a pathway when certain steps are at equilibrium™”.

Another natural extension of the present work would be to further
investigate the thermodynamics of autocatalytic networks. It would be
interesting to explore possible connections between this work and a number
of studies on thermodynamic trade-offs between dissipation, speed, and
accuracy, and other recent studies on the response of non-equilibrium

Markovian systems to perturbations™*.
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In this work, we were mainly interested in chemical networks in a well-
mixed environment assuming mass-action kinetics. These assumptions are
valid for elementary reactions in well-mixed and dilute solutions, but might
prove unrealistic in crowded environments and/or where chemical species
interact, such as in biological cells. Alternative kinetic laws, like
Michaelis-Menten kinetics, could be used in our framework as long as there
is an elementary level at which the law of mass-action holds, and the coarse-
graining from that microscopic level only involves unimolecular reactions.
Thus, the assumption of mass-action law is an important limitation of our
work, but it is the price to pay to obtain bounds which are independent of the
kinetics. Similarly, a recent work reported a method to compute con-
centration ranges for metabolites in the absence of knowledge from kinetics
but the method is only applicable for mass-action law networks in the limit
of dilute systems™.

Our framework could be used as a computational approach to
predict concentration ranges and thermodynamic affinities from large-
scale metabolic models, which could be useful for the design of auto-
catalytic or self-replicating systems™. It could also be used to provide
information on the topological complexity of observed chemical net-
works. Indeed, we observed that the bounds tend to increase with the
topological complexity of the network, as shown in Table 1. One mea-
sure of topological complexity is the connectivity of the network, and
precisely, we have shown that the bound increases with the degree of
branching of a reaction when the network contains only one such
reaction (see Supplementary Note 7). A generalization beyond this case
may be within reach.

Finally, we note that autocatalytic systems are of particular importance
for scenarios on the origin of life. Autocatalytic networks can amplify
initially small numbers of molecules and the rate at which such species are
produced would certainly play a role in the competition between molecules.
In this context, running at an optimal and robust production rate could
provide an autocatalytic network with a significant advantage in terms of
chemical selection. It would thus be interesting to further explore the con-
sequences of this framework for assessing the robustness and the evolva-
bility of autocatalytic networks.

Methods

Setup and notation

We assume that the chemical reaction network (CRN) is described by a
stoichiometric matrix of the form

(37)

where £ is the set of all species and P is the set of all reactions in the full
system. The restriction of V on £ (denoted V™) describes external species,
while S is the stoichiometric matrix of autocatalytic species. By assumption,
it is a square invertible matrix. Thus, one has £ =E%UZ and
P = P* U R, where Z is the set of autocatalytic species and R is the set of
autocatalytic reactions. The autocatalytic network is coupled to external
species in £ which are involved in additional reactions P™. Note
that a somewhat similar matrix decomposition has already been
introduced to study the geometrical features of non-equilibrium reaction
networks".

After chemostatting all the external species, the autocatalytic CRN is
still able to reach detailed balance. To see this, one can multiply the matrix V
on its left-hand side by the row vector (p,,, #) where py are the chemical
potentials of the external species and g the chemical potentials of the
autocatalytic species. This yields g, - (V™) + g - S, with (V™) being the
restriction of V™ to the space of autocatalytic reactions R. As S is non-

singular, a solution that satisfies detailed balance always exists:

pl=—p - (V- ST (38)
This means that the autocatalyic CRN is able to reach an equilibrium state
even though the additional reactions P are kept away from equili-
brium (g, - (V) pe0).

Additional constraints

Applying the second law of thermodynamics on Eq. (25) imposes that the
global flux is positive for Q € [0, K[ and negative for Q > K thus, Q" lies in
[0, K[, where 7 (Q) > 0. Then, because of the tight coupling condition Eq.
(21), the signs of j, and g’ are the same. Further, if g% > 0 then j, > 0 and thus
A, > 0; conversely, if, gk <0thenj, <0,yielding A, <0.Weare thenleft with
the special and important case where g& = 0, which implies that both j, and
A, = 0 vanish. In that case, the corresponding reaction p is at equilibrium.

