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Toroidal phase topologies within paraxial
laser beams
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Control of topologies in structured light fields with multi-degrees of freedom integrates fundamental
optical physics and topological invariance. Beyond the simple phase vortex, three-dimensional (3D)
topological singularities and related nonsingular textures have recently gained significant interest.
Here, we experimentally demonstrate the creation of a family of toroidal phase topologies within
paraxial laser beams. By employing single two-dimensional (2D) phase control, we generate
propagating 3D topological textures, effectively embodying the topological configuration of a four-
dimensional (4D) parameter space. The resulting light fields exhibit amplitude isosurfaces of toroidal
vortices and hopfionic phase textures, both controlled by topological charges. The ability to prepare
scalar phase textures of light offers new insights into the high-dimensional control of complex
structured textures and may find significant applications in light-matter interactions, optical
manipulation, and optical information encoding.

The interplay between non-trivial topologies and physical fields lies at the
heart of current research. In this context, much interest has focused on the
physical properties related to knot theory1. There is a growing realization
that the knot physics are essential parts of many physical processes,
including liquid crystals2,3, classical and quantum fluids4,5, magnetic
systems6,7, quantum fields8,9 and acoustic waves10,11. In optics, the custo-
mized structured light field with muti-degrees of freedom is an excellent
experimentally accessible platform for studying general knot topologies12–14.
Deriving from the idea of Lord Kelvin’s knotted vortex atoms hypothesis,
the interest in combining the concept of singular opticswith knot topologies
has lasted for quite a long time15,16. For instance, beyond single singularity in
a 2Dplane, the trajectory of phase or polarization singularities embedded in
3D light fields can be woven into knots and links17–20. The entire light fields
are twisted everywhere to match the topological structures as the core, and
thus exhibit topological protection against perturbation21,22. In addition,
topological light fields with controllable topological invariants inspire
research interests due to their potential application in optical encoding and
communication20,23,24.

As a trivial structure in the knot family, the core of toroidal vortices is
the simplest knot mathematically. Well-known examples of toroidal vor-
tices in nature are smoke rings from active volcanoes and bubble rings from
dolphins. Ever since Tait’s smoke ring experiment, the creation of toroidal
vortices has been extremely attractive as subject of study in fluid
mechanics25. Recently, two types of toroidal pulses in optics have attracted
wide attention26. One is spatiotemporal toroidal vortices, in which

conformal mapping transforms a spatiotemporal vortex with transverse
orbital angular momentum to a toroidal topology27–29. The symmetrical
toroidal vortices have been extended to the photon conch with chirality30.
Another one is the toroidal light pulses, electric (or magnetic) field lines
forming a torus topology31–33. Indeed, the formation and topological stability
of these topological configurations depend on precise spatiotemporal
shaping.

Topological objects that are closely related to toroidal topologies and
have particle-like properties are hopfions34,35. TheHopf fibration establishes
the mapping between a unit-sphere in 4D space (3-sphere S3) and a unit
sphere in 3D space (2-sphere S2). For a point in unit 2-sphere, its preimage
corresponds to a circle in 4D real spaceR4. The investigation of the 3-sphere
can be projected into the familiar 3D real space with preserving the topo-
logical properties. Particle-like structured lights with elegant topological
textures such as optical skyrmions and hopfions attracted widespread
interests36. Structured vector beams with spatially varying polarization are
preferentially considered to carry these topologies. Orthogonal polarization
components in space were controlled artificially to form baby skyrmion in
2D transverse plane and hopfions in 3D beams37. Three-dimensional sky-
rmionic hopfions were extended to higher-order cases with relatively
complex polarization textures38,39.

In this work, we theoretically propose and experimentally create a
family of toroidal phase topologies within paraxial laser beams. These phase
topologies are constructed under the framework of high-dimensional
parameter space and stereographic projection. We generate the optical
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toroidal vortices and related hopfionic phase textures by exploiting single
phase modulation. Different from the skyrmionic hopfions constructed
with spatial polarization distribution, the proposed topological textures are
scalar counterparts formed by spatial phase distribution. The observed
phase fibers are attached to the toroidal amplitude isosurface of the light
fields. The topological configuration of the phase fibers and the topological
invariants of the light field are determined by the topological charges of the
toroidal vortices and the axial vortex. These phase topological structures
possess characteristics for potential applications in high-dimensional
information encoding and light-matter interactions2,20,23.

