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Spinor-dominated magnetoresistance in
β-Ag2Se
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A topological insulator is a quantummaterial which possesses conducting surfaces and an insulating
bulk. Despite extensive researches on the properties ofDirac surface states, the characteristics of bulk
states have remained largely unexplored. Here we report the observation of spinor-dominated
magnetoresistance anomalies in β-Ag2Se, inducedbyamagnetic-field-drivenband topological phase
transition. These anomalies are caused by intrinsic orthogonality in the wave-function spinors of the
last Landau bands of the bulk states, in which backscattering is strictly forbidden during a band
topological phase transition. This new typeof longitudinalmagnetoresistance, purely controlled by the
wave-function spinors of the last Landau bands, highlights a unique signature of electrical transport
around the band topological phase transition. With further reducing the quantum limit and gap size in
β-Ag2Se, our results may also suggest possible device applications based on this spinor-dominated
mechanism and signify a rare case where topology enters the realm of magnetoresistance control.

A 3-dimensional (3D) topological insulator (TI) is characterized by insu-
lating bulk and surface Dirac cone states1,2. The surface Dirac cone states
have been extensively studied3–6, but the bulk bands have received little
attention. The inverted bulk bands in a TI are nontrivial7,8, and can undergo
a band topological phase transition (TPT) with a gap closing point as the
quantum critical point. The transport properties near the band TPT remain
largely unexplored9,10, unlike the non-Fermi-liquid behaviors near the
quantum critical point in strongly correlated materials11.

The band TPT in nonmagnetic TIs can be triggered by changes in
chemical composition, pressure, strain or external magnetic field12. When
the band gap is small and a magnetic field is present, a unique band TPT
occurs on Landau bands (LBs). Spectroscopic measurements have mainly
explored these band TPTs13–18, but they cannot reveal the exotic physical
properties near the band closing point. To our knowledge, no distinct
transport signatures have been uncovered on the transition point.However,
electrical transport under a strong magnetic field provides a unique
opportunity to explore the physics near the gap closing point by con-
tinuously going through the band TPT. In this study, we report a significant
transport signal in β-Ag2Se, a band TPT-induced spinor-dominated mag-
netoresistance (MR) anomaly. During a magnetic-field-driven band TPT,

the presence of two intrinsically backscattering forbidden 1-dimensional
(1D) conducting channels in a 3DTI,mimics theballistic helical edgemodes
in 2-dimensional (2D) TIs.

Results and Discussion
Mechanism of spinor-prohibited backscattering in topological
insulators
Before delving into the experimental results, let us first discuss the unique
physics behind the bandTPTof LBs inTI. In aTI, the bulk band splits into a
series of LBs with strong orbital quantization under a magnetic field. The
energies of the LBs are determined by two key scales, Zeeman splitting
(g*μBB) and orbital cyclotron energy (ℏωc), where ℏ is the Planck constant
divided by 2π, ωc= eB/m* is the cyclotron frequency, e is the elementary
charge of electron,m* is the effectivemass, g* is the effective g-factor, and μB
is the Bohrmagneton. For a free electron system, ℏωc is equal to g

*μBB,while
ℏωc dominates in topological materials with ultra-lightm* ( ~ 0.1m0), here
m0 is the bare electron mass. Due to the band inversion of TI, the orbital
cyclotron and Zeeman effects will disentangle the two inverted bands,
leading to a magnetic-field-driven band TPT as illustrated in Fig. 1a. The
Zeeman effect can be treated as amodified orbital cyclotron effect due to the
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spin-polarized nature of LLBs, sharing the same linear-in-B relation with
orbital cyclotron effect. We can describe this process in details by using a

typical k ⋅ pmodel of TI, written as Hð k!Þ ¼ Mkτz þ _ðPa¼x;y;zvakaΓaÞ,
where τz labels for the orbitals while the second term is the massless Dirac
equation based on the Γ matrices. This model is characterized by a mass
control term Mk ¼ M0 þM?ðk2y þ k2z Þ þMxk

2
x, where M0, Mx and M⊥

are band parameters for band gap at kx = 0, in- and out-of-plane parabolic
energy dispersions, respectively7. In the ultraquantum limit with B ∥x (a)-
axis, there are only one pair of spin-polarized last LBs (LLBs) on the Fermi

level. The energy dispersion of the twoLLBs isE0±
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ _2k2xv

