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Controlling noise with self-organized
resetting

Check for updates

Felix J. Meigel1,2 & Steffen Rulands 1,2

Biological systems often consist of a small number of constituents and are therefore inherently noisy.
To function effectively, these systems must employ mechanisms to constrain the accumulation of
noise. Such mechanisms have been extensively studied and comprise the constraint by external
forces, nonlinear interactions, or the resetting of the system to a predefined state. Here, we propose a
fourth paradigm for noise constraint: self-organized resetting, where the resetting rate and position
emerge from self-organization through time-discrete interactions.We study general properties of self-
organized resetting systems using the paradigmatic example of cooperative resetting, where random
pairs of Brownian particles are reset to their respective average. We demonstrate that such systems
undergo adelocalization phase transition, separating regimesof constrained andunconstrainednoise
accumulation. Additionally, we show that systems with self-organized resetting can adapt to external
forces and optimize search behavior for reaching target values. Self-organized resetting has various
applications in nature and technology, which we demonstrate in the context of sexual interactions in
fungi and spatial dispersion in sharedmobility services. This work opens routes into the application of
self-organized resetting across various systems in biology and technology.

Many non-equilibrium systems, particularly in the context of biology,
consist of a small number of constituents and are inherently noisy1–7. Such
systems perform specific functions, such as sensing and signal processing in
cells8–10, or the coordination of animal movements in flocks and herds11,12.
Similarly, in technological applications, non-equilibrium systems are used
in chemical reaction containers13,14, or to coordinate shared mobility
solutions15. If unregulated, noise tends to accumulate over time such that the
behavior of such systems becomes increasingly unpredictable. To perform a
function, these systemsmust therefore employmechanisms to constrain the
accumulation of noise.

These mechanisms for controlling noise have been extensively studied
across disciplines, such as in biological16–18 and technological19–21 contexts:
First, noise can be constrained by external fields that restrict the time evo-
lution of a stochastic system to a phase-space region centered around a
stable attractor. Specifically, these external fields generate generalized forces
that suppress small perturbations away from the attractor, continuously
reducing noise within the system. For example, during embryonic devel-
opment, the determination of cell identity is controlled by external mor-
phogen gradients, leading to spatially separated domains in the
embryo8,10,22,23. In these systems, the coordinationof constituents is regulated
externally, without relying on interactions between the constituents.

In contrast to extrinsic forces, fluctuations can also be constrained
intrinsically using self-organization: a stable steady-state emerges from
interactions between constituents if the strength of these interactions is
significantly greater than the amplitude of the noise. Examples of the self-
organized constraint of noise are abundant in nature, ranging from flocking
phenomena in active matter systems2,11,16 to genetic switches in cells24–26.

Insteadof the continuous suppressionoffluctuations by external forces
or self-organization, noise can also be controlled by resetting the con-
stituents of a system topredefined states. In these systems, noise is controlled
by time-discrete jumps that reset the system to a predefined state. These
processes are commonly referred toas stochastic resetting. Because the state,
to which the system is reset to, is extrinsically defined, we refer to these
mechanisms as extrinsic resetting. Extrinsic resetting leads to the emergence
of stationary distributions with finite variance27,28 such that dispersion and
extreme fluctuations are constrained29,30. Extrinsic resetting processes may
include drift-diffusion dynamics31–33, multiplicative diffusion34–36, and
space-dependent resetting rates and positions as well as non-ergodic sto-
chastic dynamics36–42. Extrinsic resetting events are, for example, realized by
the RNA-Polymerase where misaligned polymer ends are randomly
cleaved43 or employed in the context of biochemical systems to grant effi-
ciency of reaction dynamics14,44–46.
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Here, we investigate a fourth class of mechanisms for the constraint of
fluctuations in which system constituents are reset to positions determined
in a self-organizedmanner by time-discrete interactions (Fig. 1a). Examples
of such dynamics are ubiquitous in nature and describe, for example, the
averagingofmolecular concentrations during the fusionandfissionof intra-
cellular organelles and chromatin-domain droplets47–51, or the stem-cell
population dynamics during intestinal crypt fusion52. Further prominent
examples include the genetic recombination dynamics during sexual
reproduction53,54, or the mixing of populations in ecological systems, in
origin-of-live scenarios, and genetic tracing experiments55–58.

