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Dynamic transfer of chiral edge states in
topological type-ll hyperbolic lattices
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The discovery of hyperbolic lattice, a discretized regularization of non-Euclidean space with constant
negative curvature, has provided an unprecedented platform to extend topological phases of matter
from Euclidean to non-Euclidean spaces. To date, however, all previous hyperbolic topological states
are limited to conventional type-1 hyperbolic lattice with a single edge, leaving the dynamic transfer of
hyperbolic topological states between different edges completely unresolved. Here, by extending the
hyperbolic topological physics from the conventional type-I hyperbolic lattices to the newfangled
type-Il hyperbolic lattices, we report the type-Il hyperbolic Chern insulator featuring outer and inner
chiral edge states and demonstrate their dynamic transfer across the bulk to the opposite edge via two
distinct mechanisms: anti-parity-time phase transition and Landau-Zener single-band pumping. Our
work lays the foundation for further exploring the dynamic evolution of hyperbolic topological effects,
with the final goal of inspiring applications leveraging dynamic manipulations of the hyperbolic

topological states.

Exploring and discovering novel topological phases of matter has emerged
as the most pivotal and fascinating research area in condensed-matter
physics'?, photonics™, acoustics®”, mechanics™®, electric circuits™"', and
even thermal diffusions'*". To date, most of the nontrivial topological states
have been established in the Euclidean spaces with zero curvature. Recently,
the discovery of hyperbolic lattices, which are the regular tessellations in
non-Euclidean spaces with constant negative curvature, in circuit quantum
electrodynamics' and electric circuits' has opened up new avenues to
extend topological physics from the Euclidean to non-Euclidean spaces and
simulated numerous research advances in hyperbolic topological physics
with novel topological states, including the hyperbolic quantum spin Hall
effect', hyperbolic Haldane'""” and Kane Mele models'’, hyperbolic Hof-
stadter butterfly”, hyperbolic band topology with second Chern number”,
hyperbolic graphene®”, hyperbolic photonic topological insulators™,
anomalous and Chern edge states in hyperbolic networks™, hyperbolic non-
abelian semimetal®, higher-order topological hyperbolic lattices'***” and
S0 on.

However, so far, all previous studies on hyperbolic topological physics
have been limited to conventional type-I hyperbolic lattices and only focus
on the hyperbolic topological states associated with a single edge'*™’. In this
context, a significant class of topological processes, namely the dynamic
transfer of topological states between different edges, such as Thouless

30-33 34-37

pumping’®”’, Laughlin pumping ™, and Landau-Zener (LZ) transition™*”,

cannot be achieved in the existing framework of type-I hyperbolic lattices.
These dynamic topological effects are crucial for advancing hyperbolic
topological physics in that they not only provide a powerful approach to
manipulate hyperbolic topological states but also offer a crucial method for
characterizing hyperbolic topological invariants and exploring higher-
dimensional hyperbolic topological physics™”’. Fortunately, the recently
discovered type-1I hyperbolic lattices'**' feature inner and outer edges,
thereby offering a natural platform to fill this long-standing gap in hyper-
bolic topological physics.

In this work, by mapping the celebrated Qi-Wu-Zhang (QWZ) model
onto a type-II hyperbolic lattice, we report a type-II hyperbolic Chern
insulator (HCI) whose inner and outer edges support counterpropagating
chiral edge states (CESs). More significantly, we demonstrate that these
CESs can be dynamically transferred between the outer and inner edges of a
type-II HCI by leveraging the power-flow conversion at an anti-parity-time
symmetric (APT-S) exceptional point (EP)* or adiabatic evolution along a
single band in LZ model’*”’, which cannot be achieved in type-1 HCIs with
only asingle edge. Our findings not only lay the foundation for future studies
on the dynamic transfer of hyperbolic topological states but also inspire
potential applications that harness non-Hermitian phase transitions and
adiabatic evolution as new degrees of freedom to manipulate hyperbolic
topological states, thereby expanding the research scope of hyperbolic
topological physics.
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Results

Type-l and type-Il hyperbolic lattices

We start with classifying hyperbolic planes with constant negative curva-
tures in three-dimensional (3D) Minkowski spacetime and their projection
onto planar hyperbolic models. In general, hyperbolic planes can be fun-
damentally categorized as two-sheet (Fig. la) and one-sheet (Fig. 1d)
hyperboloids (see Methods). Under stereographic projection, these two
types of hyperboloids can be further mapped as planar “Poincaré disk”
(Fig. 1b) and “Poincaré ring” (Fig. 1e) models, respectively (see Methods),
while preserving their local constant negative curvatures and global topol-
ogies. More intriguingly, by applying regular polygon tessellation that dis-
cretizes a flat plane into a crystal lattice, these two types of Poincaré model
can be further discretized as type-I (Fig. 1c) and type-1I hyperbolic lattices
(Fig. 1), respectively.

In contrast to the type-I hyperbolic lattice whose geometric degrees of
freedom can be fully characterized by a Schlifli symbol {p, g}, an extended
Schlifli symbol {r, p, q} has to be adopted to label the unique geometric
topology of the type-II hyperbolic lattice, where p and g represent q copies of
p-sided polygons meeting at each vertex, r, = e~ >/ represents the
characteristic radius (radius of the yellow circle in Fig. le, f), Pis a geometry
constant (see Methods) and k is a positive integer representing the rotation
symmetry of the type-II hyperbolic lattice (in this work we fix k as even
numbers unless otherwise specified). The inner radius r,,, can be determined
by the characteristic radius ,, via the relation r;, = r2. Here, we adopt a
finite type-II hyperbolic {0.365, 8, 3} lattice (k = 4, P = 1.559) with a total
of 1240 sites.

Type-Il hyperbolic Chern insulators

To construct a type-II HCI, as illustrated in Fig. 2a, we map the QWZ model
onto the type-II hyperbolic lattice which can be described by a tight-binding
model (TBM) Hamiltonian:

Zc Tijc; —|—Z M—l—th cl 0,¢; )
(i4)

HCI

where ