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The spectral content of macroscopic neural activity evolves throughout development, yet how this
maturation relates to underlying brain network formation and dynamics remains unknown. Here, we
assess the developmental maturation of electroencephalogram spectra via Bayesian model inversion
of the spectral graph model, a parsimonious whole-brain model of spatiospectral neural activity
derived from linearized neural field models coupled by the structural connectome. Simulation-based
inference was used to estimate age-varying spectral graph model parameter posterior distributions
from electroencephalogram spectra spanning the developmental period. This model-fitting approach

accurately captures observed developmental electroencephalogram spectral maturation via a
neurobiologically consistent progression of key neural parameters: long-range coupling, axonal
conduction speed, and excitatory:inhibitory balance. These results suggest that the spectral
maturation of macroscopic neural activity observed during typical development is supported by age-
dependent functional adaptations in localized neural dynamics and their long-range coupling across

the macroscopic structural network.

The human brain undergoes dynamic and complex maturational processes
throughout childhood, which starts prenatally' and remains highly
dynamic, especially from infancy to early childhood’. Morphological
transformations of the brain across the lifespan are well established’ and
underpin well-described structural and functional network modifications
occurring at various temporal and spatial scales during development”.
However, the mechanisms linking morphological and structure-function
remodeling to electrophysiological developmental changes are unknown.
This gap is critical, as deviations from the typical electrophysiological
maturation are associated with a spectrum of developmental disorders,
including autism and epilepsy””".

Since Berger first reported on differences between the electro-
encephalogram (EEG) of children and adults, the emergence of canonical
brain oscillations such as the posterior dominant rhythm (PDR)
and their expected progression has been well documented® . Recently,
parameterization of aperiodic EEG spectral components has
further characterized age-related electrophysiological changes'® ™.
Despite the critical importance of developmental electrophysiological

activity in investigating typical brain development and in clinically
monitoring neurodevelopmental conditions” ™, the mechanisms
underlying the spectral maturation of macroscopic brain activity remain
unclear.

In parallel with electrophysiological developmental studies, devel-
opmental neuroimaging studies have yielded insights into brain network
development from in utero through adulthood’*”, and have demon-
strated a tight coupling between structural and functional networks
across development™™. Thus follows the intuition that maturational
changes of structural and functional connectivity underlie changes in the
developmental spectral content of brain oscillations'*****~**; however, a
mechanistic understanding of this relationship has been elusive. In this
regard, whole-brain simulations involving modeling of macroscopic
neural activity across varying spatiotemporal scales have demonstrated
promise in elucidating mechanisms of structure-function coupling”, yet,
to the best of our knowledge, no prior studies have aimed to model the
brain-wide electrophysiological spectral maturation seen in develop-
ment. As EEG maturation reflects the refinement of structural and
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functional brain networks'**, spectral graph theory provides a principled

foundation for modeling network-driven EEG spectral changes during
development. Thus, we were motivated to apply the spectral graph model
(SGM), which accounts for spatial propagation of local neural activity
across the spectral graph of the structural connectome™. The SGM
predicts spatiospectral activity in a parsimonious manner with seven
biologically interpretable parameters (Table 1), thus making it well-
suited for modeling the mechanistic principles of electrophysiologic
maturation.

In this paper, we demonstrate the Bayesian inference of SGM
parameters from a developmental EEG database to evaluate the
population-based temporal evolution of SGM parameter space during
the developmental period (Fig. 1). We leverage recent deep learning
advances in simulation-based inference (SBI) that enable efficient esti-
mation of the posterior distribution over SGM parameters”, and
demonstrate that age-associated changes in EEG spectra are described by
a neurobiologically consistent, temporal progression of long-range
coupling strength («), axonal conduction speed (S), and excitator-
y:inhibitory balance. Furthermore, we validate our approach by
demonstrating age prediction from EEG spectra with a regression model
incorporating these parameters.

Results

Subjects

To evaluate the developmental spectral maturation of macroscopic brain
activity, we constructed a developmental EEG database containing EEGs
from subjects ranging from 1 day to 30 years of age, containing
234 subjects (median 9 years, IQR 0.45-14 years). Whole-brain averaged
EEG spectra are shown in Supplementary Fig. la, b. The canonical
emergence and increase in frequency of the posterior dominant rhythm
(PDR) with advancing age is apparent in subjects older than one year, as
are changes in spectral slope.

Tuning SGM parameters generates spectral shifts and the
appearance of PDR

Next, we evaluated whether the SGM recapitulates spectral changes in periodic
and aperiodic components of EEG spectra by systematically varying SGM
parameter values to generate different spectral output realizations. Specifically,
we evaluate the PDR and spectral slope, which reflects the 1/f distribution of
aperiodic power across all frequencies'. Figure 2a demonstrates the emer-
gence of the PDR with increasing values of &, mirroring the monotonic
increase of PDR peak frequency that is seen with typical neurodevelopment.
There is also an increase in the spectral slope with increasing values of a.
Figure 2b demonstrates an increasing spectral slope in the alpha to beta
frequency range with increasing values of Gg;. Figure 2c demonstrates a slight
increase in the PDR with increasing conduction speed while the slope of the
power spectra remains relatively unchanged. Figure 2d demonstrates the
emergence of PDR with increasing values of Gy There is also an increasing
spectral slope of the alpha to beta frequency range with increasing values of Gy.
These changes in spectral slope generated by changes to SGM input para-
meters suggest that SGM is suitable for capturing changes in aperiodic 1/f
activity seen with EEG maturation'*".

Table 1 | Spectral graph model parameters and bounds

Parameter Symbol Bounds
Excitatory time constant Te [0.001, 0.03]
Inhibitory time constant T [0.001, 0.03]
Long-range coupling constant a [0.01,1.0]
Conduction speed S [0.5 m/s, 15 m/s]
Excitatory gain Gei [1,20]

Inhibitory gain Gy [1, 20]

Graph time constant e [0.01, 0.3]

UMAP analysis demonstrates SGM spectral similarity to empiri-
cal EEG data and parameter space indeterminacy

Expanding on the finding that SGM parameter variation replicates key EEG
developmental spectral trajectories, we next examined the fidelity of SGM
simulations to actual, empirically observed EEG spectra. Utilizing Uniform
Manifold Approximation and Projection (UMAP) for dimensionality
reduction of high dimensional spectra, we juxtaposed the low-dimensional
latent representations of SGM simulated spectra and observed spectra.
The resulting UMAP embeddings are shown in Fig. 2e, fand Supplementary
Fig. 2, with a total of 196,000 SGM realizations displayed. Supplementary
Fig. 2 demonstrates an overlap between the simulated SGM and observed
EEG spectral embeddings, indicating that SGM parameter variation repli-
cates real-world EEG spectral features observed across development. Figure
2f, g demonstrates regions with homogeneous PDR frequency or aperiodic
exponent values within the UMAP EEG spectral embedding space. This
indicates model indeterminacy or regimes in SGM parameter space that
yield similar spectral features.