We illustrate the rich dynamic behavior inherent to self-organized
resetting schemes by focusing on the paradigmatic example of cooperative
resetting. This example involves a many-particle system driven by two
dynamics: the accumulation of noise governed by a stochastic process for
each constituent, and random events of pair-wise resetting to their
respective average (Fig. 1b). We show that self-organized, cooperative
resetting leads to a stationary state with bounded variance if interactions are
sufficiently long-ranged. In analogy to condensed-matter physics59, we refer
to the boundedness of the variance as localization. As interactions become
increasingly short-ranged, self-organized resetting undergoes a delocaliza-
tion transition. In the relevant case that interactions between particles decay
quadratically, we identify a second-order phase transition depending on the
particle density. As a consequence of localization, stochastic resetting
enhances the search behavior of the stochastic process, resulting in a
decreased time for constituents to reach a target state compared toBrownian
particles. We exemplify the generality of our findings by using the frame-
workof self-organized, cooperative resetting to explain thefitness advantage
of sexual interaction in fungi and to demonstrate its applicability in
designing organization strategies in shared mobility services.

Results
Definition of cooperative resetting
To investigate general properties of self-organized resetting systems, we
focus on a simple, but paradigmatic model that comprises N particles
described by their positions Xi in one spatial dimension. These particles
undergoBrownianmotionwith a diffusion constantD. Pairs of particles can
interact with a rate μ that depends on the distance δ = ∣Xi−Xj∣ between the
particles. Upon such an interaction, the positions of both particles are set to
their respective mean position, (Xi+Xj)/2. We use the term interactions to
indicate that the dependence of the behavior of a given particle on other
particles without implying an association with energy levels between the
particles. Beyond a characteristic length scale δ0, these interactions decay
algebraically with an exponent α,

μðδÞ ¼ μ0
1þ δ=δ0

� �α : ð1Þ

Aswewill discuss below, this choice of kernel allows us to draw conclusions
about general interactions.

To describe the collective dynamics of this system, we study the single-
particle probability density, p(x, t)dx, of finding a particle between positions
x and x+ dx. The time evolution of p(x, t) is governed by two processes: the
effect of Brownian motion, which depends on the single-particle density
p(x, t), and the pair-wise resetting, which depends on the two-particle
density p2ðx; x0; tÞ. Using an operator notation, the time evolution of p(x, t)
follows an equation of the form

∂tpðx; tÞ ¼ L̂½pðx; tÞ� þ R̂½p2ðx; x0; tÞ�: ð2Þ

We give the definitions of the operators L̂ and R̂ in the Supplemen-
tary Note 1.

We now ask under which conditions cooperative resetting can con-
strain the accumulation of fluctuations stemming from Brownian motion.
Fluctuations are constrained if Eq. (2) admits a steady state with finite
variance, i.e. it exhibits localization. We first note that cooperative resetting
leads to a displacement of particles with an associated flux�∂xĴR ¼ R̂. In
the steady state, this flux must be balanced with the flux associated with
Brownian motion,�∂xĴL ¼ L̂, compare with Supplementary Note 2,

ĴR½p2ðx; x0; tÞ� ¼ �ĴL½pðx; tÞ�: ð3Þ

To assess if cooperative resetting admits for localized states, we test for the
existence of a steady-state distribution that fulfills flux balance and is
normalizable. To obtain a closed form in terms of the single-particle density,
p(x, t), we employ a mean-field approximation, p2ðx; x0; tÞ ¼ pðx; tÞpðx0; tÞ.
We further approximate the left-hand side of Eq. (3) in the limit x→∞ to first
order in 1/x; see Supplementary Note 3 for the detailed derivation. With this,
we obtain for δ-distributed initial conditions at x0 = 0 a flux-balance condition
for localization in terms of the steady-state probability distribution ps(x),

