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Designer spin-orbit superlattices:
symmetry-protected Dirac cones and spin
Berry curvature in two-dimensional van
der Waals metamaterials
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The emergence of strong relativistic spin-orbit effects in low-dimensional systems provides a rich
opportunity for exploring unconventional states of matter. Here, we present a route to realise tunable
relativistic band structures based on the lateral patterning of proximity-induced spin-orbit coupling.
The concept is illustrated on a patterned graphene–transition metal dichalcogenide heterostructure,
where the spatially periodic spin-orbit coupling induces a rich mini-band structure featuring massless
and massive Dirac bands carrying large spin Berry curvature. The envisaged systems support robust
and gate-tunable spin Hall responses driven by the quantum geometry of mini-bands, which can be
tailored throughmetasurface fabricationmethods and twisting effects. These findings open pathways
to two-dimensional quantum material design and low-power spintronic applications.

The intertwiningoforbital and spindegrees of freedomunderpin awealthof
phenomena, from the formation of topological insulators to the spin Hall
effect of light1–7. In condensedmatter systems, spin-orbit coupling (SOC) is
a relativistic interaction due to themotion of electrons in the electric field of
the crystal lattice, which can yield spin-dependent band structures and
Berry-curvature effects that strongly influence the electrodynamics of
quasiparticles8,9. Because the Berry curvatureflux encodes global topological
invariants (such as the Chern number for quantum anomalous Hall insu-
lators), SOC is also a key mechanism behind quantised transport in topo-
logical phases of matter10,11.

Broken symmetries alter the spin-orbital character of electronic
states12,13, and therefore provide pathways by which to realise novel spin
phenomena. Among these, the emergence of spin textures in spin-orbit-
coupled systems with broken spatial inversion symmetry has generated
enormous excitement in the fields of spintronics and magnonics
recently14,15. Owing to a close interplay of spin, lattice (pseudospin), and
orbital degrees of freedom, SOC manifests both in real and momentum
spaces—spin-momentum locking of spin-split Fermi surfaces16–18,magnetic
skyrmions19–21, and persistent spin helices22–24 are prominent examples—
and forms the basis of several transport effects of fundamental and practical
interest. Chief among these is the current-driven spin polarisation that
occurs in non-magnetic conductors with nontrivial spin textures, such as
spin-momentum-locked Rashba interfaces and topological surfaces25–27.

The ensuingnet spinpolarisations are often large (allowing current-induced
magnetisation switching of ferromagnets28–30) and tend to lie perpendicu-
larly to the applied electric field owing to the tangential nature of conven-
tional Rashba-type spin textures. Moreover, recent studies have found that
the net spin orientation can be tuned in chiral materials boasting more
exotic spin textures due to fully broken reflection symmetries31–34, whichhas
the potential to unlock unconventional spin-orbit torques35–37.

Likewise, the rich landscape of spin Hall effects (SHEs) reflects the
symmetries underlying spin-orbit-coupled matter38. Of recent and growing
interest is the SHE in vertical heterostructures built from graphene and two-
dimensional (2D) semiconductors39. In these systems, the interfacial
breakingofpoint-group symmetries leads to twomain typesof SOCthat can
be either induced or greatly enhanced via proximity effects: the sublattice-
staggered SOC (underlying the valley-Zeeman effect) and themore familiar
Rashba SOC40–42. Beyond featuring an exceptionally high degree of SOC
tunability via strain and twisting effects43–48, proximitized 2D crystals sup-
port robust extrinsic SHEsdue to scalar impurities, havingno counterpart in
other, non-Dirac 2D systems49,50 (for a recent review see ref. 42). Such
symmetry-breaking effects are also of ubiquitous importance for 2D
quantised transport51–54, aswell as formetallic anomalousHall andmagnetic
spin Hall phases55,56.

Despite this, most theoretical work so far has focused on translation
invariant spin-orbit fields that reflect the periodicity of the underlying
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crystal structure, since this is the most conspicuous case. An interesting
exception is themodulation of the strength of Rashba andDresselhaus SOC
induced in quantum-wire setups, previously explored in the context of spin-
transistor devices57–59. Inspired by recent advances in the realisation of
artificial Dirac band structures in graphene with one-dimensional (1D)
superlattice potentials60–62, the purpose of this work is to show that the
quantum geometry and electrodynamic response of 2D materials can
be engineered via synthetic spin-orbit fields created by a metasurface.
Our proposal, outlined in Fig. 1a, leverages proximity-induced effects
between atomically thin crystals to engender effective spin-orbit fields with
periodicity aS much greater than the lattice scale, which we call super-spin-
orbit fields (SSOFs). We envision that the long-wavelength modulation of
the spin-orbit field acting on charge carriers can be achieved by placing
graphene on a patterned high-SOC substrate, akin to the patterning of
electrostatic potentials in a lateral graphene superlattice60–62 (other possibi-
lities arediscussedbelow).Aswe shall see, the envisaged synthetic SSOFsnot
only lead to the formation of mini-bands but also impact their underlying
quantum geometry, yielding a number useful effects. This includes the
counterintuitive and exotic possibility of creating linearly dispersing spin-
degenerate electronic states even for Rashba-type SSOFs where spatial
inversion symmetry is strictly broken. Our proposal is, therefore, com-
plementary to previous superlattice setups, where the presence of spatially
uniform SOC components generally leads to spin-split energy bands with
non-linear dispersion as well as energy gaps63–65. The SSOFs are also fun-
damentally distinct from superlattices arising from the periodicmodulation
of on-site staggered potentials66,67, which lack SOC effects. Another
advantage of the SSOFs introduced here is that they intrinsically generate
semimetallic phaseswithout theneed forperiodicZeemanfields68,which are
difficult to implement. Furthermore, in analogy to spatially uniform SOC,
SSOFs endow electronic states with spin Berry curvature, paving the way to
SHEs with unique geometric features.

To model the electronic properties of a graphene sheet subject to a
proximity-induced SSOF, we employ a continuum low-energy description
based on the Weyl-Dirac Hamiltonian69, supplemented with a 1D periodic
perturbation comprising a scalar potentialU(x)60 and SOC terms allowed by
symmetry40–42. We focus exclusively on long-period perturbations, hence

suppressing intervalley scattering60. TheHamiltonian in the valley-isotropic
basis is

Hτ ¼ v ðσ � pÞ � s0 þ UðxÞσ0 � s0 þ Hso;τðxÞ; ð1Þ

wherev is thebareFermivelocityof2DmasslessDirac fermions(v=106m/s),
σa and sa (a = x, y, z) are Pauli matrices acting on the pseudospin and spin
subspaces, respectively, σ0 and s0 are 2 × 2 identitymatrices, p =− iℏ∇ is the
momentum operator, and τ = ± 1 is the valley index. For the broad class of
Dirac Hamiltonians that are locally invariant under the C3v point group

41,42,
the SSOF term Hso,τ(x) receives up to 3 contributions, namely, a spin-flip
Rashba term[HR(x)=λRΦ(x) (σx⊗ sy−σy⊗ sx)], a valley-Zeeman termdue
the broken sublattice symmetry [Hvz,τ(x) = τλvzΦ(x) σ0 ⊗ sz], and a Kane-
Mele (KM) term [HKM(x) = λKMΦ(x) σz ⊗ sz]. Here, λR, λvz, and λKM
respectively denote the nominal strength of the Rashba, valley-Zeeman, and
intrinsic-like SOC induced by the application of the SSOF, while Φ(x)
describes the spatial profile of the SOCmodulation [Φ(x+maS)=Φ(x)with
m an integer].We note that the presence of the periodicmodulation yields a
mini-band energy spectrum, εnk, where n 2 Znf0g is the mini-band index
and k is the Bloch wavevector relative to a Dirac valley; see Methods for
additional details.

An example of a graphene systemsubject to a SSOFwith a square-wave
profile is depicted in Fig. 1a. Recent measurements45–47 have shown that
proximity-induced Rashba SOC in graphene/WSe2 attains giant values of
up to 15 meV46, which is more than 350 times larger than graphene’s
intrinsic SOC70, and makes group VI dichalcogenides ideal high-SOC
substrates for our proposal. Lastly, we assume that the superlattice potential,
when present, is designed to track the SSOFmodulation (e.g. via a patterned
bottom gate), and thus write U(x) = uΦ(x), where u is the scalar poten-
tial amplitude. The most striking scenario, on which we will focus our
attention, concerns Rashba SSOFs with a zero-mean profile [that is,
hΦðxÞi ¼ ð1=aSÞ

R aS
0 dxΦðxÞ ¼ 0]. For example, this can be accomplished

through the encapsulation of a graphene sheet between identical dielectric
layers with a relative offset of aS/2. More exotic experimental routes, yet
viable, include metal intercalation71, periodic folding of graphene72, proxi-
mity coupling to rippled group-VI dichalcogenides73,74 and deposition of

Fig. 1 | Proposed experimental setup and pre-
dicted electronic structure. a 1D periodic mod-
ulation of the proximity-induced SOC. In this
example, the SSOF is imprinted on graphene via the
use of a dielectric metasurface decorated with 2D
semiconductors (labelled TMD). b Energy disper-
sion of low-lying states around the K valley for a
zero-mean square-wave profile with aS = 100 nm,
λKM= 20meV, and u = 0. c Same as b but with u= 15
meV. As a guide to the eye, the bare energy disper-
sion of graphene is shown in red (inner cones).
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graphene on stepped surfaces75. The low-energy physics in all these routes
are captured by Eq. (1) (or simple generalisations thereof) with a suitable
choiceof parameters.Without loss of generality,weworkwithin theK valley
(τ = 1) with a valley-degeneracy factor of two properly accounted for in
physical quantities like the spin Hall conductivity.

Results and Discussion
Kane-Mele SSOF case
To build intuition, we first consider an SSOF with zero spatial average
(〈Φ(x)〉 = 0) that locally preserves all the spatial symmetries of the honey-
comb lattice, i.e. with a single term (HKM). The energy spectrum is two-fold
spin degenerate in this case and exhibits the typical mini-band structure
caused by a periodic perturbation. In Fig. 1b, we show numerically exact
results for a long-period square-wave modulation of type KM; details are
provided in the Methods. The most striking feature of the low-energy
spectrum is the band touching at zero energy, i.e. the SOC spatial mod-
ulation precludes the opening of a topological gap3. (Higher-energy mini-
bands are located at energies ≈ ± 2πvℏ/aS ≈ ± 40 meV and thus lie outside
the energy range of Fig. 1.) Importantly, the linearly dispersing zero energy
states in our system cannot be gapped out without breaking the global
average condition of the periodic perturbation. In other words, the Dirac
point degeneracy survives SSOFs with 〈Φ(x)〉 = 0 (the reader is referred to
SupplementaryNotes 1–4 for numerical and analytical evidence supporting
the generality of this statement). What is more, the emergent 2D Dirac
fermions unveiled here remain massless even for SSOFs that locally break
one or more spatial symmetries, such as a spatially modulated Rashba
SOC. The robustness of the crossing point between the electron and hole
mini-bands hints at significant quantum geometry effects, which will be
discussed shortly.

Next, we observe that the KM-SSOF renormalises the group velocity
along the modulation direction, x̂, while it produces no change perpendi-
cularly to it. This is the opposite behaviour of graphene under a periodic
(scalar) potential60, and provides a simple mechanism to fine tune charge
carrier propagation. This possibility is highlighted in Fig. 1c, showing that
the combined action of a SSOF and a periodic potential squeezes the Dirac
cones along both parallel and perpendicular directions to the reciprocal
superlattice vector. Perturbation theory provides further insights, as detailed
in the Supplementary Notes 2 and 3. In the limit u, λKM ≪ ℏv/aS, the
component of the group velocity parallel to the wavevector k of the low-
lying Dirac states may be obtained directly from Supplementary Equation
(2) of Supplementary Note 2. We find

vk̂ ffi v 1� ξ
u2sin2θk þ λ2KMcos

2θk
_2v2G1

2

� �
; ð2Þ

where θk is the wavevector angle, ξ is a geometric factor (ξ ≈ 1.645 for a
square-wave SSOF), and G1 = 2π/aS. Equation (2) shows that the periodic
perturbation can be tuned to yield an isotropic group velocity. Indeed,
setting u = ± λKM results in isotropic Dirac cones, thus mimicking the low-
energy physics of bare graphenewithout SOC. The situation becomes richer
when considering realistic systemswithbroken spatial symmetries as shown
below. For example,Dirac fermionswith isotropic behaviour can be realised
by means of a pure Rashba SSOF, bypassing the need for a scalar periodic
potential.

Realistic SSOFs and quantum geometry effects
Now, we turn to the class of SSOFs that admix valley-Zeeman (Hvz) and
Rashba (HR) terms due to the breaking of spatial symmetries. Unlike the
KM-type SOC in the example above, both λR and λvz can reach experi-
mentally relevant energy scales, which is ideal for our proposal. We pri-
marily focus on pure Rashba SSOFs which can be realised via twist-angle
engineering in graphene-on-transition metal dichalcogenide (TMD)
heterostructures43–46. We neglect the KM-type SOC, which due to its
smallness70 is unimportant. The idea is to tune the twist angle, so that the
effective SOC of charge carriers on A and B sublattices coincide, yielding a

vanishing valley-Zeeman effect, λvz = (λA− λB)/2 = 0. The resulting SOC is
thus of Rashba type (allowed by the broken z → −z symmetry)43,44. This
intriguing possibility has been confirmed experimentally via quasiparticle
interference imaging46, showing that λvz ≈ 0 and λR ≈ 15 meV for 30∘ twist-
angle graphene-on-WSe2 systems. Armed with this important insight, we
start by investigating the electronic structure induced by a square-wave
Rashba SSOF. The energy dispersion of charge carriers in the three lowest-
lying bands, above andbelow the charge neutrality point, is shown inFig. 2a.
The calculated spectrum contains several genuine fingerprints of the SSOFs
proposed in this work. Similar to the case above, the zero energy modes
exhibit linear dispersion (i.e. the Dirac point degeneracy is protected).
Furthermore, the behaviour is isotropic. Thus, with regards to energy dis-
persion, this system emulates pristine graphene with a strongly renorma-
lised Fermi velocity (see below). The massless nature of low-energy
excitations is a robust feature of the 2D van der Waals metamaterials
underpinning the SSOFs. In fact, only perturbations breaking the
zero-average condition (〈Φ〉 = 0) can gap out the massless Dirac states
(see SupplementaryNote5).As such, the zero-energymodes canbemode as
robust as desired in a realistic setup, by ensuring that the fabrication
method preserves the global average of the periodic perturbation. This
confers protection against local SOC fluctuations that are unavoidable in
realistic systems.

Next, we ask whether the SSOFs can endow 2D massless Dirac fer-
mions with quantum geometric properties. We start by noting that the
mini-bands due to a square-wave Rashba SSOF [see Fig. 2a] are two-fold
spin degenerate, thus lacking a spin texture of their own. This is intriguing
because theRashbaSOCbreaks the spatial inversion symmetry and thus can
lead to spin splittings. To explain this counter-intuitive result, we analyti-
cally compute thedispersionof the low-lyingDirac states usingperturbation
theory. While a standard second-order expansion in λR predicts a spin-
degenerate spectrum, a cumbersome third-order calculation yields

εð3Þn¼± 1;ks � ± _vrenjkj þ s~ξ
λ3R

_2v2G4
1

jkj2
� �

; ð3Þ

where s = ± 1 for spin-up (spin-down) low-energy branch,
vren ¼ v½1� ξðλR=_vG1Þ2� and ~ξ is a geometric factor that equals zero
for sine- and square-wave modulations, but is otherwise non-zero (e.g, for
Kronig-Penney-type modulations, j~ξj attains values close to 0.26; see
Supplementary Note 3 for additional details. Hence, Rashba SSOFs with
more general profiles can lift the spin degeneracy (as intuition would
suggest), but only perturbatively. While the resulting spin splittings are
typically small, a sizeable effect can be achieved by combining SSOFs with a
periodic potential, providing a rich phenomenology for future exploration.

To examine the quantum geometry of SSOF-induced mini-bands,
we map out the momentum-space distribution of the spin Berry (SB)
curvature8

Ωz
yx;nðkÞ ¼ �2_2 Im

X
m≠n

hnkjvzyjmkihmkjvxjnki
ðεnk � εmkÞ2

; ð4Þ

where vi= v σi⊗ s0 and vzi ¼ v σ i � sz (here, i= x, y) are the charge and spin
velocity operators, respectively. This quantity governs the spinHall transport
of electron wavepackets and therefore is the geometric analogue of the Berry
curvature in the anomalousHall effect56,76. The SBcurvature around theDirac
points is shown in Fig. 2b. We see that the linearly dispersing zero energy
modes (labelled n = ± 1) are endowed with significant SB curvature, despite
theirmasslessnature.This is evidently at variancewithother2DgaplessDirac
systems, which have vanishing SB and (charge) Berry curvature10. Thus, the
emergent 2D Dirac cones reported here are not only robust against pertur-
bations sharing the global average of the SSOFs but also display quantum
geometric effects. To explore this further, Fig. 3a, b show 3D plots of the SB
curvature of mini-bands with n = ± 1, ± 2 in the mini-Brillouin zone. Two
features are of note. First, the central peaks in the SB curvature of themassive
Diracmini-bandsn=±2, ± 3 discussed earlier are seen to arise from local hot
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spots of SB curvature [see the local maximum ofΩz
yx;± 2 at k = 0 in Fig. 3b].

