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Optical computing often employs tailor-made hardware to implement specific algorithms, trading
generality for improved performance in key aspects like speed and power efficiency. An important
computingapproach that is stillmissing its corresponding optical hardware is probabilistic computing,
used e.g. for solving difficult combinatorial optimization problems. In this study, we propose an
experimentally viable photonic approach to solve arbitrary probabilistic computing problems. Our
method relies on the insight that coherent Ising machines composed of coupled and biased optical
parametric oscillators can emulate stochastic logic.Wedemonstrate the feasibility of our approach by
using numerical simulations equivalent to the full density matrix formulation of coupled optical
parametric oscillators.

For the past 10 years, there has been a strong renewed interest in optical
computing. The reasons are three-fold: (1) the exploration of alternative
hardware approaches for essential applications like neural networks; (2) a
mismatch between future computing resources demand and hardware
progress due to an impending slowdown of Moore’s law; and (3)
improvement of optical hardware1. A paradigmatic example is that of a
fully connected neural network implemented in multi-layer networks of
Mach-Zehnder interferometers2. Several important classes of computing
frameworks are, however, still missing their matching optical computing
hardware, and one of them is probabilistic computing3,4. In probabilistic
computing (p-computing), probabilistic bits (p-bits) replace the deter-
ministic bits of conventional computing, while still sharing the use of basic
logic gates that can be assembled to construct more complex circuits5,6.
The framework of stochastic logic allows for the creation of “invertible”
logic circuits (circuits that cannot only produce an output from some
input but can also take the output to go back to the inputs)5. Thismakes p-
computing especially suitable for solving complex optimization
problems7–10 and for simulating physical systems, like the Ising Hamil-
tonian, which represents a collection of spins with arbitrary (linear) inter-
spin coupling11–13. Furthermore the use of p-computing has been
demonstrated for a wide array of different applications, including Baye-
sian inference14, Boltzmann networks15, classical annealing,16, quantum
Monte Carlo17, machine learning quantum many-body systems18 and
generative neural networks19.

Concurrently, there has been a significant interest in leveraging optics
and other physical platforms for the determination of ground states in Ising
Hamiltonians, a technique commonly referred to as coherent Ising

machines20. A pioneering study proposed the utilization of injection-locked
laser systems to map Ising models21. Subsequently, the proposition and
experimental realization of networks of coupled optical parametric oscil-
lators (OPOs) emerged22–24, with implementations reported in refs.
11,25–28. Additionally, alternative approaches in optics and photonics have
been considered to solve Isingproblems29–32,with special attention to solving
NP-hard problems (which scale exponentially with system size) with
coherent Ising machines33,34. The goal of these studies is to realize OPO
networks described by the general Ising Hamiltonian of the form

E ¼ � 1
2

X
i;j

σ iJ ijσ j �
X
i

hiσ i; ð1Þ

where J is the coupling matrix between different spins, represented by σ!
and h

!
is the magnetization (Zeeman) vector. It is important to note, that

the aforementioned studies only considered Ising Hamiltonians without a
local magnetic field ( h

!¼ 0). Coherent Ising machines are a prime can-
didate for implementingp-computing in the optical domain since anetwork
of p-bits can bemapped to an Ising Hamiltonian5. However, to fully unlock
the potential of p-computing in optics, coherent Ising machines that can
only consider the coupling J are insufficient. This can be readily understood
by considering even a simple logic gate, such as the AND gate, which, when
implemented with stochastic logic, necessitates a non-zero Zeeman term. It
is therefore important to develop strategies that incorporate a Zeeman term,
with realizations as different dissipative circuits reported in the literature35,36.
A recent experiment37 showed that injecting a vacuum-level bias field in an
OPO cavity could be used to control its steady-state distribution, akin to the
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action of a magnetic field on a single spin. This provides a new strategy to
include a Zeeman term with external coherent fields.

Here, we propose an optical platform for p-computing that consists of
networks of coupled and biased OPOs to emulate arbitrary stochastic logic
circuits. Our method relies on a three-step process that maps a stochastic
logic problem to the dynamics of a biased OPO network. The process starts
with (1) a logic truth table listing all possible outcomes of the logic gate or
task; (2) converting that truth table into an equivalent Ising model
(including a non-zero Zeeman term); and (3) finding an equivalent OPO
network that realizes the corresponding Ising Hamiltonian (see Fig. 1). The
motivation for our proposal ofOPOs as optical hardware for p-computing is
twofold: On one hand, the nature of p-bits to randomly fluctuate between
either 0 or 1 is reminiscent of the OPO (a nonlinear, stochastic, and dis-
sipative system) feature to choose its steady state randomly between two
possible phases (often called ± 1). On the other hand, networks of OPOs
have been shown to map their steady-state configurations to the ground
states of Ising Hamiltonians, which has garnered significant interest in the
optical computing community22. The main innovation of our work is to
realize the Zeeman term by biasing each node of the OPO network (paving
the way for an all-optical realization without the need for dissipative cir-
cuits), which is a key ingredient in realizing all-purpose stochastic logic
circuits.

Results and discussion
We now demonstrate why such a bias field indeed allows for the determi-
nation of the Ising ground state. Physically the bias field is a coherent field
injected into theOPO cavity at the signal frequency. It influences theOPO’s
steady state bydisplacing the initial vacuumstate from itsmeanvalue of zero
(which gets amplified to choosing one of two possible steady states with
equal probability) to non-zero mean value, which then gets amplified to a
tunable (by strength of the bias field) binomial probability distribution. Our
starting point is the set of stochastic differential equations describing the
OPO dynamics, which are rigorously equivalent to the density matrix for-
mulation of degenerate parametric oscillation in the presence of a bias
field38:

dci ¼ p� 1� c2i � s2i
� �

cidt þ ε
X
j

gijcj þ bi

 !
dt

þ 1
As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ c2i þ s2i

r
dWc;

ð2Þ

dsi ¼ �p� 1� c2i � s2i
� �

sidt þ ε
X
j

gijsjdt þ
1
As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ c2i þ s2i

r
dWs:

ð3Þ

Here, ci is the in-phase and si the quadrature component of the ith OPO, p
the pump, the saturation amplitudeAs is the field amplitude at a pump rate

p = 2, dWc and dWs are two independent Gaussian noise processes and ε
controls the overall strength of coupling gij and bias bi. Note that we have
chosen the bias to be in phase with ci. In the following, we demonstrate how
the OPO network finds the ground state of the Ising model including a
Zeeman term.To this end,weneglect thenoise terms, sincewe are interested
in the mean fields at steady state. As a first step, we note that also in the
multi-OPO case, the quadrature component is zero si = 0 ∀ i, just like it is
for a single OPO above threshold pumping22. The second step is to look at
the overall photon decay rate22 at the steady state (dci = dsi = 0), defined as
(note that we have already used the fact here that si = 0):

Γ ¼
X
i

p� c2i
� �

: ð4Þ

We can calculate Γ by expanding ci into orders of ε, since we assume a small
magnitude for each gij and bi

ci ¼ cð0Þi þ εcð1Þi þ . . . ;with ð5Þ

cð0Þi ¼
ffiffiffiffiffiffiffiffiffiffiffi
p� 1

p
σ i and cð1Þi ¼ 1

2ðp� 1Þ
ffiffiffiffiffiffiffiffiffiffiffi
p� 1

p X
j

gijσ j þ bi

 !
;

ð6Þ

where the spin configuration is given by σi = ± 1. We arrive at the com-
ponents for the expansion of the in-phase component ci [Eq. (6)] by
iteratively solving Eq. (2). From this, the overall photon decay rate then
readily follows as

Γ ¼ N � ε
X
i;j

gijσ iσ j þ
1ffiffiffiffiffiffiffiffiffiffiffi
p� 1

p
X
i

biσ i

 !
; ð7Þ

which is largest if the OPO network is in the ground state of the Ising
Hamiltonian, assuming that we replaced gij ! 1

2 Jij and bi !
ffiffiffiffiffiffiffiffiffiffiffi
p� 1

p
hi.