ϱ psðχÞ
psðχÞ
p0sðχÞ

����
���� χ�α ¼� p0s ðχÞ : ð4Þ

Here, we defined non-dimensional positions by rescaling lengths by the
characteristic length scale of interactions χ = x/δ0. We defined a non-
dimensional parameterϱ ¼ 2Nδ20μ0=D that has the interpretation of a
rescaled average particle density. p0s ðχÞ denotes the derivative of ps(χ) with
respect to χ. Note that due to the symmetry of the system, both sides of ps(χ)
must have an identical functional form for ∣x∣→∞.

Conditions for localization
In Eq. (4), we rephrased the resetting flux in a way that admits an intuitive
interpretation. The first factor in the resetting flux, ps(χ), is proportional to

Fig. 1 | Self-organized resetting as a mechanism
for constraining fluctuations. a Schematic illus-
trating different mechanisms that constrain the
accumulation of noise. In the scheme, particles are
depicted as filled circles, and external forces on the
particles and interactions between the particles are
depicted as arrows. The mechanism of self-
organized resetting is emphasized by color-coding
in blue and green. b Illustration of self-organized
resetting: Exemplary trajectories obtained from
agent-based simulations for cooperative resetting,
where stochastic particles are randomly reset to their
respective average. Each line represents the sto-
chastic trajectory of a particle. Exemplary trajec-
tories are highlighted by bold lines; resetting points
are marked by circles. Random pair-wise resetting
occurs with a rate of interaction μwhich depends on
the distance δ between pairs of particles.
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the number of particles contributing to the flux at position χ, the second
factor gives the effective length of jumps due to resetting, and the third factor
is thefirst-orderapproximationof the resetting rate of Eq. (1), Fig. 2a. Eq. (4)
is a first-order nonlinear differential equation, which admits analytical
solutions. Solving for ps(χ) for given values of α and ϱ then allows us to
determine under which conditions cooperative resetting admits for loca-
lized solutions and to calculate the functional form of ps(χ) in the
limit ∣χ∣→∞.

Using Eq. (4), we now investigate localization conditions for different
values of α and ϱ. For α = 0, particles undergo pair-wise resetting inde-
pendent of their distance. In this case, Eq. (4) admits stationary solutions
and the cooperative resetting process exhibits localized states. Specifically,
the stationary solutions asymptotically approach an exponential form,
psðχÞ � e�

ffiffi
ϱ

p jχj, for ∣χ∣ → ∞. In this case, cooperative resetting exhibits
localization for all values of ϱ. We corroborated this result and all further
results by agent-based simulations of Brownian motion and the resetting
processes defined above. The stationary probability density function of the
cooperative resetting process asymptotically matches that of the extrinsic

resetting process for ∣χ∣→∞, provided that the extrinsic resetting rate is set
to μext = μ0N and the resetting position is fixed to be the initial position χ0
(Fig. 2b). However, extrinsic resetting increases the likelihood of a particle
beingnear the initial position χ0 compared to cooperative resetting, resulting
in a higher probability in the tails of the density function for the cooperative
resetting process.

If resetting is distance-dependent, α > 0, the resetting rate depends on
the local particle density. In this case, Eq. (4) yields for α ≠ 2 and in the limit
∣χ∣→∞ stationary solutions of exponential form,

psðχÞ � exp � ffiffiffi
ϱ

p jχj1�α=2=ð1� α=2Þ
h i

: ð5Þ

These solutions have decaying tails for α < 2. In this case, resetting inter-
actions are sufficiently long-ranged such that a balance between Brownian
motion and resetting gives rise to a localized steady state (Fig. 2c). For α > 2
the tails do not decay such that Eq. (4) does not admit steady-state solutions
which are normalizable probability density functions. In this case, the