The SBcurvature alsodisplays pronounced localminimanear the zone edges,
where Ωyx,±2 attains large negative values. Second, the massless mini-bands
(n = ± 1) have a giant SB curvature at the edges of the mini-Brillouin zone
(kx = ± π/aS) [see Fig. 3a], about twice as large as the Dirac-point hot spot of
themassivemini-bands.Weattribute this curious feature to the emergence of
large pseudo-gaps along the SSOFdirection; see Supplementary Figs. 1 and 2.
Finally, we note that the general behaviour is highly anisotropic, except in the
immediate vicinity of the Dirac point.

The enhanced SB curvature of the SSOF-inducedmini-bands indicates
that the 2D van der Waals metamaterials proposed here support large spin
Hall responses. To confirm this, we compute the intrinsic spin Hall con-
ductivity (σzij) from the flux of SB curvature using standard methods8

(see alsoMethods).According to linear response theory, the z-polarised spin
current density generated by an external electric field is jzs ¼

P
i;j¼x;yσ

z
ijEjej,

whereEj are thefield components and ei is theunit vector along the i-axis.As

shown in Fig. 3c, the spinHall response has a strong energy dependence and
can reach sizeable values on the order of e/4π for typical values of proximity-
induced SOC at room temperature. This behaviour is robust to imperfec-
tions in the SSOF even when the vanishing global average condition,
〈Φ(x)〉 = 0, is not exactly met. We verified this with different types of SOC
and SSOF spatial patterns Φ(x). For example, the spin Hall conductivity
presented in Fig. 3c is found to vary by less than 10% in the presence of a
spatially uniform Rashba-like SOC as large as 50% of the SSOF magnitude
itself; see SupplementaryNote 5 for additional details.Moreover, at variance
with 2D conductors subject to the usual uniform Rashba effect49,77, the
spatial dependence of the Rashba SSOF protects our quantum geometry-
driven spin Hall effect from exact cancellations due to impurity-scattering
corrections. In fact, a semiclassical conservation law for expectation values
involving the spin current can be derived in the vein of ref. 49 yielding
hHsoðxÞvzi i ¼ 0, with 〈. . . 〉 denoting a quantum and disorder average. For a
uniformRashba field, this relation (which holds in the presence of arbitrary
non-magnetic impurity potentials) implies hvzi i ¼ 0 in steady-state condi-
tions and thus jzs ¼ 0. However, in our system, the condition hvzi i ¼ 0 is
circumvented due to the oscillatory nature ofHso(x). The SSOF-driven SHE
thus appears to be more robust than its counterpart in standard Rashba-
coupled graphene.

We now briefly address the case of 2D metamaterials with concurrent
Rashba-type and valley-Zeeman SSOFs. Here, the condition 〈Φ(x)〉 = 0 could
be achieved by alternating the relative rotation angle of consecutive
TMD layers, exploiting the anti-periodicity of the valley-Zeeman effect,
λvz(θ)=−λvz(θ±π/3)

43,44.TheensuingSSOF, in this case, strongly renormalises
the groupvelocityofwavepackets thatpropagateparallel to theSSOFdirection.
The leadingcorrection toEq. (3) is givenbyδεðn¼± 1Þ;ks ¼ ± ξΛvz sin

2θk , with
Λvz ¼ λ2vz=ð_vG2

1Þ, yielding an anisotropic dispersion and SB curvature at low
energies (see Supplementary Note 2). The valley-Zeeman SSOF leads to an
overall decrease in the SB curvature magnitude, which is reflected in the spin
Hall conductivity [Fig. 3c]. This is also at odds with the expected behaviour
in (standard) proximitised graphene, where the spin Hall conductivity has a
non-monotonic behaviour with λvz, with λvz ≠ 049,50 being essential to observe
the SHE.

In closing, we have shown that the spatial patterning of symmetry-
breaking spin-orbit fields gives rise to rich physics beyond that of conven-
tional superlattices, in particular, the emergence of 2D massless Dirac fer-
mions with anomalous electrodynamic responses. The proposed periodic
modulation of interface-induced SOC is within reach of current nano-
fabrication methods and is likely to have broad applications beyond those
described in this work.