2
x

q
, where

themass term (or equivalently, the band gap at kx=0) of the twoLLBs ism=

M0 + Mxk
2
x + M?=l

2
B, where lB ¼

ffiffiffiffiffiffiffiffiffiffi
_=eB

p
is the magnetic length, con-

trolling the cyclotron energy. At kx = 0, the inverted band is directly con-
trolled by the mass termm =M0 +M?=l

2
B, where signs ofM0 andM⊥ are

opposite due to the inverted dispersion. Then, linear-in-B cyclotron energy
will lever the inverted gap M0 and finally dominates by crossing a gapless
intermediate state withm = 0, underpinning the process of the band TPT as
illustrated inFig. 1a. Furthermore,we can see that the criticalfieldμ0H

c form
= 0 is determined byM0/M⊥, causing μ0H

c proportional to 1/M⊥, which can
be reflected by the effective mass m* in transport measurements. Then,
anisotropic m* measured from an ellipsoid-like Fermi surface can roughly
track μ0H

c, namelym* ∝ μ0H
c.

The consequence of m = 0 can be envisioned by looking at the highly
nontrivial properties of LLB whose wave function uniquely contains a spi-
nor eigenvector, inherited from the 4 × 4matrices-basedDiracHamiltonian
and anormal part from theharmonic oscillator.As shown inFig. 1b, the two
spinors of +kx and -kx become orthogonal when m = 0 at the band TPT,
here the Mxk

2
x in the mass term m is treated to be negligible in the ultra-

quantum limit due to the field suppression of Fermi level. Consequently, as

shown in Fig. 1b, the LLBs become gapless at a critical field (μ0H
c), causing

the transport form factor Is which is proportional to the transition matrix
between the two spinors at+kx and -kx to vanish identically

19. The vanished
Is leads to an extremely long transport relaxation time (τ∝ 1/Is), making the
backscattering forbidden (Fig. 1b) and leading to a pronounced dip in
longitudinal MR at μ0H

c (Fig. 1c). Because the 1D dispersion of LLB is
always determined by the direction of magnetic field, this additional
transport channel occurs only when the magnetic field is along the current
direction, making the longitudinal MR a unique probe to detect this
anomaly. The longitudinal MR anomalies here differ from the forbidden
backscattering in graphene20, where electrons on the zero-field Dirac band,
instead of LBs, are forbidden from backscattering due to the natural
orthogonality in Pauli matrices. The anomaly also differs from the chiral
anomaly, a 1+1D chiral fermion effect with unbalanced left and right
movers on any 1D band dispersions (LLBs) across the Fermi level21, related
to the recent observation of a broad negative MR and bending over beha-
viors in topological crystalline insulator Pb1−xSnxSe, where the LLBs are
gapped out by alloy-mixing disorders at critical field22,23. Our theory is based
on Z2 topological insulators, the forbidden backscattering takes place at a
critical field with level crossing, inducing a sharp field-symmetric resistance
dip, which may occur twice depends on the relative signs betweenM0,x,⊥

19.
Evidence of level crossing at critical magnetic field have been revealed by
spectroscopic measurements in 3D topological insulators17,18.

Ultraquantum-limit longitudinal magnetoresistance in β-Ag2Se
To observe this unique longitudinal MR, we require a TI with only one pair
of inverted bands around the Fermi level and a narrow gap accessible by a
magneticfield. Unfortunately, narrow-gapped strongTIs are rare, andmost
with no isolated topological bands near the Fermi level23,24. In this work, we
have chosen β-Ag2Se

25,26, as a candidate of TI, an platform to achieve the
spinor-dominated MR. As shown in Fig. 1d, e, β-Ag2Se, appears as long

Fig. 1 | Topological-phase-transition-induced forbidden backscattering and
band properties of β-Ag2Se. a The two last Landau bands (LLBs) of typical strong
topological insulator (TI) go across a phase transition driven by external magnetic
field. Only two states, denoted as black dots ∣± kx

�
, are involved in this 1D channel.

b ∣± kx
�
are orthogonal to each other when mass term m is zero, which causes the

spinor-prohibited backscattering. c As a result, a dip appears on the longitudinal
magneto-resistance (MR) at critical magnetic field (Bc). d A photo of single crys-
talline β-Ag2Se. e The orthorhombic crystal structure of β-Ag2Se. fHigh symmetric

k point in a unit cell. g Band calculations of β-Ag2Se based on PBE and HSE
approxiamations. h Angle-dependent Shubnikov-de Haas (SdH) oscillations in ab
(θ) and ac (ϕ) planes. iThe extracted frequencies of SdH along the two tilted angles, θ
and ϕ, respectively. Inset shows the mapped Fermi surface with a Fermi level
determined by experimental carrier concentration (n). The slight mismatch of fre-
quency around zero angle was probably caused by sample bending, in the different
rounds of measurement.
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ribbons and crystallizes in an orthorhombic unit cell. The electronic band
calculation by Heyd-Scuseria-Ernzerhof (HSE) approximation indicates
that β-Ag2Se is a strong TI with Z2 = (1; 0 0 0) and an indirect band gap
around 4–10meV (Fig. 1f, g), which is consistent with the previous calcu-
lations and experiments on the strong TI nature of β-Ag2Se