However, simply solving the systemdescribed by Eqs. (2) and (3) is not
sufficient forfinding the ground state due to heterogeneity of the amplitudes
ci. This is due to improper mapping of the objective functions by the loss
landscape39. We fix this by adding an additional dynamic error field ei,
resulting in the following set of equations of motion40:

dci ¼ p� 1� c2i � s2i
� �

ci þ εei
X
j

J ijcj þ Fhhi

 !" #
dt

þ 1
As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ c2i þ s2i

r
dWc;

ð8Þ

dsi ¼ �p� 1� c2i � s2i
� �

si þ εei
X
j

J ijsj

" #
dt þ 1

As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ c2i þ s2i

r
dWs;

ð9Þ

dei
dt

¼ �β c2i � a
� �

ei: ð10Þ

Here, ei is an auxiliary field that helps us homogenize the amplitudes (with
target a) from the different OPOs to reduce the number of stable local
minima, β controls the rate of change in ei and Fh is the bias amplitude.

To show that the aforementioned system of coupled OPOs is indeed a
viable tool to implement stochastic gates, we now consider three repre-
sentative fundamental gates: The first is the AND gate, which allows for the
multiplication of two 1-bit numbers. The second is the half-adder that can
take two 1-bit numbers and outputs the resulting sum and a carry-bit. The
third is the full-adder that can take two 1-bit numbers and a carry-bit and
outputs the resulting sum plus a carry-bit. The truth table associated with

Fig. 1 | Illustration of the three-step conversion process. aWe take the truth table
from a (basic) digital logic gate andmap it to a network of p-bits (b)). bNetwork of p-
bits switching between two states randomly with some given probability. c A net-
work of p-bits describing the gate is equivalent to an Ising model (where each spin
can be either in the spin-up or spin-down state, see the black arrows) with a coupling
term (J) and a local magnetic field ( h

!
). dWe then find the ground state of the Ising

model by looking at the steady state of a network of (i.e. coupled) optical parametric
oscillators (OPOs) that are biased by an injected field. The biasing operation results
in a slanted potential (see the sketch inside the circles) experienced by the OPO.
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each of the three gates are the possible spin configurations of the corre-
sponding Ising Hamiltonian’s ground state with three, four, and five spins
respectively41–43. In each case, both the bits on the input and output sides of
the binary logic truth table are represented byOPOs in the samenetwork. In
Fig. 2 we show a detailed description of how the AND gate can be imple-
mented in a stochastic logic framework and the time evolution of the
occupation probability for a certain spin configuration for the three gates
under consideration (for the complete description of the HA and FA gates,
see Supplementary Note 3). We observe that after some time the spin
configuration in each OPO network represents a ground state of the Ising
Hamiltonianwith approximately equalprobability,while simultaneouslyno
OPO network is in an excited state. A detailed analysis of other basic logic
gates as well as a demonstration of the universality of the NOR and NAND
gates is provided in Supplementary Note 1. We note here that an OPO
network can thus (in principle) perform any arbitrary computing task that
can be represented by a logic circuit. In addition to the possibility of general
computing, there is also the opportunity to implement invertible logic, i.e.
the ability to go through logic circuits from output to input5. This insight
now allows us to go one step further and constructmore complex stochastic

logic circuits, allowing us to solve difficult combinatorial optimization
problems.

As a first example, we choose a particular problem that has been
established as an appropriate testing ground for probabilistic computing:
semiprime factorization. Given a number, we aim to find the two prime
numbers that, whenmultiplied, are equal to this number. This problem is of
great interest since no polynomial time algorithms on classical computers
have been discovered so far, making it for example the basis of several
cryptographic systems44.We show in Fig. 3a a possible implementation of a
logic circuit that takes 2 numbers and outputs their product (see Supple-
mentary Note 5 for amore detailed description of the procedure to find this
circuit). Conventionally this circuit works one way from top to bottom.
However, the framework of stochastic logic allows us to clamp the output to
the number we want to factorize (details of the clamping procedure are
found in Supplementary Note 2) in order to find the factors as the ground
state of the associated IsingHamiltonian (shown as an inset in Fig. 3a). This
Hamiltonian can be automatically generated by stitching together the
Hamiltonians of the basic gates we demonstrated in Fig. 2. We want to
emphasize that this procedure scales linearly with the number of bits
required to represent the integers involved.While it can seem a bit wasteful
that we solve for both factors at the same time, we note here that our
invertible stochastic logic circuit is explicitly constructed to express the
whole product of two primes. Thus, it is unavoidable to get the solution for
both primes at the same time. Furthermore, we point out that we gave an
example of a general constructive method to map most computing pro-
blems (as long as they can be cast as a logic circuit) into a network of OPOs.