Fig. 2 | Cooperative resetting exhibits a localization phase transition.
a Interpretation of the approximated resetting flux in Eq. (4) as the product of an
effective resetting rate, the density of particles contributing to the flux, and the
effective jump length of resetting events. Particles are shown as filled circles and
dotted arrows in different shades of gray indicate different possible cooperative
resetting interactions. A probability density function is sketched in red. Filled-out
bold arrows indicate the strength of probability fluxes due to resetting events. The
dotted vertical line indicates the position χ. b, c Agent-based simulations (dots) of
N = 2 × 105 particles for cooperative and extrinsic resetting with ϱ = 21.
bHistograms for cooperative and extrinsic resetting which both decay exponentially
for α = 0. The histogram shows simulation data, the bold lines show the analytical
result according to Eq. (4). Extrinsic resetting is depicted in gray; cooperative
resetting is depicted in red. c The cumulative distribution is defined as

R1
x psðxÞd x.

Lines represent the predicted functional dependencies from Eq. (5). Simulation
results are shown as dots. ϱ is calculated from the simulation parameters, and the
offset of the theoretical prediction is fitted to the simulation data. Extrinsic resetting

is shown in gray, and cooperative resetting is stratified in color for different values of
α. d For α = 2 we find a phase transition dependent on the particle density. The top
inset shows the increase in the variance over time. For particles performing Brow-
nian motion, the variance increases as σ2 = 2Dt. The slopes of the increase of the
variance in the long-time limit (thick lines in inlay) define an effective order para-
meter, which is shown in the main plot. If the rescaled density is below a critical
density, ϱ < ϱc, the probability density function delocalizes. Crosses depict results
from agent-based simulations ofN = 2 × 105 particles. Circles depict values of ϱ that
are represented in the top inlay with matched color. The dashed line is the critical
density

ffiffiffiffiffi
ϱc

p ¼ 2:3 estimated analytically; compare with the Supplementary Note 4.
The bottom inlay shows a power-law dependence of the rate of dispersion on
rescaled density in the vicinity of the phase transition. The solid line is a nonlinear
least-squaresfit with an exponent 1.223 ± 0.012 (95%confidence intervals).Magenta
crosses show the numericallymeasured rate of dispersion and error bars indicate the
95% confidence intervals.

https://doi.org/10.1038/s42005-025-01985-7 Article

Communications Physics |            (2025) 8:63 3

www.nature.com/commsphys


stochastic dynamics is dominated by Brownian motion. Therefore,
cooperative resetting exhibits a delocalization transition for increasing
values ofα: Localizationoccurs for all positive values of the rescaleddensityϱ
for α < 2 and no localization occurs for α > 2. As a consequence, we can
make predictions for general interaction kernels: If the integral ∫dδ δμ(δ)
exists, i.e., the interaction kernel decays faster than μ(δ)~δ−2 in the limit
δ → ∞, it does not admit for localization. This in particular includes
interaction kernels with any exponential decay.

Interactions decaying with an exponent of α = 2 are ubiquitous in
nature (This applies particularly for three-dimensional systems, to which
our results straight-forwardly extend.). They also form a special case in the
cooperative resetting process as the exponent Eq. (5) diverges. In this case,
the steady-state solution of Eq. (4) decays algebraically, psðχÞ � χ�

ffiffi
ϱ

p
,

which we also find in numerical simulations (Fig. 2b). The probability
density function is not normalizable for

ffiffiffi
ϱ

p
< 1. This suggests that for α = 2

the cooperative resetting process undergoes a delocalization transition with
decreasing values of the rescaled density, ϱ. For ϱ→ 0 the typical distance

between particles is large such that the overall rate of resetting is small. This
regime is therefore dominated by diffusion. For ϱ→∞, resetting processes
dominate and we find that the probability density localizes (Fig. 2d). While
the normalization condition gives a rough estimate for the critical value of
the rescaled density of ϱc≈1, an analysis of Eq. (4) including higher orders
yields an improved approximation of

ffiffiffiffi
ϱc

p � 2:3, compare with the Sup-
plementary Note 4. In general, these results imply that with an increasing
number of particles, N, or a decreasing diffusion constant, D, cooperative
resetting with quadratically decaying interactions exhibits a localization
phase transition.