Results
High-dimensional space and stereographic projection
Topologically, knotted and linked curve relate to singularities in high-
dimensional spaces. Consider a non-constant polynomialwith two complex
variables u, v that can form a 4D space, the algebraic set consisting of
polynomial zeros corresponds to a complex hypersurface. The intersection
of the hypersurface with unit 3-sphere S3 centered at the origin may lead to
knotted curve. To establish a connection between the hypersphere and 3D
real space, stereographic projection can reduce the spatial dimension and
preserve the topology. In this case, one type of projection can be defined as

u ¼R2 þ z2 � 1þ 2iz
R2 þ z2 þ 1

v ¼ 2Reiϕ

R2 þ z2 þ 1

ð1Þ

where (R, ϕ, z) are cylindrical coordinates in 3D real space. In fact, the
projection functions have inherent topological textures. The zero set of
function u is a unit circle centered at the origin of the coordinate. As shown
in Fig. 1a, the amplitude isosurface of the function u is a torus, which
gradually shrinks to the black ring as the amplitude decreases. The colored
arrows reflect the local phase structure in the space. Itmeans that in the z = 0
plane, the complex function u contains toroidal phase singularities in real
space. It can be directly found the familiar vortex phase from complex
function v. Due to the constraint of hypersphere, complex function v also
has toroidal amplitude isosurfaces. As illustrated in Fig. 1b, the vortex phase
structure is drawn around the inner surface of the torus, with the black
singularity line passing through the center of the torus.

Different from the zero set of complex function f(u, v)=um-vn leading to
the (m, n) torus knots, here we consider complex function f(u, v)=uv and
related topological textures. As displayed in Fig. 1c, the complex function

has both toroidal and straight singularity lines. The total phase of the
complex function is determined by the toroidal vortices and axial vortex. In
toroidal coordinates, the axial vortex will rotate the phase structure around
the toroidal isosurface. In contrast to Fig. 1a, the red arrow rotates as the
poloidal coordinate changes. In addition, the red arrow wraps round tor-
oidal coordinate once and poloidal coordinate once, thus marking (1, 1)
torus knot trajectory in space.All the knots correspond to2πphase valuesfill
the torus surface, and the spatial rotation relationship between them is
determined by the topological charge of the axial vortex. Each pair of knots
withdifferent phase values formsaHopf link, and the axial vortex linepasses
through the interior of each knot. These key structural features indicate the
complex scalar field forming hopfionic phase textures.

Experimental observation of paraxial toroidal vortices
The construction of optical toroidal topologies relies on the above theore-
tical model. Although the complex function does not satisfy the wave
equation, it contains the expected topology. After addition of Gaussian
factor, the polynomial function becomes the target physical field. We first
design the light field in a 2D transverse plane so that it matches the dis-
tribution of the complex scalar function in the z = 0 plane, and then pro-
pagate it in paraxial conditions to obtain the entire 3D light field. Here we
use the Laguerre-Gaussian (LGl, p) modes as the orthogonal bases to further
decompose the physical field into the topological light field, where l is the
azimuthal mode number, p is the radial mode number. For the paraxial
toroidal vortices, it can be decomposed into the linear superposition of LG0,0

and LG0,1 modes, which can be expressed as

EtoroidalðR; ϕ; z;wÞ ¼ αLG0;0 � βLG0;1

¼CðR; ϕ; z;wÞ αþ β
2R2

w2ðzÞ � 1

� �
expð�2iΦðzÞÞ

� �

ð2Þ

where α, β are any positive real number and determine the radius of the
toroidal vortices,witharadiusof

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β� α=2β

p
w in the z= 0plane,C(R,ϕ,z,w)

is the common termof the twomodes, andΦ(z) is theGouy phase. Similar to
the distribution of the complex function u, Eq. (2) also provides a toroidal
vortex phase, although it is not located in a standard torus.

Taking the parameter α = 1, β = 2 as an example, we will illustrate the
observation of embedding toroidal vortices into the designed laser beam.To
keep the topological configuration in the 3D propagating beam, the
modulated light field needs to satisfy both the amplitude and phase

Fig. 1 | Theoretical construction of toroidal phase topologies. a Three-
dimensional toroidal amplitude isosurface of the complex function u. The toroidal
vortices are represented by a black trajectory, and the local vortex phase structure
around the torus is marked with colored arrows. b Several local phase structures
arising from the vortex phase of the complex function v, with straight vortex line