To demonstrate that our network of coupled and biased OPOs can
indeed find the ground state of the Hamiltonian depicted in Fig. 3a we now
factorize 2491 = 47 × 53. Since both multiplicands are 6-bit numbers,
altogether 12 OPOs (in conjunction with 84 OPOs representing the inter-
connects in the circuit) allow us to read out the solution. In Fig. 3b we show
the trajectory of the in-phase components (c) of each OPO in the network
and observe that the spin configuration given by σi = ci/∣ci∣ settles into the
ground state of the Ising Hamiltonian. The solution to the semiprime fac-
torization problem is then encoded by the spin configuration in a binary
representation. As a rule of thumb, we observe that the number of cavity
round trips required to find the ground state stays independent of the
number ofOPOs involved. For example, with a 80MHz repetition rate laser
(as used in a recent study37) one loop around the OPO cavity is approxi-
mately 3.75m long. It then takes 0.125ms to perform 10,000 cavity round
trips. In Supplementary Note 4, we show a comparison to an established
solving method.

Fig. 2 | Fundamental p-gates implemented with a
biased coupled OPO network. a Truth table of the
AND-gate. b Corresponding Ising Hamiltonian
with three spins. cAll possible spin configurations of
the Hamiltonian depicted in b with their corre-
sponding energy E. The ground states reproduce the
correct logic from the truth table. d–f We plot the
occupation probability of all possible states (mean-
ing all possible combinations of the spin state
represented by the phase of the OPO steady state) as
a function of cavity round trips. The color denotes
whether the state is a ground state (green) or an
excited state (orange) of the corresponding Ising
Hamiltonian.

Fig. 3 | Solving the semiprime factorization problem with a coupled and biased
network of OPOs. aDigital logic circuit that multiplies two 3-bit numbers (X and Y
in their binary representations, respectively), resulting in Z (binary representation).
The lines interconnecting the gates are represented by auxiliary spins in the Ising
Hamiltonian. The inset shows the corresponding Ising Hamiltonian with coupling J
at the top and Zeeman term h

!
at the bottom (see Supplementary Note 6 for a more

detailed plot). b Time evolution of the in-phase component (ci) of coupled and
biased OPOs with J and h

!
originating from the 6-bit multiplier circuit. The steady

state of this configuration represents the ground state of the Ising Hamiltonian,
solving the factorization problem.
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We show our approach’s flexibility by also solving a different NP-
complete problem with a coupled and biased OPO network: boolean
satisfiability (SAT). More concretely, we consider the 3SAT problem, in
which we want to find configurations ( x!) that satisfy a conjunction of
clauses (here, 91 clauses) of exactly three terms, which may or may not be
negated. For instance, one such clause may take the form xi _ xj _ xk,
where ∨ denotes the logical “or” and xi represents a negation. A simple
example problem with 2 clauses and 4 variables is
x1 _ x2 _ x4
� � ^ x2 _ x3 _ x4

� �
, with ∧ denoting the logical “and”. Fig-

ure 4a depicts the logic circuit for one clause of the 3SAT problem, with the
output clamped to 1 so that the invertible logic property of p-computing
allows for finding the state of x! that satisfies this clause. Between the
variables xi and the OR gates, we put either a COPY or NOT-gate,
dependingonwhether the variable is or is not negated in the clause.Wenote
here that p-computing is especially suited to solve the 3SAT, since we only
have linear overhead to represent the problem as an Ising Hamiltonian,
stemming from Nspins = Nvariables + 4Nclauses. Here, Nspins (resp.,
Nvariables,Nclauses) is the number of spins (resp., variables, clauses). A detailed
analysis of the employed gates akin to Fig. 2 can be found in the SI.