Adaptation and search behavior
Having studied the steady-state behavior of the cooperative resetting pro-
cess, we now ask how cooperative resetting systems respond to extrinsic
forces.To this end,weapply a constant forceF and study the response to it in
the cooperative resetting model. We compared our results to the extrinsic
resetting model. In the over-damped limit, the constant force gives rise to a
constant velocity of particles, v, which is proportional to F. For the extrinsic
resetting scheme the localized state remains close to χ0 and assumes a
skewed distribution. Themean position takes a constant value that deviates
from the resetting position, 〈χ〉− χ0 = v/μext

60. For the cooperative resetting
scheme, the extrinsic force yields an additional drift flux of the form ĴF ¼
vpðχ; tÞ in Eq. (3).Making theGalilean transformation χ0 ¼ χ � vt this flux
vanishes. For cooperative resetting, the localized states remain symmetric
and we instead find that the system responds with a translocation with
constant velocity to the extrinsic force (Fig. 3a). Therefore, cooperative
resetting systems can adapt to extrinsic forces while at the same time con-
straining intrinsic noise.

Stochastic resetting processes have been intensively studied in the
context of search problems, in which one is interested in the time a particle
takes to reach a given target position for the first time. Extrinsic stochastic
resetting processes have the counter-intuitive property that they exhibit
lower mean first-passage times compared to pure Brownian motion29,60. In
extrinsic resetting, an optimal resetting rateminimizesfirst-passage time for
any target distance l = χ*− χ0: high resetting rates lead to frequent resets,
even for particles close to targets, while low resetting rates result in infre-
quent resets, allowing the particle to wander off in the wrong direction.

We numerically test, whether this hallmark of extrinsic resetting is also
present in cooperative resetting. To this end, we study the first-passage time
of a single, randomly chosen particle. Our findings align with the well-
known behavior of extrinsic resetting, indicating that cooperative resetting
similarly achieves an optimal state that minimizes mean first-passage time
for a given target distance. Specifically, we numerically find that if the
cooperative resetting dynamics admits for a localized state, there is an
optimal density ϱ*whichminimizes the first-passage time for a given target
distance, l, (Fig. 3b). The search is generally improved for cooperative
resetting as the minimal mean first-passage time is lower compared to
extrinsic resetting. This improvement highlights a key difference: coop-
erative resetting reduces the likelihood of particles remaining near the initial
position, leading to enhanced flux toward the target. This is intuitive, as in
cooperative resetting, the reduced probability of the particle being close to
the initial position χ0 (Fig. 2b) leads to an increased flux away from χ0. This
reduces the impact of retracting steps close to the target. A similar effect is
achieved in models comprising a non-resetting window around χ0, which
has been shown to reduce the minimal first-passage time for extrinsic
resetting29. Next, we apply our theoretical findings to the inhibition of
fluctuations in biological and technical systems.

Sexual recombination in fungi
We illustrate the application of self-organized resetting through the para-
digmatic biological example of sexual reproduction. Specifically,we focuson
the sexual interactions among filamentous fungi: Coenocytic fungal species,
such as Zygomycota and Glomeromycota, are multi-nucleated organisms
containing nuclei with diverse genetic identities61–65. These filamentous
fungal species form networks of interconnected hyphae with nuclei that