Effects of structural connectome on SGM power spectral density
We utilized the template Human Connectome Project (HCP) structural
connectome® in preceding parameter variation analysis and subsequent
analyses due to the unavailability of age-specific structural connectomes
across the broad pediatric age ranges and fine temporal resolutions (weeks)
required for our study. To assess the effect of excluding age-dependent
connectomes, we contrasted SGM realizations derived from structural
connectivity at the neonatal and adult developmental extremes. As mac-
roscopic spectral activity in the SGM is determined by the long-range
coupling («) of localized neural dynamics propagated across the structural
connectome, we evaluated the effect of utilizing neonatal versus adult group-
averaged structural connectomes on SGM spectral realizations at both
strong and weak « regimes. The selection of structural connectome did not
significantly alter spectral power distribution (Supplementary Fig. 3). In
contrast, using strong «, relative to weak a, in the SGM increased spectral
power and markedly altered the spectral power distribution, leading to
emergence of PDR (Fig. 3). There was a significant difference in the spectral
distribution shift induced by « selection compared to the shift induced by
structural connectome selection, with a whole-brain Jensen-Shannon
divergence difference of 0.0899, p < 0.001. These findings suggest that the
contribution of structural connectomes in shaping the generation of 1/f
activity and PDR is limited, corroborating recent evidence from the devel-
oping Human Connectome Project ({HCP) indicating that core structural
connectome components are established in utero and stable postnatally*'.
Therefore, although the utilization of a static structural connectome does
not encompass all structural network changes affecting spectral maturation,
it nonetheless offers a foundation to understand how spectral maturation
may emerge from age-dependent tuning of localized neuronal dynamics
and their long-range coupling within a conserved structural network.

SBI sensitivity analyses, posterior diagnostics, and simulation-
based calibration

To elucidate key parameters driving EEG spectral development, we utilized
a Bayesian approach employing SBI to identify approximate posterior dis-
tributions of SGM parameters that best align with synthetic or empirical
EEG spectra. We evaluated three recent SBI methods: Neural Ratio Esti-
mation (NRE)*“, Automatic Posterior Transformation, also known as
Neural Posterior Estimation (NPE)*, and the recently introduced truncated
sequential NPE (TSNPE), which more robustly handles posterior estima-
tion at the boundaries of the specified prior range™. In order to assess the
accuracy and robustness of the SBI-SGM inference framework, we con-
ducted parameter recovery analyses and simulation-based calibration (SBC)
with synthetic data as outlined in Supplementary Note 1.

NRE, NPE, and TSNPE demonstrated differential performance across
parameter recovery and SBC, with NPE and TSNPE generally out-
performing NRE (Supplementary Figs. 4-11). While NPE demonstrated
robust parameter recovery, it tends to produce poorly calibrated posterior
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Fig. 1 | Study overview. We utilize simulation-based inference (SBI) with neural
density estimation to approximate age-varying Spectral Graph Model (SGM)
parameter posterior distributions from EEG spectra spanning the developmental
period. a During Neural Density Estimator (NDE) training, the NDE learns the
mapping between simulated SGM EEG spectra and their summary statistics realized
from SGM parameterizations sampled from the SGM prior distribution. b SBI with
the trained NDE is then used to infer approximate SGM parameter posterior dis-
tributions from subjects at different ages across development. Representations of

Developmental Change in SGM Posteriors

Infant Child Adult

hypothetical infant, child, and adult EEG spectra examples representing develop-
mental EEG changes are shown. Example summary statistics that are provided as
input to the NDE include posterior dominant rhythm (PDR) center frequency (red-
dashed line), aperiodic exponent (green-dashed line), and the spectral distribution
(green, blue, and purple lines for infant, child, and adult examples). Subsequent
inferred approximate posterior distributions for respective hypothetical infant,
child, and adult examples demonstrate developmental shifts (blue arrows) in SGM
parameters. NFM Neural field model.

distributions (Supplementary Fig. 12) and is prone to posterior leakage at
the parameter bounds (Supplementary Fig. 13). In contrast, TSNPE has
well-calibrated posteriors relative to NPE and is robust against posterior
leakage (Supplementary Fig. 13); however, its scalability is limited under
conditions of extensive simulation requirements and large datasets. NPE
and TSNPE captured similar correlation structures in the estimated pos-
terior joint marginal distributions (Supplementary Fig. 14). We discuss
potential sources of the differential performance across SBI methods further
in the Supplementary Note 2. Given the general preference for conservative
over overconfident posterior estimates—the latter potentially leading to
erroneous scientific conclusions””—we utilize TSNPE in the subsequent
application of SBI-SGM to empirical data given its improved calibration
results compared to NPE.

SBI of SGM parameters recapitulates observed EEG spectral
features

Having assessed the robustness of the inference procedure, we next per-
formed a posterior predictive check on empirical data, specifically simu-
lating spectra under the fitted SGM and then comparing these to the
observed data. Figure 4 (red traces) demonstrates examples of output SGM
spectra realized from mean values of the SGM parameter posterior dis-
tribution inferred with TSNPE that resemble the input empirical EEG
spectra (black traces). These examples recapitulate periodic and aperiodic
components of the empiric EEG spectra, confirming that SBI with SGM
captures relevant spectral features of observed EEG data, including periodic

and aperiodic features such as PDR and spectral slope. The corresponding
posterior distributions for each respective EEG spectrum SGM model fit
with TSNPE are shown in Fig. 4 (right panels), with higher probabilities
assigned to SGM parameter sets that generate realizations consistent with
the observed data and lower probabilities to inconsistent parameter sets.
NPE and TSNPE had similar Posterior Dispersion Index (PDI) profiles for
empirical data, with both demonstrating excitatory and inhibitory time
constants as having the least dispersion and conduction speed as having
highest the dispersion (Supplementary Fig. 11).

SBI of SGM parameters shows age-related progression in long-
range coupling and axonal conduction speed, and excitatory:
inhibitory balance

Next, we aimed to ascertain if age-dependent trajectories in the SGM
parameter posterior distributions, inferred from real EEG data, would align
with established age-dependent changes in their biological counterparts.
These developmental trends include well-known increases in functional
long-range connectivity and coupling strength'®"”’, acceleration of axonal
conduction speed*®, and shift towards reduced excitatory:inhibitory balance
with aging”™'. To achieve this, we allowed the SBI-SGM inference to
operate within physiologically plausible prior bounds, with no other
enforced constraints, thereby allowing model flexibility within a broad
parameter space. This approach allowed us to evaluate the natural evolution
of SGM parameter posterior distributions across the developmental
time frame.
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Fig. 2 | Spectral realizations with varying SGM parameterization. a-d demonstrates
the effect of varying Spectral Graph Model (SGM) parameters. a & parameter pro-
gression shows emergence and increase in the frequency of posterior dominant
rhythm as « is increased, b Excitatory gain progression shows a change in aperiodic
content of spectral frequencies greater than 10 Hz. ¢ Axonal conduction speed
parameter progression shows an increase in PDR frequency as speed (m/s) is
increased. d Inhibitory gain progression shows the emergence of posterior dominant
rhythm (PDR) and increase in PDR frequency as well as changes in the aperiodic
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content of spectral frequencies greater than 10 Hz. e Uniform Manifold Approx-
imation and Projection (UMAP) embedding showing gradients in PDR frequency
(Hz) evident in different clusters. Spectra without PDR are shown in purple. There
are regions with homogenous PDR frequency suggesting SGM parameter regimes
that yield similar PDR. f UMAP embedding showing gradients in aperiodic expo-
nent evident in different clusters. There are regions with homogenous aperiodic
exponents suggesting regions of SGM parameter space that yield similar aperiodic
exponents.
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Fig. 3 | Effects of neonatal versus adult connectome
and coupling strength on SGM spectral realiza-

Neonate Adult

tions. We compared the differential effects of uti-
lizing a neonatal versus adult connectome and
strong versus weak long-range coupling («) on
Spectral Graph Model (SGM) spectra realizations
across different brain regions (frontal, temporal,
parietal, occipital, and whole-brain). The left and
right columns demonstrate SGM power spectral
density (PSD) realizations instantiated with group-
averaged neonatal and adult connectomes, respec-

Frontal
JSH: 1.151E-01

Frontal
JSH: 1.082E-01

tively (N'= 1000 per connectome). Each subplot
shows mean SGM realizations instantiated with

weak (red-dotted line) and strong (blue line) «, with
95% confidence intervals (CI) indicated by the cor-
responding shaded regions. « was sampled uni-
formly at random between 0.1 to 0.3 for weak and
between 0.7 to 0.9 for strong « regimes, respectively.
Remaining SGM parameters were uniformly ran-
domly sampled from physiologically-informed
prior ranges (Table 1). Qualitatively, there is a
broadband increase in spectral power with relatively
stronger augmentation in alpha power seen with

Temporal
JSH: 1.061E-01

Temporal
JSH: 1.177E-01

stronger a. The alpha peak is not as well defined as
seen in Fig. 2 due to the effects of PSD averaging.

There were subtle differences in PSD distribution
resulting from selection of neonate versus adult
structural connectome, demonstrated in Supple-
mentary Fig. 3. Distances between normalized mean
spectra per connectome were assessed with
Jensen-Shannon divergence (JSH). Across all cor-
tical regions, there was a significant difference in the
spectral distribution shift induced by « compared to
the shift induced by structural connectome, with

Parietal
JSH: 1.180E-01

Parietal
JSH: 1.067E-01

whole-brain JSH difference of 0.0899 (p < 1.0e—7).
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We inferred multivariate SGM posteriors for each subject with
TSNPE (Supplementary Figs. 15 and 16), then retrieved the posterior
means from the probability density function for each respective SGM
parameter posterior distribution. Figure 5 demonstrates plots of the
subsequent mean SGM parameter values versus the respective age for
each subject. There was a significant positive association between age
and long-range coupling & (Pearson correlation coefficient r=0.615,

P <0.001. Considering that « reflects functional long-range coupling of
neural dynamics unfolding over a seconds-scale timespan®, the pro-
tracted increase in PDR occurring over years during neurodevelopment
suggests a gradual enhancement in the baseline tone of long-range
functional coupling within the connectome. Biologically, this may be
mediated by the strengthening of long-range excitatory and GABAergic

coupling that occurs during neurodevelopment***’.
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Fig. 4 | Observed subject EEG spectra, inferred SGM parameter posterior dis-
tributions, and corresponding simulated spectra. Posterior predictive checks,
comparing simulation-based inference (SBI) of the spectral graph model (SGM)
derived spectral realizations to observed data, are shown for three representative
subject EEGs a, ¢, e. Observed EEG spectra are demonstrated in a, ¢, e (black traces),
and their respective approximated SGM parameter posterior distributions obtained
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with SBI are shown in b, d, f. The mean values (red lines in b, d, f) of respective SGM
parameter posterior distributions were used to simulate spectra with SGM and
yielded simulated spectra (red-dashed traces) shown in a, ¢, e. The simulated spectra
have characteristics similar to those of the observed data, including posterior
dominant rhythm (PDR) center frequency and spectral slope.
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Fig. 5 | SBI of SGM parameters over the develop-
mental period. The evolution of inferred spectral
graph model (SGM) parameters is visualized over
time. Each colored circle represents the peak value of
the respective SGM parameter distribution (y-axis)
for a respective subject, as inferred by simulation-
based inference (SBI), plotted over respective age of
the subject (x-axis). The linear regression model fit is
represented by the solid line and the shaded area
represents 95% confidence interval. « demonstrated
Pearson r = 0.284 (p = 3.88e—5). Axonal conduction
speed demonstrated r = 0.350 (p = 2.97e—7). Exci-
tatory Gain demonstrated r = —0.430 (p = 1.40e
—10). Inhibitory Gain demonstrated r = 0.388
(p=1.01e—5). Graph time constant did not
demonstrate a linear correlation with age (Supple-
mentary Fig. 17). The x-axis tick labels are log-scaled
for visualization purposes. Symbols and abbrevia-
tions: Excitatory time constant, T, (blue); Inhibitory ]
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In addition, our results indicate an age-dependent increase in axonal
conduction speed S (r=0.722, p<0.001), consistent with the known
maturation of white matter pathways, which also importantly impacts long-
range coupling®. This finding is congruent with the established maturation
of white matter myelination and axon diameter, which are the primary
determinants of conduction speed™*".

Furthermore, we demonstrate an age-dependent reduction in
excitatory:inhibitory (E:I) balance (Gg: r=— 0.489, p<0.001; G
r=0.388, p <0.001), mirroring animal model studies that have reported
a developmental decrease in the E:I balance, putatively driven by an
increase in GABAergic tone®. Also, recent human studies have
investigated TMS to measure and affect the E:I balance™, and
the finding of reduced E:i during development aligns with TMS
study findings that older individuals tended towards greater intrinsic
inhibitor tone’".