Figure 4b shows the in-phase component’s (c) time evolution in an
OPO network configured to solve the ‘uf20-01.cnf’ SAT problem (a com-
mon benchmark example) withNvariables = 20 and Nclauses = 9145. Plotted is
also the percentage of satisfied clauses as a function of time and observe that
a configurationof variables that satisfies all clauses is foundbefore the steady
state is reached.This can be attributed to the fact that theOPOsrepresenting
the variables are already in the correct state while the states of OPOs
representing the interconnects in the circuit are still changing their state.We
note that the parameters in the full set of equations describing the system of
coupled and biased OPOs, including amplitude heterogeneity correction
[Eqs. (11)–(13)], require careful tuning for the system to find the ground
state of the Ising Hamiltonian. An intuitive guideline for selecting these
parameters is to ensure that the pump strength p and the overall coupling
strength ε are balanced. This balance prevents the system from being
dominated solely by the pump, where the coupling bias field becomes
negligible, or by the coupling and biasing alone. Additionally, the bias
amplitude Fh should be set so that the coupling J and the magnetic field h

!
are balanced. The rate of change β in the auxiliary field e! also needs to be
chosen carefully. This ensures that the amplitude heterogeneity correction
neither overtakes the evolution to the steady state nor fails to guide the
system effectively to the ground state of the Ising Hamiltonian.

Conclusions
To conclude, we propose an approach that allows for the implementation of
arbitrary stochastic logic circuits in a network of coupled and biased OPOs,
working closely along the lines of experimentally demonstrated technology.
We successfully tested the approach numerically for a representative set of
basic logic circuits and ubiquitous problems in combinatorial optimization.
Our study paves the way for an optical implementation of p-computing for

the potentially high-speed solution of ubiquitous combinatorial optimiza-
tion problems.

For an experimental realization of our approach, we envision a set-up
similar to the one used in the first successful experiment on applying a bias
field to anOPO37. Combining it with a single fiber-ring cavity then provides
the missing ingredient: coupling between the (time-multiplexed) OPOs
through feedback andmeasurement11. Furthermore, we need the capability
of modulating the amplitude of the bias at the repetition rate of the laser
(which is 80MHz in the set-up of a recent study37). Ultimately, however, we
anticipate the coupling between different OPOs to be performed fully
optically by e.g. linear programmable nanophotonic processors for great
speed and energy efficiency46. Generally, p-computing would also profit
frommassively parallel, ultrafast, and tunable randombit generationusing a
physical source for the randomness47.

Methods
Here we provide details on the numerical implementation of the stochastic
differential equations governing the time evolution in a network of coupled
and biased OPOs:

dci ¼ p� 1� c2i � s2i
� �

ci þ εei
X
j

J ijcj þ Fhhi

 !" #
dt

þ 1
As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ c2i þ s2i

r
dWc;

ð11Þ

dsi ¼ �p� 1� c2i � s2i
� �

si þ εei
X
j

J ijsj

" #
dt þ 1

As

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ c2i þ s2i

r
dWs;

ð12Þ

dei
dt

¼ �β c2i � a
� �

ei; ð13Þ

where ci and si denote the in-phase and quadrature component of the ith
OPO respectively, p is pump, the saturation amplitude As is the field
amplitude at a pump rate p=2, dWc anddWs are two independentGaussian
noise processes (with zero mean and variance Δt [the step-size for
numerically solving the stochastic differential equations]) and ε controls the
overall strength of coupling gij and bias bi. The auxiliary is ei, with its
associated rate of change β, and Fh controls the bias amplitude.’

To solve these stochastic differential equations, we employ theMilstein
method48 since we found it to be sufficiently accurate while still allowing for
high-throughput simulations compared tohigher-ordermethods.Aswe are
interested in the probability of finding ground states of Ising Hamiltonians,
we need to be able to compute many trajectories at high speed. We achieve
this byparallelizingour computationswithPyTorch to get all the trajectories
with one time evolution.

Data availability
The data that are used within this paper are available from the corre-
sponding author upon request.

Code availability
The codes that are used within this paper are available from the corre-
sponding author upon request.
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