Fig. 3 | Adaptation and search behavior of self-organized resetting. a Localized
states emerging from cooperative resetting differ qualitatively from localized states
emerging from extrinsic resetting in their response to external forces and search
behavior. Agent-based simulations (ϱ = 21) for cooperative resetting and extrinsic
resetting which are subject to a fixed drift vδ0/μext = 0.1. For extrinsic resetting, the
localized states remain close to the resetting position χ0, while for cooperative
resetting the localized state translocates with the drift v. b The minimal mean first-
passage time for amarked particle in an ensemble of 200 particles to reach a target at
a distance l = 0.4 is compared for intrinsic and cooperative resetting as ϱ is varied
through μ0. The minimal mean first-passage time is reduced for the cooperative
resetting scheme. Averages are taken over n = 5000 simulations and error bars
represent the standard error of the mean.
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freely move in the cytoplasm. The nuclei in a fungus replicate asexually
through division during colony growth. A fungal organism as a whole
reproduces via sporulation, during which a subset of nuclei is encapsulated
and emitted from the fungus. Upon germination, these spores establish new
fungal colonies. Hyphae from different fungi can fuse upon contact (ana-
stomosis), facilitating the exchange of nuclei between the two fungi (Fig. 4a).
The genetic diversity of nuclei is hypothesized to grant the ability of fungi to
rapidly evolve in changing environments61.

Thenumber of nuclei per spore is relatively small compared to the total
number of nuclei in a fungal network and varies from a few tens to thou-
sands of nuclei in a single spore62. On the level of an isolated fungus, the
homogenous states are absorbing states, where a single nuclei genotype can
achieve fixation. One would therefore expect genotypes within a fungus to
go extinct on the timescale of a few fungal generations. In contrast, hyphal
fusion leads to an effective averaging of the fractions of different genotypic
nuclei among fungi. This is a manifestation of cooperative resetting. We
therefore predict that the localization of the probability density function of
nuclear genotype fractions could lead to long-term stabilization of genetic
diversity.

To test this, we performed stochastic simulations of the numbers ni of
nuclei with a genotype i in a population of N = 2.5 × 104 fungi, accounting
for fungal growth with nuclei replication dynamics as well as sporulation,
and anastomosis. Here, a cycle of germination followed by sporulation

defines a unit of timewhichwe refer to as a generation. In aminimalmodel,
we consider two genotypes with equal fitness, a constant generation pro-
gression time, and restrict hyphal fusion to fungi colonies in the same
generation. We set our model parameter based on physiological estimates:
In agreement with ref. 62, we varied the number of nuclei of spores between
Ns = 5 and 20. We fixed the number of fungi by setting the number of
germinating spores to one per colony, considering that the successful ger-
mination rate of fungi in wildlife conditions is significantly below the rates
measured in the laboratory63. We varied the number of successful anasto-
mosis events between germinated spores in the range of 12%–50%,61,63,65.
After germination, our model comprises a growth phase of 7 nuclear divi-
sions, where the set of newly formed nuclei stems from a one-step Moran
process. For sporulation, a randomsubset of nuclei is picked from the fungal
colony. An equal number of nuclei of both genotypes was set as an initial
condition.

Our simulations show that in the absence of fungal fusion, genetic
diversity is largely lost over the course of the simulation (25 generations), as
more than 70% of colonies exhibit fixation of one type of nuclei. Sexual
recombination by hyphal fusion leads to a localization of the fraction of
genotypes at 50% (Fig. 4b). While cooperative resetting facilitates the
maintenance of existing genetic diversity, it also leads to the extinction of
newmutations (Fig. 4c). Bymaintaining genetic diversity and thus granting
adaptability while simultaneously hindering the frequent fixation of

Fig. 4 | Fungi constrain genetic variability by self-organized resetting. aMulti-
nucleated fungi undergo cycles of sporulation and anastomosis, as the hyphae of
different fungi fuse and allow the exchange of nuclei. Fungi spores carry only a subset
of nuclei and sporulation acts effectively as a fission event. Iterative fusion andfission
implement pair-wise cooperative resetting. b Stochastic simulations of fungal
populations demonstrate hyphal fusion to preserve genetic heterogeneity of neutral
genes by self-organized resetting. Genetic heterogeneity is quantified in a population