Lastly, . and 1; demonstrated negative associations with age with
r=—0.363 (p <0.001) and r = —0.641 (p <0.001), while there were no
associations between age and tg (Supplementary Fig. 17). These
reductions in T, and T; are potentially congruent with rodent and primate
studies, which have reported a general quickening of GABAergic and
glutamatergic synaptic time constants over the developmental
period®*". However, regression diagnostics with scale-location plots
(Supplementary Fig. 18) for 1. and t; indicated heteroskedasticity con-
firmed by Breusch-Pagan tests with x* of 5.560 and 14.13 with corre-
sponding p-values of 0.0179 and 1.71e—3, respectively. The presence of
significant heteroskedasticity limits the reliability and validity of the T.

and T; findings. Regression diagnostics on the other SGM parameters did
not exhibit significant heteroskedasticity.

Prediction of age and PDR with data-driven inference of SGM
parameters

For further validation of the age-dependent trajectories of the inferred SGM
parameter posterior distributions, we next asked whether the inferred SGM
parameters could predict subject ages from the input EEG spectra.
Employing polynomial regression, we modeled the relationship between
SGM parameters that demonstrated robust linear associations with age («, S,
Ggy, Gyp) with log age. We evaluated the predictive capacity of the regression
model on observed versus predicted age using a cross-validation approach
and compared performance to a polynomial regression model fit on peri-
odic and aperiodic parameters obtained with the fitting oscillations & one
over f (FOOOF) methodology'®. We evaluated for heteroskedasticity with
the Breusch-Pagan test and the SBI-SGM regression model did not exhibit
heteroskedasticity (Supplementary Fig. 19). The adjusted coefficient of
determination (R®) for observed versus predicted age was 0.534 (Fig. 6a),
consistent with good agreement between SBI-SGM regression model pre-
dicted age and observed age. This demonstrates improved performance over
the FOOOF regression model, which had (R?) of 0.534 (Fig. 6b). We then
evaluated whether inferred SGM parameters would correspond with center
frequency changes observed in the PDR over time. We modeled this rela-
tionship using polynomial regression and found an adjusted R* of 0.217 for
observed versus predicted PDR (Fig. 6¢), suggesting that the evolution of
SGM features during development only partially accounts for the observed
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Fig. 6 | Prediction of age and PDR from inferred SGM parameters. a Observed
versus predicted age plot for predicted ages derived from linear regression model
utilizing simulation-based inference of Spectral Graph Model parameter posterior
distribution means (SBI-SGM). b Observed versus predicted age plot for predicted
ages derived from linear regression model utilizing posterior dominant rhythm
(PDR) bandwidth, PDR center frequency, PDR power, aperiodic exponent, and
aperiodic offset obtained with the Fitting Oscillations & One Over F (FOOOF)
method. Respective Adjusted R* and mean square error (MSE) values are shown in
the gray subset boxes. SBI-SGM demonstrated improved prediction of age compared
to FOOOF, with relatively higher R* and MSE compared to FOOOF. ¢ Observed
versus predicted PDR plot for PDR derived from linear regression model utilizing
SBI of SGM parameter posterior distribution means (SBI-SGM). d Observed versus
predicted PDR plot for predicted PDR derived from linear regression model utilizing
aperiodic exponent and offset obtained with FOOOF (FOOOF-AP). FOOOF-AP
demonstrated improved prediction of the PDR compared to SBI-SGM.

variance in periodic EEG spectral features. In comparison, the FOOOF
model fit on aperiodic 1/f exponent and intercept achieved R* of 0.553,
suggesting that aperiodic 1/ffeatures evolution during aging are predictive of
PDR frequency. Prior literature in predicting age from EEG has reported R*
values ranging up to 0.61 for datasets including pediatric subjects, with the
best results achieved utilizing machine learning approaches™. Engemann
et al. reported deep learning (DL) and feature-engineering models had R2
values of 0.61 and 0.33, respectively, on the normal subgroup of the Temple
University Hospital Abnormal (TUAB) EEG dataset (N = 1385, mean age:
48.6 years with standard deviation 17.9 years)”. Given that TUAB pre-
dominantly consists of adult subjects with 43 subjects between 10-20 years
and only three subjects in the 0-10 years, direct comparison with our
findings, which focus on the developmental age demographic, is limited. In
contrast to DL or feature engineering approach utilized by Engemann et al.,
the latter of which utilized at least 30 features, the SGM approach demon-
strates comparable performance while utilizing a biologically interpretable
feature set with 7 parameters, thus providing mechanistic insight into the
underlying brain dynamics correlated with aging and development.

Discussion

In this study, we utilized SBI with the spectral graph model (SBI-SGM) to
model EEG spectral maturation and infer population-based trajectories of
SGM parameters relevant to brain development, such as long-range cou-
pling and excitatory-to-inhibitory (E:I) balance. We demonstrate that the
temporal progression of SGM parameters coheres with their expected
developmental evolution. To the best of our knowledge, this is the first

demonstration that the maturation of brain spectra across developmental
stages can be accurately modeled within an analytical framework, guided by
the neurobiologically consistent evolution of model parameters.

The maturation of long-range projection fibers, marked by myelina-
tion and axonal diameter growth, are considered crucial in promoting
structure:function coupling thereby mediating the evolution of diverse
functional network configurations and their underlying brain
rthythms"**"¥". However, recent evidence indicates that the connectome’s
structural core is already present and remarkably stable in infancy and early
childhood". This suggests the presence of additional mechanisms con-
tributing to the postnatal refinement of functional networks.

In exploring these mechanisms with SGM-SBI, we identified that an
increase in long-range coupling («) during development captured the
canonical age-dependent increase in the PDR. While PDR and other
oscillations can be generated via neural mass models modeling cortical
columns or the thalamocortical system**, to our knowledge how certain
brain oscillations such as PDR may emerge and evolve at expected time
points in the lifespan has not been previously specified with a mechanistic
whole-brain model. Our findings suggest that PDR evolution is partially
driven by age-dependent alterations in network dynamics underpinned by
the gradual strengthening of long-range functional coupling over the
structural connectome. Also, our results recapitulated the known increase
in axonal conduction speed with age, which facilitates transmission effi-
ciency and thus functional organization of long-range neural networks**”.
Finally, we demonstrated that E:I balance demonstrated a reduction with
age, congruent with the established reduction of E:I balance that occurs with
development, thought to be primarily mediated by the maturation of
GABAergic circuitry””°. Fine-tuning of E:I balance has been demonstrated
across different brain regions and disruptions to E:I balance have been
implicated in animal models of autism and other disorders of disrupted
neurodevelopment®”>”". We assumed uniform levels of excitation and
inhibition, respectively, occurring at a mesoscopic level throughout the
whole brain network model of the SGM. While this is a simplified treatment
of E:I balance, we recognize that excitation and inhibition are, in fact,
multidimensional entities, occurring across multiple network scales, varying
time periods, and mediated by diverse excitatory and inhibitory cell types
and synaptic mechanisms’. Nonetheless, SGM provides an analytical toe-
hold in the challenge of understanding E:I balance by relating changes to
configurations of excitatory or inhibitory gains to predicted brain spectral
activity™.

