Table 1 Currently available qumode operations as gates

From: Photonic counterdiabatic quantum optimization algorithm

Gate

Expression

Type

Rotation or Phase-shift

\(R(\phi )=\exp [i\phi \hat{n}]\)

Gaussian

Displacement

\(D(\alpha )=\exp [\alpha \hat{a}-{\alpha }^{* }{\hat{a}}^{\dagger }]\)

Gaussian

Squeezing

\(S(r,\phi )=\exp \left[\frac{r}{2}({e}^{-i\phi }{\hat{a}}^{2}-{e}^{i\phi }{\hat{a}}^{\dagger 2})\right]\)

Gaussian

Beamsplitter

\(BS(\theta ,\phi )=\exp \left[\theta \left({e}^{i\phi }{\hat{a}}_{i}{\hat{a}}_{j}^{\dagger }-{e}^{-i\phi }{\hat{a}}_{i}^{\dagger }{\hat{a}}_{j}\right)\right]\)

Gaussian

Quadratic Phase

\(P(s)=\exp \left[i\frac{s}{2\hslash }{x}^{2}\right]\)

Gaussian (Decomposable)

Controlled-Phase

\(CZ(s)=\exp \left[is\frac{{\hat{x}}_{i}{\hat{x}}_{j}}{\hslash }\right]\)

Gaussian (Decomposable)

Two-mode squeezing

\({S}_{2}(z)=\exp \left[\,z{\hat{a}}_{i}^{\dagger }{\hat{a}}_{j}^{\dagger }-{z}^{* }{\hat{a}}_{i}{\hat{a}}_{j}\right]\)

Gaussian (Decomposable)

Cubic Phase

\(V(\gamma )=\exp \left[i\frac{\gamma }{3\hslash }{\hat{x}}^{3}\right]\)

Non-Gaussian

Kerr

\(K(\kappa )=\exp \left[i\kappa {\hat{n}}^{2}\right]\)

Non-Gaussian

Cross-Kerr

\(CK(\kappa )=\exp \left[i\kappa {\hat{n}}_{i}{\hat{n}}_{j}\right]\)

Non-Gaussian

  1. In each gate, the argument shows adjustable parameters. i and j denote two arbitrary qumodes.