Methods
Numerical implementation
Here we present the numerical framework used to study the electronic
structure of 2D metamaterials described by the Hamiltonian in
Eq. (1). The wavefunctions in valley τ = ± 1 are 4-component spinors
of the form ΨτðrÞ ¼ ðψA

τ"ðrÞ;ψA
τ#ðrÞ;ψB

τ"ðrÞ;ψB
τ#ðrÞÞ

t for τ = 1 and

Fig. 2 | Energy dispersion and spin Berry curvature due to a square-wave
Rashba SSOF. aDispersion of low-lying mini-bands along a cut with kx = 0. b Spin
Berry curvature along the same k-path. Mini-bands are labelled by integers next to
curves [positive (negative) n labels conduction (valence) bands]. Other parameters:
aS = 100 nm and λR = 20 meV.

Fig. 3 | Spin Berry curvature and spin Hall conductivity. aMomentum-space
distribution of the SB curvature of themasslessDiracmini-bands (n=±1).b Same as
in a for themini-bands n=± 2. SSOF parameters as in Fig. 2. c SpinHall conductivity
σzyx as a function of the chemical potential for kBT = 25 meV and selected twisting-

induced SOC modulations, namely: pure Rashba SSOF (solid lines), admixed
Rashba-valley-Zeeman SSOFs with λvz = λR/2 (dashed lines) and λvz = λR (dot-
dashed lines). Here, green (blue) curves correspond to λR = 10 meV (20 meV).
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ΨτðrÞ ¼ ð�ψB
τ"ðrÞ;�ψB

τ#ðrÞ;ψA
τ"ðrÞ;ψA

τ#ðrÞÞ
t for τ = −1. Moving to reci-

procal space, the eigenproblem formally reduces to solving an infinite set of
coupled equations for the plane-wave amplitudes fψσ

ksg for each valley:

_vjkje�iσθkψ�σ
ks þ

P
p2Z

uþ sσλKM þ sτλvz
� �

ΦGp
ψσ
k�Gp ;s

h

þiðs� σÞλRΦGp
ψ�σ
k�Gp ;�s

i
¼ Eψσ

ks ;

ð5Þ

where s=± ( ≡ ↑, ↓) and σ=± (≡A,B) are the spin and pseudospin indices,
respectively; the valley index isomitted for brevity. Furthermore,k is theBloch
wavevector from the Dirac point, θk ¼ ffðk; x̂Þ,Gp ¼ Gpx̂ withGp = 2πp/aS
(p 2 Z), and ΦGp

are the Fourier coefficients of the periodic modulation.
The summation over Fourier components in Eq. (5) is truncated to a

finite but largenumberof terms, i.e. ∣p∣≤N. The resulting systemof equations
is solved numerically, yielding d = 4(2N + 1) bands {εnk} and associated
4-component eigenvectors {Ψnk},where 1≤∣n∣≤d/2. Inpractice,we restrictkx
to the first Brillouin zone (kx ∈ ]− ks, ks] with ks = π/aS) and choose the ky
interval such that the energy ranges along kx and ky directions are similar,
i.e., ky ∈ ] − (2N + 1)ks, (2N + 1)ks]. The k-space intervals are discretised
uniformly with Nk equally spaced points used to cover the interval] 0, ks],
yielding a total of (2Nk+ 1) discrete kxs and 2(2N+ 1)Nk+ 1 discrete kys.
Good accuracy is typically achieved withN = 3 andNk = 40, corresponding
to 28 energy bands and a grid of 81 by 561 discrete points. Numerical
convergencewith respect to thenumber of Fourier components andk-space
grid points was established in all calculations.

Spin Hall conductivity
The linear-response intrinsic spin Hall conductivity is calculated from the
SB curvature [Eq. (4)] according to

σzyx ¼ ðe=2Þ
X
k

X
n

f ðεnkÞΩz
yx;nðkÞ; ð6Þ

where f(ε) is the Fermi-Dirac distribution function8.

Spatial profile of SSOFs
In the main text, we focus on Kronig-Penney (KP) and sinusoidal pertur-
bations with zero spatial average. The KP profile is

ΦðxÞ ¼ 2Φ
X1

m¼�1
Rðx þmaSÞ � r
� �

; ; 0 < r <1; ð7Þ

where Φ is the amplitude, R(x) =Θ(x+ ℓ/2)Θ(ℓ/2− x), Θ is the Heaviside
step function,aS is the latticewidth, ℓ is the barrierwidth (ℓ<aS), and r= ℓ/aS
(for a square wave r = 0.5). For pure sinusoidal modulations, we
use ΦðxÞ ¼ Φ cosðG1xÞ.

Code availability
The computer codes used to produce the numerical results are available
from the corresponding authors upon reasonable request.
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