Spectral graph theory, and in particular one of its central tenets the
graph Laplacian operator, has broad applicability and effectiveness across
multiple domains in network science’, thus has emerged as a powerful tool
for understanding structure-function relationships in neuroscience. Indeed,
eigenmodes of the brain network Laplacian, as introduced by Abdelnour et
al. and others, have been used to predict canonical functional networks from
underlying structural networks”*'". These models are intimately related to
walks on graphs, and higher-order walks on graphs have also been quite
successful; typically, these methods involve a series expansion of the graph
adjacency or Laplacian matrices®*. It is now known that the series
expansion and eigenmode approaches yield highly similar mappings
between functional and structural networks® . In the latter, eigenmodes of
the adjacency or Laplacian matrix are typically employed, and only a few
eigenmodes are usually sufficient to reproduce empirical functional
connectivity**”~”>. While the above eigenmode-based models have
demonstrated the ability to capture steady-state, stationary characteristics of
real brain activity, they are limited to modeling passive spread without
oscillatory behavior. Capturing the rich repertoire displayed by EEG
recordings would require a full accounting of axonal propagation delays as
well as local neural population dynamics within graph models. Band-
specific MEG resting-state networks were successfully modeled with a
combination of delayed neural mass models and eigenmodes of the struc-
tural network”™, suggesting that delayed interactions in a brain’s network
give rise to functional patterns constrained by structural eigenmodes. The
SGM further develops this concept by demonstrating the prediction of
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spatial and spectral features of neural oscillatory activity™, providing a
parsimonious and principled framework for modeling electrophysiologic
maturation during development.

Next, we contrast our study to prior approaches to modeling whole
brain activity. While there have been numerous large-scale neural network
or macroscopic brain models of alpha frequency rhythms (PDR) proposed,
these have been generally limited to modeling alpha activity in relatively
more temporally constrained brain states, such as during anesthesia®’*""**,
While early approaches successfully captured oscillatory brain activity*’*”",
they did not aim to simultaneously model aperiodic brain activity. Con-
versely, Bedard and Destexhe developed a framework for the genesis of
aperiodic brain activity; however, this framework did not capture periodic
oscillations™. More recently, Hashemi et al. utilized Bayesian inference
techniques, including Monte Carlo Markov Chain methods, to effectively fit
a thalamocortical neural mass model to EEG data in humans undergoing
anesthesia, demonstrating effective capture of key spectral peaks in delta and
alpha frequencies, as well as aperiodic components, in observed data™. Few
studies have appeared to utilize a regional or whole-brain network approach
to seek to explain spectral periodic and aperiodic activity. An approach
utilizing the Kuramoto model with a whole brain connectome suggested
that mechanistic underpinnings of alpha and beta oscillatory activities
arise from cross-regional synchronization; however, de-emphasized the
accuracy of their simulation at capturing realistic brain activity””. Our
finding of the importance of long-range coupling («) in the emergence of
alpha-range oscillatory activity (PDR) aligns with this perspective, and
moreover, offers a neurobiological mechanistic underpinning for how
increased network synchronization or long-range coupling gives rise to
oscillatory activity.

Subsequently, we address that the stability or robustness of our findings
hinge on several aspects: data characteristics and degree of model mis-
specification; SBI components such as prior specification and posterior
approximator hyperparameterization”; and the stability of the SGM itself.
Regarding dataset characteristics, the experimental data distribution, noise
levels, and alignment (or misalignment) of the model with the data-
generating process may affect SBI robustness™. EEG data demonstrates
substantial variability across the developmental timeline. Thus, depending
on the age group of interest, a more targeted analysis within narrower
developmental windows may yield more robust inferences due to decreased
EEG variability and more informative, age-specific priors. Concerning
stability considerations related to the SBI, our evaluations utilizing synthetic
reference data demonstrated that stability and accuracy of posterior dis-
tributions, given a priori knowledge of the true solution, depended on NPE
hyperparameterization, such as the simulation budget utilized. In addition,
one may consider approaches to improve SBI stability and reliability,
including ensembling and post-hoc calibration methods™. Further work
involving generalization studies on larger datasets is required to effectively
evaluate the stability of the SBI-SGM framework. Regarding numerical
stability of the SGM model itself, Verma et al. applied root locus analysis to
delineate the bounds of SGM parameters that give rise to dynamical
behaviors, including damped oscillations, limit cycles, or unstable
oscillations™. Our SBI findings for excitatory and inhibitory time constants
and alpha were within ranges that promote stable oscillatory activity. In
contrast, excitatory:inhibitory gains were consequently inferred to be above
boundaries that ensure stable oscillations, suggesting a potential for
instability. These parameters exhibited increased posterior dispersion and
variance in identifiability, which could reflect the unstable regime in SGM
parameter space leading to greater unpredictability in SGM output. How-
ever, our empirical EEG data encompassed subjects who exhibited fluctu-
ating and unstable oscillatory activity that was interspersed with prominent
1/factivity, or lacked oscillatory activity altogether as in the case of younger
infants. The ability of the SGM to account for such diverse neural dynamics
promotes robustness in the SBI-SGM framework, particularly in accom-
modating the unpredictability and instabilities of whole-brain network
activity.

We acknowledge several limitations in our study. A primary limitation
arises from the non-utilization of age-specific structural connectomes from
birth to adulthood; rather, analysis was performed using a standardized
adult connectome. This constraint is primarily due to scarcity of available
age-specific structural connectome datasets for the 0 to 24 month old age
range with fine-grained age resolution. Consequently, our analysis does not
account for potential changes in the structural connectome that may con-
tribute to spectral maturation. Recent evidence suggests that the structural
connectome forms in utero'**'*". However, our finding that the utilization of
neonatal versus adult structural connectome had relatively subtle effects on
SGM spectral realizations aligns with recent findings from Ciarrusta et al.,
who demonstrated that the core components of the structural connectome
develop in utero and are relatively stable postnatally*. In addition, the
functional connectome fingerprint is not only established, but also
demonstrates stability during early brain development in infants'”. Despite
the limitations arising from the use of a static structural connectome in our
analysis, maintaining a stable structural network over the developmental age
range in our analysis provides insight into how functional changes arise
upon a consistent structural framework.

Furthermore, we acknowledge a potential limitation in our analysis
arising from relatively unrestricted parameter exploration, constrained only
by bounds on SGM time constants and propagation parameters. During SBI
and within the SGM, we did not enforce neurobiological constraints, thus
the inferred SGM parameter realizations may not necessarily align with
naturally observed relationships in the parameters. Hashemi et al. utilized
neurobiological constraints enforced during spectral fitting, such as differ-
ential response function characteristics for excitatory and inhibitory
synapses with excitatory response function having longer rise and decay
times than inhibitory synapses™. Within the proposed SBI-SGM frame-
work, we purposefully did not enforce neurobiological constraints with the
aim of capturing a parsimonious description of brain spectral evolution over
development. Nevertheless, introducing such constraints would enable
further alignment of the SBI of brain and neural models with naturally
occurring observed constraints.