snapshot after 25 generations. Different colors represent different probabilities for
fungi to undergo anastomosis with a different fungus after sporulation and sub-
sequent germination. The spore size is Ns = 20. c Simulations show an increased
probability for fixation of neutral mutations in the absence of anastomosis (dotted
lines). Fungi undergo anastomosis with a probability of 25% after germination (bold
lines). Different colors indicate different effective spore sizes in terms of the number
of enclosed nuclei.
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mutations and thus maintaining robustness, cooperative resetting helps to
stabilize the trade-off in the adaptability-robustness dilemma66–68. Sig-
nificantly, our qualitative findings are robust to changes in the parameter
choice, as long as the number of nuclei in a spore is much smaller than the
number of nuclei in the fungal colony.

Localization of shared mobility devices
As an illustration of utilizing cooperative resetting in a technical application,
we study thedispersionof vehicles in sharedmobility services.Users of these
services book vehicles for individual rides, where they pick up the shared
vehicle close to their startingposition anddrop it off at their destination.The
major challenge for companiesoffering sharedmobility services is providing
vehicles at locations with a high demand69. At the same time, the ran-
domness in pick-up and drop-off gives rise to a spatial dispersion of vehicles
over time,15, resulting in an increase in the averagedistancebetweenvehicles,
which consequently implies a reduction in the local availability of vehicles.
Thus, mechanisms that constrain the spatial dispersion of vehicles are of
central interest to companies providing shared mobility services.

Next, we exemplify that cooperative pair-wise resetting is a possible
viablemechanism to implement a self-organized resetting scheme for shared
mobility services.We simulate simple pick-up and drop-off dynamics of the
shared vehicles as a randomwalk on the street network ofMunich,whichwe
obtained fromOpenStreetMapusing thepythonpackageosmnx70 and in
which intersections define nodes. We set the length of a random ride to
Nlength = 10 streets being traversed. We compared three models: First, an
implementation without resetting in which vehicles may freely disperse;
Second, a model with extrinsic resetting, in which vehicles are reset to the
initial starting point. Thismimics services inwhich vehicles are collected and
collectively dropped off at central locations. Thirdly, we also study a model,
in which vehicles are reset pair-wise through the coordinated interactions of
users. In the simulations, this means that we pick two random scooters and
reset them to the junction closest to their spatial average.

Expectedly, without resetting, vehicles disperse unconstrained, but
subdiffusively while extrinsic or cooperative resetting constrains the dis-
persion of vehicles to a defined area (Fig. 5a, b).We next study the effect of a
change in customer preferences by assuming that, on average, one in 100
rides has a specific destination on the map. Because cooperative resetting
allows for the simultaneous constraint of noise and an adaption to extrinsic
forces (Fig. 3a) we expect that a cooperative resetting scheme will adapt to
changes in customer preferences while restricting the dispersion of vehicles.
With extrinsic resetting of the vehicles, the probability density function
remains localized around the resetting position (Fig. 5b) while for

cooperative resetting themode of the probability density function adapts to
the bias in the drop-off locations (Fig. 5c).

Discussion
With self-organized resetting, we have studied a paradigm for the constraint
of fluctuations in stochastic systems. We showed that self-organized reset-
ting allows for the suppression of the accumulation of noise in stochastic
many-particle systems. Thismechanism is conceptually different compared
to other mechanisms for the constraint of noise using external signals, or
self-organization schemes that demand the continuous suppression of
noise. We exemplify the concept of self-organized resetting by focusing on
themechanismof cooperative resetting,where randompairs of constituents
reset to their respective average. We showed that such a self-organized
resetting scheme gives rise to localization phase transitions as a function of
the spatial decay of resetting interactions and the particle density. Coop-
erative resetting systems respond differently to external forces if localization
occurs and show improved search behavior compared to extrinsic resetting.
Our work shows that the localization and search properties of extrinsic
resetting schemes can be obtained in a self-organized manner without the
need for extrinsic control.