passes through the interior. c Hopfionic phase textures embedded in the complex
scalar function uv. Local colored arrows rotate due to axial vortices, the circular
trajectory formed by the end of the arrow is shown in the illustration. The isovalue of
the 3D surfaces is set to 0.3, and the colored curves in the illustration represent the
phase fibers formed on the torus.
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distributions of Eq. (2). Experimentally, the desired complexfield is encoded
as a phase-only pattern, which is loaded to a spatial lightmodulator to shape
the paraxial beam.Theparaxial toroidal vortices can be obtainedby imaging
with a 4f system and filtering in its focal plane. To observe the spatial
trajectory and phase textures of the toroidal vortices, we use the inter-
ferometry based on digital holography40. Details of experimental setup and
light field reconstruction are given in the Methods. From the off-axis
hologram recorded in the experiment, the amplitude and phase profiles of
the beam in the x-y plane can be reconstructed, as shown in Fig. 2a, b. It can
be found that there is a phase step at the corresponding position of the
toroidal darkness in the beam. The light fields in x-z section visualize the
phase singularities of the toroidal vortices clearly. Due to the rotational
symmetry of the toroidal vortices, it has the same profile in y-z section. The
full-field measurement reveals the 3D amplitude isosurfaces of the toroidal
vortices, as visualized in Fig. 2c. Translucency effect is used to distinguish
surfaces formed by different amplitude values. In addition, the phase fibers
on the isosurface and the vortex core are visualized inFig. 2d.Toroidal phase
fibers with different phase values are not linked to each other.

Experimental observation of paraxial hopfionic phase textures
Following the theory model of hopfionic phase textures, we consider both
toroidal vortices and a straight vortex line. The product of the complex
function f(u, v)=uvl and the Gaussian factor in the z = 0 plane can be
decomposed as the superposition of LGl,0 and LGl,1 modes. which can be
expressed as

EhopfionsðR; ϕ; z;wÞ ¼ αLGl;0 � βLGl;1

/ expðiφtÞ expðilφpÞ
ð3Þ

where φt and φp are the azimuth angle in the toroidal and poloidal plane
respectively. In this form, the twisted phase of the light field is the sum of the
toroidal vortices and straight vortex. Using the same experimental method,

we observed the phase textures when the topological charge l is 1. Figure 3a, b
visualize the amplitude and phase profiles of the beam in the transverse and
longitudinal planes. It can be clearly seen that the dark core and the toroidal
darkness both exist in the transverse profile of the beam. Note that, in the
longitudinal distribution, although the amplitude distribution retains rota-
tional symmetry, the phase distribution changes with the observed plane due
to the transverse vortex phase. The amplitude isosurfaces shown in Fig. 3c
demonstrate the presence of toroidal vortices in the beam as well. The
experimentally determined hopfionic phase textures are shown in Fig. 3d.
The reconstructed phase fibers are well attached to the amplitude isosurface,
and all phase fibers wrap round the central hole and the toroidal vortices in
the samemanner. Thus, eachpair of phasefibers is linked to eachother.As an
example, the inset of Fig. 3d shows a Hopf link formed by phase fibers with
0 and π phase values.

High-order hopfionic phase textures
According to Eq. (3), we extend the paraxial hopfionic phase textures to the
higher-order case. Since the beamshaping in the experiment is located in the
2D transverse plane, it is relatively easy to achieve the high-dimensional
control of the transverse vortex structures. Although higher-order vortices
tend to exhibit instability under perturbations and thus split into multiple
singly charged vortices, such imperfections occur in the center of the beam
and do not affect the observation of higher-order hopfionic phase textures
on the torus. For second and third order phase hopfions, the experimentally
observed amplitude torus are shown in Fig. 4a, d. It can be seen that the
radius of the toroidal vortices increases slightly with the topological charge.
The experimentally extracted higher-order phase fibers are visualized in
Fig. 4b, e, which clearly shows the topological features of the phase hopfions.
The points on the phase fiber always pass through the internal circle of the
torus l times and around the center of the torus once, thus marking (1, l)
torus knot trajectory. This topological feature is exemplarily visualized in
Fig. 4c, f with only two phase fibers.

Fig. 2 | Amplitude and phase information of an experimentally generated
paraxial toroidal vortices. a Amplitude and b, phase profiles of the beam in the
transverse (x-y) and longitudinal (x-z) planes, longitudinal phase vortices indicate
the position of the toroidal vortices. The directional arrows also indicate the beam
sizes, which represent 0.4 mm in x, y direction and 80mm in z direction. Insets show

the corresponding simulated profiles. c 3D amplitude isosurafces of the paraxial
toroidal vortices in different views, the isovalues of the three surfaces are 0.13, 0.08,
and 0.03 respectively. d The colored curves denote 3D phase fibers on the torus
surface, the phase interval is π/3, and the black ring marks the trajectory of the
paraxial toroidal vortices.
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Fig. 3 | Amplitude and phase information of an experimentally generated phase
hopfions. a Amplitude and b, phase profiles of the beam in the transverse (x-y) and
longitudinal (x-z) planes. The directional arrows also indicate the beam sizes, which
represent 0.4 mm in x, y direction and 80 mm in z direction. Insets show the cor-
responding simulated profiles. c 3D amplitude isosurfaces of the phase hopfions in

different views, the isovalues of the three surfaces are 0.13, 0.08, and 0.03 respec-
tively. d The colored curves denote 3D phase fibers on the torus surface, the phase
interval is π/3, and the black ring marks the trajectory of the paraxial toroidal
vortices. Insets show the Hopf link formed by two phase fibers.