Also, we note that the SGM is inherently a linear model, and thus may
be limited in its ability to fully capture all the complexities of nonlinear
neural dynamics'”. However, despite the intrinsic nonlinearities present in
the brain, particularly at microscopic and mesoscopic scales, a recent study
comparing linear and nonlinear approaches of modeling macroscopic
intracranial EEG and fMRI neurophysiologic activity demonstrated that
linear models unexpectedly performed more accurately than nonlinear
models, thus suggesting potential advantages to the linear modeling
approach beyond their relative interpretability compared to nonlinear
models'”". However, it is crucial to recognize that the intrinsic nonlinearities
and complexities of brain network dynamics may be more faithfully
represented through nonlinear modeling'”’. Thus, the advantageous inter-
pretability and computational tractability of linear models such as the SGM
should be seen as a complement to, rather than a replacement for, nonlinear
methods.

Additionally, we recognize the argument that fitting our empirical data,
constituting an average EEG spectrum across channels, may not necessitate
a spatially resolved model like the SGM. In fact, one could fit the empirical
spectrum to a single lumped neural mass model”. More detailed models are
also available'”. Such models would incorporate local dynamic properties
like E:I gain and local circuit time constants. However, they would be unable
to probe the specific maturation behavior of interest seen developmentally -
ie, of axonal conduction speed and inter-regional coupling. Another
benefit of a spatially resolved model such as the SGM is that in future studies
with denser EEG configurations or scalp MEG, it would be possible to
perform reliable source reconstruction, which will in turn enable the
interrogation of the spatial gradients of empirical electrophysiology, in
addition to their spectral content. This would, for instance, allow us to
explore the ability of fitted model to reproduce the spatial dominance of
alpha rhythm, analogous to that recently demonstrated in adults™”.
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Lastly, we observe that the ability of SBI capture age-dependent
changes in SGM parameters from empirical EEG data suggests broader
applicability. For instance, in epileptogenesis, elucidating the time-
dependent slow dynamics of long-range coupling and excitator-
y:inhibitory balance may provide insights into pathologic neurophysio-
logical shifts that engender the development of epilepsy, whereas
identifying rapid changes in these parameters could elucidate dynamics
of pre-ictal and ictal states. Similarly, deviation of these parameters from
typical trajectories could be used to investigate spectral differences that
arise in autism and other neurodevelopmental disorders. Lastly, Lavanga
et al. recent utilized SBI in conjunction with whole brain modeling to
understand structure-function relationship underlying cognitive decline
in aging'®. Similarly, the SGM, which has been recently used to model
abnormal neural oscillations and their cellular correlates in patients with
Alzheimer’s Disease'”, in conjunction with SBI offers an analytical fra-
mework to further investigate mechanisms underlying cognitive decline.
The potential for SBI in conjunction with the SGM to provide novel
mechanistic insights into both typical neurodevelopment and conditions
with disrupted neurodevelopment, such as autism and epilepsy, will be
evaluated in future work.

Conclusions

While the critical trajectories of morphological and structural connectivity
remodeling during development are well-established, the structure-function
relationship remains to be clarified. Our findings suggest that the evolving
structure-function interplay influences canonical features of brain spectral
maturation, including the evolution of PDR and 1/f aperiodic activity. This
interplay is inextricably linked to changes in brain morphology and struc-
tural networks, yet understanding the precise mechanisms underlying this
connection warrants additional investigation.

Methods

Spectral graph model

The SGM is a linear model capable of simulating spatial and spectral
patterns of macroscopic neural activity. In this hierarchical model of the
brain’s structure-to-function relationship, the macroscopic functional
activity emerging from mesoscopic neural activity is summarized by a
minimal set of global macroscopic parameters in a closed-form Fourier
domain formulation. The simulated broadband spectrum and spatial
patterns emerge from the information-rich contents of the brain’s
structural graph Laplacian. The key concepts of the macroscopic model
will be highlighted here, while the detailed derivations are illustrated in
the original publications™.

Complex graph Laplacian. For a brain’s white matter diffusion-derived
structural network, its normalized graph Laplacian matrix characterizes
the most probable paths a signal may take in a network. Here, we define
the brain’s structural connectivity matrix as C = cj, consisting of con-
nection strengths between any brain regions j and k. To incorporate
the time delays caused by white matter streamline distances between
brain regions, we utilize the properties of delay-induced phases in
the Fourier domain and introduce a complex-valued connectivity
matrix C*(w) = ¢;; exp(—jwt;)). Where delays 77, is computed from the
pairwise region distances divided by a constant speed v. This complex
connectivity matrix not only incorporates distance-induced delays
between nodes (T;k) into our network but also allows us to estimate
network properties given a frequency of oscillation (w). Therefore, a
degree normalized complex connectivity matrix at some frequency w is
defined as:

C(w) = diag (dieg) C'(w) (1)

Where the degree vector deg is defined as degy = >_c;x. The SGM pro-
pagates signals via the eigenmodes of the network’s Laplacian matrix, and

a normalized Laplacian £ of C(w) is defined as:
L(w) =1 — aC(w) ?2)

Where [ is the identity matrix and « is a global coupling constant parameter
that weights the network connections.

The macroscopic model. The macroscopic model relies on the
assumption that signal transmission between macroscopic brain regions
is linear, and the changes in the signal’s spectral contents can be sum-
marized by linear filters. In the SGM, this macroscopic linear filter is a
TLZ
(a+d”
nation with the complex valued network Laplacian dictates the spectral
and spatial spreading of signals from mesoscopic neuron assemblies:

Gamma-shaped function F(w) = These linear filters in combi-

-1
X(w) = (ij + %F(w)ﬁ(w)) H,,...(0)P(w) 3)
G

In steady-state conditions, we assume the brain has uncorrelated Gaussian
noise, therefore the driving function P(w) = I, where I is a vector of ones. The
network level time constant 75 parameterizes the macroscopic properties of
the brain’s structural network and region wise activity Hj(w) is
transferred throughout the network via the characteristic paths set by the
Laplacian £(w). The characteristic paths are computed by the eigende-
composition of L(w):

L(w) = U(w)A(w)U" () 4)

Where A(w) = diag([A,(w), ..., Ay(w]) is a diagonal matrix consisting of
the eigen values of £(w). By incorporating the eigen modes U(w) into (3), we
can show that the macroscopic frequency profile X(w) is:

. H
X0 = 3T B P@) )

An overview of the SGM is shown in Fig. la.