27,28. We note
here that there is no conclusive spectroscopic results from angle-resolved
photoemission spectroscopy (ARPES) experiment in β-Ag2Se, which
shouldbe explored in the future for nailingdown the existence of topological
surface states compatible with the Z2 index. The HSE-based results com-
pared with the Perdew-Burke-Ernzerhof (PBE) approximation, which
usually underestimates the gap and shows that β-Ag2Se is a semimetal. This
issue is also addressed by transport and optical spectroscopic
measurements29,30, our calculations are also consistent with the previous
band structure calculation based on HSE.

We conducted low-field electrical transport measurements on sample
S1 with carrier concentration n = 1.1 × 1018 cm−3, and as shown in Fig. 1h, i,
we observed clear single-frequency Shubnikov-de Haas (SdH) oscillations
with a quantum limit around 3 T when the magnetic field is tilted towards
b(θ) and c(ϕ) axes.We foundnonewfrequencies in all themapped rangesof
angles. The angular dependence of extremal cross-sectional areas, with
frequencies Fθ,ϕ, depicts a 3D anisotropic Fermi pocket of the bulk state
consistent with the calculation (see Supplementary Note 1 for details). The
small electron pocket and narrow band gap make β-Ag2Se as an ideal
platform for investigating the physics of pure inter-1D channels (LLBs)
scattering in theultra-quantumlimit under amodestly strongmagneticfield.
We then conducted electrical transportmeasurements on another sample S2
in a strong magnetic field because it has a lower quantum limit ~ 2 T.
Figure 2a shows the complicated dependence of longitudinal MR (Δρxx(H)/
ρ0) at 1.5 K characterized by two anomalous dips at 1.5 K, denoted as B1 at 5
T andB2 at 51 T, with the current andmagnetic field applied along the same
crystallographic a direction.

To investigate the physical mechanism underlying B1 and B2, we
tracked the two anomalies by performing temperature and angle depen-
dence of Δρxx(H)/ρ0. Figure 2b shows B1 and B2 gradually vanish as

temperature increases, results in a smooth background that persists even at
70 K. The critical field of B2 slightly shifts to a lowerfield when temperature
rises, which is against many-body effects such as a charge density wave
(CDW) transition in a magnetic field31. Moreover, the angular dependence
of Δρxx(H)/ρ0, as shown in Fig. 2c, shows that the B1 and B2 shift towards
higher fields when the direction of themagnetic field is tilted away from the
current direction, indicating that B2 is affected by the anisotropy of band
dispersion. The temperature dependence of B2 suggests a specific band
effect that causes the MR dips, rather than a many-body effect.

We attempted to understand the anomalies B1 and B2 in the ultra-
quantum limit by examining the relationship between the smooth back-
ground of Δρxx(H)/ρ0 and B1, B2. Figure 3a shows conductanceGxx at each
tilted angle (θ), defined as 1/ρxx(H), against the out-of-plane magnetic field
component. We observed that the backgrounds of Gxx align on a single
curve at each tilted angle, indicating a normal orbital MR effect. Addi-
tionally, the peak values ofGxx replotted against θ in Fig. 3b can befittedby a
cosnθ (n = 4.6) empirical relation. According to the Shockley-Chambers
formula32, the angle-dependent conductivity of a cylinder-shaped Fermi
surface yields a ~ cos2θ relation due to the anisotropy ofm*. If the transport
relaxation time τ is isotropic, the angle-dependent conductivity dampens
slower than a ~ cos2θ relation for an anisotropic Fermi surface. The obvious
deviation on exponent n (Fig. 3b) shows that the isotropic transport
relaxation time τ assumption must break down, indicating the existence of
an additional conducting channel only when the magnetic field is tilted
along the direction of the current.