While studying the localization phase transition in a simple coopera-
tive resetting scheme for Brownian noise admits for analytical solutions, we
expect our results to be qualitatively valid also formultiplicative and colored
noise.Making the ansatz of the resetting flux balancing a flux attributable to
the spreading dynamics as in Eq. (3), our calculations are generalizable to
any stochastic system that is describable in terms of amoment expansion to
second order. Additionally, our approach can be extended to include
additional extrinsic force fields or to higher dimensions.

For search behavior, our simulations show that self-organized coop-
erative resetting replicates a key feature of extrinsic resetting: the existence of
an optimal resetting rate for a given search target distance. Our results
suggest that optimized first-passage times outperform those of extrinsic
resetting, with an optimal resetting rate persisting in cooperative resetting
only when localization occurs. Exploring whether the optimal resetting rate
exhibits phase transition features, as seen in extrinsic resetting with moving
absorbing boundaries71, could enhance our understanding of optimizing
multi-agent search tasks.

We have demonstrated two applications of self-organized resetting:
sexual interactions in filamentous fungi and the spreading dynamics of
sharedmobility solutions. While we here focused on two specific examples,
we expect that self-organized resetting is a general and abundant mechan-
ism for constraining fluctuations. Further applications for self-organized

Fig. 5 | Cooperative resetting constrains the spatial dispersion of vehicles.
a Simulation snapshot of the spreading dynamics of a vehicle cohort (N = 100) in the
absence of resetting (red) and while undergoing cooperative resetting (blue) after
100 random rides. Vehicles perform randomwalks on the street network ofMunich.
Each ride has a length of 10 steps and 10% of rides were followed by a cooperative
resetting event. The initial position (central station of Munich) is marked by an
orange star. The inset shows the spatial variance of the vehicle cohort over time. In

the presence of cooperative resetting, the spatial variance is bounded (localization).
b Simulation snapshot of a scooter cohort (pink) subject to an extrinsic resetting
scheme to the initial position (orange star) after 400 rides. Preferential rides (1% of
the rides) to the quarter `Au-Haidhausen' (orange outline) do not lead to re-
localization in this quarter. c Same as (b), but for cooperative resetting (10%of rides).
An overlay of different time points (color-coded) demonstrates the temporal
adaptation as the spatially localized cohort shifts to the quarter Au-Haidhausen.
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resetting range from intra-cellular signaling pathways on fusion and fission
organelles, stem-cell dynamics in fusing intestinal crypts, or - as an eco-
nomical application - the redistribution of wealth through altruistic dona-
tions in economic systems72,73.

By focusing on the conditions for a localized state, we did not discuss
the transient dynamics of approaching such states. In extrinsic resetting,
such transients are associated with distinct dynamical phase transitions74.
Our framework could be expanded to include non-Markovian dynamics,
where particles interact with their own history as has been studied for single
particles in ref. 75. While such systems do not comprise many-particle
dynamics they sharewith self-organized resetting schemes that the resetting
mechanism arises intrinsically from the stochastic process. Incorporating
additional memory effects into self-organized resetting could unveil further
counter-intuitive collective phenomena. Overall, we view self-organized
resetting as a fundamental and versatile mechanism for controlling noise
accumulation in stochastic systems with many constituents, offering broad
applicability.

Methods
Numerical routines and simulation
For the numerical validation backing our general analytical findings, we
performed agent-based simulations in python 3.8. For the Brownian
motion, we perform independent simulations of particles by the numerical
integration of stochastic differential equations. This yields a set of stochastic
realizations. To implement resetting, at each time step, we compute the rate
of each pair of particles to reset to their respective mean position. Based on
this rate, we update two randomly chosen particles by setting them to their
mean positions using a stochastic simulation algorithm. In between reset-
ting events, the particles again independently perform Brownian motion.
Statistical analysis was performed in python 3.8.

Data availability
The simulation data (.txt-files) and source data underlying this work are
available in the Zelondo repository under https://doi.org/10.5281/zenodo.
14274930.

Code availability
Simulation routines are described in the “Method” section. Code snippets
are available from the corresponding author upon reasonable request.
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