UMAP of SGM simulations

To understand the SGM parameter space and evaluate the ability of the
SGM to capture developmental EEG spectral shifts we utilized UMAP
(Uniform Manifold Approximation and Projection) for dimension reduc-
tion of spectra and visualization of SGM simulated spectra and observed
EEG spectra, using hyperparameters number of neighbors of 60 and
minimum distance of 0.1'”*. This generates a low dimensional embedding of
potential simulated SGM spectra and observed EEG spectra on which
spectra that self-similar will cluster. Similarity between SGM spectra and
observed spectra will manifest with overlapping clusters of these respective
groups and conversely dissimilarity between the two groups will manifest as
clusters with minimal or no overlap. To allow a balanced input to UMAP
that is representative of the canonical EEG power bands, we provide as input
to UMAP individual frequency binned power from 0.5Hz to 12Hz in
0.5 Hz bins, average power in the high alpha (12-20 Hz), beta (20-40 Hz),
and gamma (40-55 Hz).

Subject EEG and standardized structural connectome

We utilized publicly available neonatal and infant EEG datasets with age
range 1 month to 1 year of age'”. We also utilized a publicly available
database of EEGs containing ages 5-18 years of age'"’. Additional EEG data
were used from patients with normal EEG between the ages of 1 day to
5 years of age were retrospectively identified from the University of
California San Francisco (UCSF) Epilepsy Monitoring Unit EEG Database
or the UCSF Benioff Children’s Hospital Neuro-Intensive Care Nursery
database and selected for analyses with the following inclusion criteria: (1)
Normal EEG at time of study and (2) No known history of seizures,
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hypoxia-ischemic encephalopathy, stroke, or other known neurological
condition at the time of study. All study procedures were approved by the
institutional review board at UCSF. EEG for neonates utilized modified
10-20 system for neonatal subjects with averaged reference with 14 chan-
nels. EEG for pediatric and adults subjects utilized standard 10-20 system
with averaged reference montage with total 19 channels. For calculation of
EEG spectra we calculate the power spectral density (PSD) using Welch’s
method in 100 frequency bins between 0 to 50 Hz, which is less than half the
sampling rate for all EEGs. This pre-processing was performed with the
python MNE package''". To constrain dimensionality, we utilize the global
mean across all channels for both observed and simulated spectra. EEG
measurements were taken from distinct samples from each subject.

For SGM spectral realizations used in the main analysis, we utilized the
adult template structural connectome obtained from the MGH-USC
Human Connectome Project (HCP) database®’. We compared SGM reali-
zations derived from the adult HCP connectome to those derived from a
template neonatal connectome. The template neonate connectome was
derived from 20 full-term neonates from the developing HCP (dHCP)'".

SBI of SGM parameters

A challenge central to neural modeling is the statistical inference of simu-
lation model parameters, with respect to observable data, which in Bayesian
inference, can arise due to computational intractability of the posterior
distribution for high dimensional systems or analytical intractability of the
likelihood function'”. In addition, estimation of brain model parameters of
electrophysiological maturation from observed EEG constitutes a classic
inverse problem characterized by non-uniqueness: multiple biologically
plausible brain model specifications that generate similar EEG maturation
trajectories. In this regard, the Bayesian approach provides a suitable fra-
mework for incorporating biophysically plausible priors as constraints and
subsequent inference of SGM parameter posterior distributions'"*. Recent
advances in SBI leveraging deep learning advances to approximate the
posterior distributions for respective simulation parameters have shown
promise in application to single-neuron mechanistic models®, and more
broadly have seen increasing utility in diverse scientific fields including
particle physics and astrophysics'”’. The potential of SBI to model high-
dimensional whole-brain dynamics has also recently been leveraged in
modeling epilepsy and in healthy brain aging'**'".

Modeling neural data is hindered by the inaccessibility of the ground
truth set of biophysical parameters across the microscopic to macroscopic
continuum that determine the human brain’s structural and functional
state. Furthermore, even if these parameters were available, the likelihood
function becomes computationally intractable in the face of high-
dimensional complexity characteristic of neural data. Moreover, tradi-
tional MCMC methods used for Bayesian inference, while powerful are
computationally inefficient, particularly when applied to high-dimensional
neural modeling and may have convergence issues''*. In this context, recent
developments in probabilistic models in machine learning (ML) have led to
methodological advances in SBI, including deep-learning based compact
representation of high-dimensional data, active learning methods to
simulate at parameters @ that have higher likelihood of increasing knowl-
edge the most, and amortization of probability density estimation'"”. In our
approach, we evaluated three recent SBI techniques: Neural Ratio Estima-
tion (NRE)", Neural Posterior Estimation (NPE)", and Truncated
Sequential Neural Posterior Estimation (TSNPE)*. In NRE, a neural net-
work classifer is trained to approximate the likelihood-to-marginal ratio®.
In NPE, which is also known as automatic posterior transformation (APT)
and sequential NPE (SNPE) when utilized in multi-round inference con-
texts, the generative model is run sequentially across different sets of
parameters generating model behavior on which a deep neural network can
be trained to output a posterior distribution over the input model
parameters”’. This approach, which circumvents direct computation of the
likelihood function, has recently been effectively applied in the domain of
functional to structural brain modeling in the context of healthy brain
aging'®. We also compare standard NPE to the recently introduced

truncated NPE (TSNPE), which more robustly handles posterior estimation
near the margins of the specified prior range compared to NPE*, While we
focus on recent SBI methods here, we acknowledge that there are alternative
robust methods for parameter estimation. A prominent Bayesian inference
approach is the Hamiltonian Monte Carlo (HMC) algorithm, which offers
superior convergence and robustness in handling high-dimensional spaces
and models with highly correlated parameters relative to traditional MCMC
methods'”. In contrast to SBI, which enables approximate Bayesian infer-
ence even when the likelihood function is unavailable, HMC requires
availability of the likelihood function, as it operates within a likelihood-
based framework of Bayesian inference. Furthermore, model differentia-
bility is optional with SBI whereas HMC requires it. HMC employs gradient
calculations of the log posterior with respect to the model’s parameters to
compute the Hamiltonian dynamics, facilitating efficient exploration of the
posterior distribution. Additionally, HMC may be utilized to sample the
posterior constructed with differentiable, likelihood-based SBI techniques
such as NLE. This approach facilitates robust sampling and efficiently scales
to high-dimensional parameter spaces'’. A compelling demonstration of
these gradient-based HMC methods in combination was demonstrated by
Hashemi et al. for the inversion of a differentiable whole-brain model to
model subject-specific epileptogenicity'”’. The SGM is differentiable; how-
ever, caution and further investigation are needed to evaluate the stability of
eigendecomposition gradients due to parameter degeneracy and the use of
non-Hermitian matrices in the SGM.