P
To summarize :

VpeR, gk A,>0, and A, =0 when gf=0. (39)
Note that these conditions directly translate into additional non-linear
constraints on the F.s at the optimum.

Rescaled modes of production

Because S is integer-valued, there exists a smallest n € N* such that n S™"
is also integer-valued. The columns of ' S™" define the rescaled modes of
production. From Eq. (24), along these rescaled modes, the global affinity is
nA. Since the value of each of the elementary fluxes needs to remain
unchanged, the tight coupling condition Eq. (21) implies that the macro-
scopic current should be 7 /n after the rescaling. As a result, from Eq. (25),
the EPR is preserved by the rescaling. In Egs. (32) and (34), we implicitly
used the rescaled modes of production so that «, § € IN.

Extension to the case of specific degradation

We show here that the bounds derived by considering that an autocatalytic
species is chemostatted remain valid when the chemostatting procedure is
replaced by a specific degradation of the same species. Let us call X the
autocatalytic species in question. We can introduce an augmented stoichio-
metric matrix and an augmented flux vector to take into account the

degradation:
J
v = ,
ki f ()

where «x is non-negative. The degradation rate is described by the function
flx), which can be a simple power law x" with n > 0, or a more sophisticated
expression, such as a Hill function:

SX:—1

S = (40)

Yo

(41)

in which K is usually referred to as the apparent dissociation constant. The
Hill function is often used to model kinetics involving the fixation of a
substrate on macromolecules (such as proteins), and includes the
Michaelis-Menten law as a special case (i.e., # = 1). The dynamics of such an
extended system obeys

dz="S"v. (42)

A steady state of this new system consists of v € ker[S'], the latter being
spanned by g}, = (gX7 1) s

. $X.g, —1
S . g = < SYg.Xg ) =0. (43)
X

Communications Physics| (2024)7:224



https://doi.org/10.1038/s42005-024-01704-8

Article

Consequently, the steady elementary fluxes associated with Eq. (42) are
proportional to g, implying the tight-coupling condition:
j= T 8y (44)
The steady-state fluxes of the various reactions still follow the law of mass
action Eq. (23), but are now parameterized by « instead of Q. Consequently,
we recover the definition of the F. s as the log-derivatives of the elementary
fluxes Eq. (26). From that, the structural constraints Eq. (27) follow.
At steady-state, the tight coupling condition Eq. (44) implies:
J (k) = xf(x). (45)
Hence, the global flux necessarily vanishes when x = 0 because the system
reaches equilibrium in the absence of degradation. Additionally, Eq. (45)
implies that 7 (x) = 0, which allows us to recover the additional constraints
derived above. We now introduce «_ € ]0, 4+00], which is defined as the
value of the degradation rate such that x(x.) = 0. If . < 4 oo then, for any
k2K, x(x) =0 is the only physically acceptable solution, so that Eq. (45)
implies 7 (x) = 0 as well. On the other hand, if . diverges, Eq. (45) imposes
that
n —Q
x(x) FodL e a=1. (46)
From that, two qualitatively different situations can be found. If « > 1, the
global flux tends to vanish as « goes to infinity: J(400) = 0. Instead, if
o = 1, the global flux converges to a finite non-zero value, 7 (+00) > 0. Such
systems are similar to those having a non-vanishing global flux when Q=0
in the chemostatted case. As before, if the constraints are incompatible, 7 ()
is a monotonous function, attaining its maximum when the X species is
completely depleted, as shown by the red curve in Fig. 3d. In the system with
specific degradation, this corresponds to impose a diverging degradation
rate, K = Ke =+ oo,

Data availability
The data points used in the Figs. 1 and 3 are available from the corre-
sponding author upon request.

Code availability
The code that generated the plots is available from the corresponding author
upon reasonable request.
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