We further explored this additional conducting channel by examining
the related control parameters. As shown in Fig. 3c, the fields of B2, denoted
as μ0H

c
B2, linearly increases with rising temperature, indicating that the

thermal energy (kBT) competes with cyclotron/Zeeman energy which is
proportional to the magnetic field. On the other hand, μ0H

c
B1 and μ0H

c
B2

follow the same angular dependence of SdHoscillations at 4.2K as shown in
Fig. 1i. This angular dependence is obvious when we scaled
μ0H

c
B1;2ðθÞ=μ0Hc

B1;2ð0oÞ versus Fθ/Fθ¼0o in Fig. 3e. The frequency of SdH
oscillations is expressed by the quantization rule F ¼ _

2πeAF, where e is the
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Fig. 2 | Ultraquantum-limit longitudinal magnetoresistance of β-Ag2Se. a The
longitudinal magnetoresistance (MR), at T = 1.5 K, exhibits two anomalies denoted
as B1 and B2. Inset is a sketch shows the experimental configuration ofmagneticfield
and current. b Rescaled temperature-dependent magnetoresistance, Δρxx/ρ0, is

plotted against the magnetic field up to 56 T. c Rescaled angle-dependent magne-
toresistance, Δρxx/ρ0, is plotted against themagnetic field up to 56 T. Inset shows the
setup of sample rotation.
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elementary charge, and AF is the extremal cross-sectional area, which is
roughly proportional to the k2F . Then, F reflects the anisotropy of effective
mass (m*) if energy dispersion ϵ ¼ _2k2F

2m� is adopted, while m* directly
determines the cyclotron energy ℏωc. As we already pointed out in the
introductory part, the m* is proportional to the critical field μ0H

c
B2 of the

band TPT on the LLBs, our experimental observation of the coincidence
between μ0H

c
B2 andm

* confirms the longitudinalMR anomaly is caused by
a band TPT-induced mechanism.

Simulations based on the band calculations of β-Ag2Se
We ascribe the anomaly in longitudinal MR induced by the band TPT to
intrinsic forbidden backscattering on LLBs caused by spinor orthogonality
around the phase transition, as illustrated in Fig. 1. To support our inter-
pretation, we conducted a detailed simulation on β-Ag2Se. Before quanti-
tative simulation, we thoroughly inspect the mass term of LLBs m =M0 +
Mxk

2
x + M?=l

2
B. The magnetic dependence of this term is important,

because it controls the form factor Is ( ∝ m2). In this well-established TI
model, the relative signs ofM0,Mx andM⊥ determine the band inversions
along different high-symmetric k paths.M0Mx < 0 andM0M⊥ < 0 represent
a strong TI, while only one of them satisfied represents a weak TI, and none
of them satisfied represents a normal insulator19. We then simulated the
magneticfield dependence ofm in different topological phases. As shown in
Fig. 4a–c,m (Is) shows no zero crossing (no dip), one zero crossing (one dip)
and two zero crossings (two dips) in the quantum limit of normal insulator,
weakTI and strongTI, respectively.The appearanceof zero crossing at small
field in strong TI is caused by the field-dependent Fermi level on LLB19,
which approaches the forbiddenmomenta kx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�M0=Mx

p
at smallfield. This

mechanism in low field is subtle and depends on the precise estimation of
Mxk

2
x term. We found that the field dependence of m exhibits distinct

behaviors in the three phases based on the detailedmathematical structures
ofm, which depends on the relative signs ofM0,Mx andM⊥. Therefore, we
can expect different numbers of longitudinal MR dips in different topolo-
gical phases when m vanishes across the band TPT.

By adopting a k ⋅ p model with specific parameters from band calcu-
lations (refer to SupplementaryNote 3), our aim is to determine the values of
μ0H

c where anomalies occur. The main parameter is the mass control term
m = M0 + Mxk

2
x + M?=l

2
B with M0 = -0.036 eV fixed by direct energy

difference around Γ point, part of the band parameters summarized in Table
S1 of SI are also constrained by experimental ones derived from the

temperature-dependent resistivity andquantumoscillations ofβ-Ag2Se
25,29. If

we ignore the Zeeman energy, we map out the zero crossings at the critical
magnetic field,μ0H

c
B2 versusMx andM⊥ in Fig. 4d. Asmentioned before, the

Mxk
2
x term contracts into a negligible value in a strong magnetic field.