Given the observed EEG spectra y, the respective SGM parameter
posterior distribution p(@ | y) was determined by NRE, NPE, or TSNPE
utilizing the sbi Python package''*’. In this approach, SGM is evaluated
sequentially across specified parameter value ranges generating SGM
spectral output realizations on which the neural density estimator is trained
to approximate the posterior distribution over the input model parameters
(Fig. 1b). Prior knowledge is parameterized in the SGM as the range of
admissible values for @ based on biophysically plausible values following Raj
et al.’®. SGM parameters and their respective, physiologically-informed
bounds used for SBI are listed in Table 1. We evaluated varying simulation
budget sizes up to 1E6 simulations to train the neural density estimator for
NRE and NPE. For TSNPE, we evaluated varying budget sizes up to
2000 simulations at two or three rounds of sequential inference with pro-
posal truncation. We utilized summary statistics of SGM power spectral
density (PSD) output, the first periodic and aperiodic components (Sup-
plementary Fig. 1c) which succinctly parameterizes physiologically and
developmentally pertinent EEG spectral features'®”’, and binned PSD as
utilized by Rodrigues et al. for neural mass model (NMM) inversion with
Hierarchical Neural Posterior Estimation'”". The resulting inferred posterior
distributions p(@| y) contain high values for parameters 6 that are consistent
with the empirical data y and are asymptotic to zero for 6 inconsistent with y.
10000 samples (i.e., consistent SGM parameter sets) per subject were drawn
from the posterior p(@ | y) to determine the multivariate posterior dis-
tribution. The distributions of p(8 | y) over y observed across different ages
were used to evaluate longitudinal changes of 8 and for incorporation into
subsequent regression models.

Bayesian sensitivity analysis

We apply Bayesian identifiability and sensitivity analyses to assess pathology
in the inference approach and to characterize the performance of the
inference procedure'”. We evaluate the posterior shrinkage'”’, defined as

2
s=1-— % If the posterior closely resembles the prior without significant

prior

shrinkage, it indicates structural non-identifiability, as the data does not
inform our understanding of these parameters. Conversely, when the pos-
terior is influenced by the data (evidenced by shrinkage) but demonstrates a
strong statistical interdependence among parameters, this indicates either
structural or practical non-identifiability, characterized by an inability to
uniquely determine individual parameters due to their interrelated nature in
the model'”’. In addition, the posterior z-score may be used to assess how
accurately the posterior recovers ground truth parameters. We evaluate the
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. Fpox =0 : ,
posterior z-score'”, defined as: z = |2 —| where po is the posterior

Opost

mean, Oy is the posterior standard deviation, and z quantifies how accu-
rately the posterior mean approximates the true parameter.

Simulation-based Calibration of SBI-SGM

Simulation-Based Calibration (SBC) is used to validate the precision of
uncertainties within the Bayesian framework by assessing whether the
variance in the posterior distribution, which represents uncertainty in
model parameters, is accurately calibrated'**. SBC involves generating
multiple observational datasets from a range of parameters drawn from the
prior distribution, then for each dataset, a posterior distribution is computed
using SBI. The subsequent posterior calibration is deemed accurate if the
ranks of the original parameters, when evaluated within their corresponding
posterior distributions, collectively exhibit a uniform distribution. The
uniformity of the resulting SBC ranks is then visually assessed by comparing
their empirical cumulative density function to that of an ideal uniform
distribution, ensuring the reliability of the model’s uncertainty estimations.
This uniformity of the normalized rank statistics aligns with a necessary,
though not sufficient, condition for the estimated posterior to be accurate.
We utilize visualization of ranks cumulative density function in comparison
to the uniform distribution, and also utilize the one-sample Kolmogorov-
Smirnov test to check whether the ranks drawn from the estimated posterior
follow the normal distribution. In addition, we utilize Classifier 2-Sample
Test (C2ST) to compare the estimated posterior to the prior distributions'”.
We utilized the python sbi package implementation of C2ST, which utilizes
a binary MLP classifier to distinguish samples from the estimated posterior
0~q(flx) and the reference posterior 6~ p(f]|x). The subsequent test
accuracy of the classifier ranges from 0.5, indicating that if accuracy is not
better than chance then the ensembles are drawn from the same distribu-
tion, to 1 where the distributions are exactly distinguishable.

Evaluating association of temporal evolution of SGM parameters
with age

To evaluate the dynamics of SGM parameters over time during develop-
ment, we tested for the correlation of SGM parameters with age. For each
subject, the mean value of the inferred SGM parameter posterior distribu-
tion was selected. We then used Pearson Product-Moment Correlation to
evaluate the linear association between age (log years) and SGM parameters
&, S, Ggp, and Gyp. Next, we sought to validate our modeling approach by
evaluating the ability of SGM parameters obtained automatically via SBI to
predict age, PDR, and the aperiodic exponent. We regressed predicted vs
observed values, on the x and y axes, respectively, following Piniero et al. for
prediction of age, PDR, and aperiodic exponent'*’. The PDR and aperiodic
exponent were automatically detected using the Fitting Oscillations & One
Over F (FOOOF) Python package as demonstrated in Supplementary
Fig. 1a'"*. We utilized a polynomial regression model (degree = 2) with k-fold
cross-validation (k = 10). This model selection was motivated by the pre-
sence of nonlinear changes in different brain parameters over time. Such
nonlinear dynamics in brain development have been recently modeled
using polynomial approaches’. Prior functional connectivity studies have
also tended to model nonlinearity with polynomial regression'”. SGM
parameters used in the regression model included those found to correlate
with age. During each cross-validation fold, the polynomial regression
model is fit to the training set containing these SGM parameters, and their
mean square error (MSE) in age prediction and coefficient of determination
is calculated on the held-out set.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
EEG data were obtained from publicly available neonatal and infant EEG
datasets with an age range of one month to one year of age'” and publicly
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available database of EEGs containing ages 5 to 30 years of age' . The power
spectra derived from the publicly available EEG samples used for SBI are
available from the corresponding author upon reasonable request. EEG data
for subjects between one day and five years were obtained at the University
of California San Francisco (UCSF) and raw patient-related data are not
available due to data privacy laws. Pre-processed UCSF EEG data are
available under restricted access due to ethical and privacy reasons. UCSF
EEG data can be requested by contacting the corresponding author, and
data sharing is conditional to the establishment of a specific data-sharing
agreement between the applicant’s institution and UCSF.

Code availability

Code for the spectral graph model (SGM) can be found on the spectrome
package GitHub page (https:/github.com/Raj-Lab-UCSF/spectrome).
Code for incorporation of the SGM with SBI using the sbi Python package
with examples are available on the project’s GitHub page (https://github.
com/dbernardo05/sbi-spectrome).
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