Fig. 4 | Visualizing the topology of high-order hopfionic phase texture. a, d 3D
amplitude isosurfaces of second and third order phase hopfions, insets show the
amplitude profiles in the z = 0 plane. b, e The experimentally extracted 3D phase
fibers of the high-order hopfions, insets show the phase profiles in the z = 0 plane.

The phase interval is π/3, and the black ring marks the trajectory of the paraxial
toroidal vortices. c, f The Hopf link formed by two phase fibers with 0 and π phase
values.

https://doi.org/10.1038/s42005-024-01782-8 Article

Communications Physics |           (2024) 7:285 4

www.nature.com/commsphys


Discussions
In the above experiments, the high-order hopfionic phase textures with
topological charges l > 1 are generated. Thanks to the precise control of the
higher-order transverse vortex structures and their acceptable slight split-
ting (see insets in Fig. 4b, e), the phase textures are very stable for experi-
mental observation. However, singly charged toroidal vortices limit the
topological configuration of the phase fibers. For the even-order paraxial
toroidal vortices, it has a uniform phase profile in the z = 0 plane, and the
longitudinal singularity splitting cannot be ignored in the experiment.
Therefore, the generation of high-order toroidal vortices is the key to
expanding the configuration of phase fibers, but also presents a great
experimental challenge.

Recently, optical vortex knots and linksunder tight focusing conditions
have been explored both theoretically and experimentally41,42, where topo-
logical structures can be reduced to the order of wavelength in 3D space. It
might be interesting to combine these techniques with the hopfionic phase
textures. In addition to the spatial aspect ratio, thismay promote high-order
toroidal vortices and more complex phase texture structures.

In summary, we propose and demonstrate a class of toroidal phase
topologies within paraxial laser beams. The construction of 3D phase
topologies requires only single 2D phase modulation. Through the use of
high-dimensional space and stereographic projection, we demonstrate the
generation of paraxial toroidal vortices and related hopfionic phase textures.
In addition, we perform full-field reconstruction of the phase fibers, each
pair of equiphase lines is linked for the phase hopfions. The topological
structure of the equiphase lines is completely determined by the topological
charges of the toroidal vortices and the axial vortex. More fundamentally,
the fine phase textures demonstrate the potential for topological control in
paraxial beams. These topological textures associatedwith singularitiesmay
be of interest in topological excitation in material and high-dimensional
information encoding2,20,23.

Methods
Experimental setup
The experimental setup used to generate and characterize toroidal phase
topologies is shown in Fig. 5. The linearly polarized beam emitted from a
He–Ne laser (632.8 nm) is expandedby a beamexpander (BE) and then sent
to a beam splitter (BS1) dividing into two beams. The transmitted one is a
reference beam for interference. The reflected one is modulated by a
reflective spatial light modulator (SLM), where the designed phase-only
pattern is controlled by a computer. A weighted blazed grating transfers the
desired amplitude and phase information to the first diffraction order of the
beam. The modulated beam is then imaged by a 4f system consisting of
lenses L1 and L2, and the first diffraction order is filtered by an aperture (A).
After the 4f system, the desired toroidal phase topologies are obtained.
Finally, the topological light field and reference light are interfered by

adjusting the mirror (M) and the beam splitter (BS2), and the interference
pattern is recorded by a charge coupled device (CCD).

Reconstruction of 3D topological structures
The digital hologram recorded in the experiment embodies the 3D topo-
logical information of the full-field. By utilizing the digital holography and
the angular spectrum relation, we can get the 3D complex amplitude
information of the target volume. For the entire reconstructed volume, we
divide it into 201 transverse planes in the range of z to investigate the
complex amplitude profiles. According to these data and using the isosur-
face extractor, the toroidal amplitude surface can be obtained. The challenge
for the reconstruction of complex phase fibers goes beyond the trajectory of
knotted singularities. Our method is suitable for phase textures and sin-
gularity structures. Based on the triangulation data of 3D amplitude and
phase isosurfaces, we extracted the intersection lines of isosurfaces by using
an algorithm developed in-house, thus ensuring the visualization of phase
textures on specific amplitude isosurface. The black singularity lines are
extracted from the zero isosurfaces of the real and imaginary parts of the
complex field.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code used for the data analysis is available from the corresponding
author upon reasonable request.
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