Therefore, we can see that μ0H
c
B2 is sensitively dependent on M⊥, and the

value from band fitting (red dotted curve) indicates μ0H
c
B2 around 180 T,

which contradicts our experimental B2 anomaly around 51 T. While the
above estimation is solely based on the cyclotron energy (M?=l

2
B) of LLBs

without including the Zeeman effect. As we discussed before, the Zeeman
effect on LLBs can be easily included as amodified cyclotron energy, then the
mass term can be written as m = M0 + Mxk

2
x + ~M?=l

2
B, where ~M? ¼

M? þ g�μB_=4e is the modified in-plane mass parameter. As shown in
Fig. 4e, μ0H

c
B2 decreases when g

* increases. The bold pink curve indicates the
range ofμ0H

c
B2 based on g

* fromZeeman splitting, where a range of g* is used
for a reasonable comparison with the experimental B2 anomaly due to the
anisotropy of β-Ag2Se (see SupplementaryNote 1 for details on experimental
extraction of g*-factors). We can now see that the μ0H

c
B2 of anomaly B2 falls

within the colored range, which supports the spinor-dominated mechanism
driven by band TPT. The precise determination of the related band para-
meters and g* might need further spectroscopic experiments. The remaining
anomaly μ0H

c
B1 cannot be precisely determined due to large uncertainty in

the estimation ofMxk
2
x term as explained before.

In conclusion, we have observed large longitudinal MR dips in the
ultraquantum limit in β-Ag2Se. The ultraquantum-limit anomaly points to
an underlying mechanism based on spinor-dominated forbidden back-
scattering onLLBs.Themagneticfield acts as a tunable knob that controls the
access of distinct topological phases. Therefore, the newly discovered MR
effect presents a rareMR effect, with a possible topological origin, that can be
adopted to design logic devices with on/off functions. Our study also signifies
the physics comes from bulk bands of TI, mainly connected with band TPT,
where a plethora of unexplored physics should be targeted in the future.

Methods
Sample preparation and characterization
Single crystals of β-Ag2Se can be grown bymodified vapor transfermethod
as described in ref. 25. Polycrystalline β-Ag2Se was sealed in a tube silica
ampoule, and then placed in a tube furnace subjected to a temperature
gradient from 500 °C to around room temperature for several days.
The shape of as-grown samples are ribbon-like, and the crystalline axeswere

Fig. 3 | Existence of an additional conducting
channel originates from a pure band effect in β-
Ag2Se. aThe longitudinal conductanceGxx, rescaled
versus out-of-plane component of magnetic field.
Inset displays the definition of angle θ. b The
amplitudes of anomaly B2 are plotted against tilted
angle θ, and fitted by cosnθ function with index
n = 4.6, indicates the fast damping of B2 when the
magnetic field is tilted away from a-axis. c The
temperature-dependent critical fields of B2 shows
linear T behaviors, as indicated by the linearly fitted
bold red curve. d The angle-dependent critical
magnetic fields of anomalies B1 and B2. e The
rescaled angle dependence of B1 and B2, as shown in
(d), coincides with the angle-dependent frequency
of SdH oscillations, which points to the m* in
cyclotron energy ℏωc.
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determined by single crystalline X-Ray diffraction measurements as
described in ref. 25.

Transport measurements
Magneto-transport measurements (56 T) were performed at the
Wuhan National High Magnetic Field Center (WHMFC). A Digital
lock-in technique was employed with f = 100 kHz and i = 5 mA by
using a non-destructive pulse magnet with a pulsed duration of
60 ms. Resistance was measured by a standard 4-probe method.
Measurements with both positive and negative field polarities were
performed to eliminate the effects of contact asymmetries. Data for
the up-sweeping and down-sweeping of the pulse field were in good
agreement, thus the self-heating effect of the sample, in the pulsed
high magnetic fields, can be excluded.

First-principles calculations
First-principles calculations of β-Ag2Se were performed using density
functional theory implemented in the Vienna ab initio simulation package
(VASP) code33. The energy cutoff for planewave basiswas set at 400 eV.The
Brillouin zone was sampled within the Monkhorst-Pack scheme and the k
mesh was set as 8 × 5 × 4. The generalized gradient approximation (GGA)
expressed by the Perdew–Burke–Ernzerhof (PBE) functional was imple-
mented for the exchange-correlation energy34. To achieve a better descrip-
tion of electronic properties and band gaps, screened hybrid functional of
Heyd–Scuseria–Ernzerhof (HSE06) was used in band structure
calculations35 with 25% of the nonlocal Fock exchange combiningwith 75%
of the PBE exchange. Hartree-Fock screening was set to be 0.2 to achieve a
good balance between accuracy and computational cost.

Data availability
The data generated in this study are provided in Supplementary Data 1.
Additional data related to the current study are available from the corre-
sponding author upon request. Supplementary Data are provided with
this paper.

Code availability
All code used to generate the plotted band structures is available from the
corresponding author upon request.
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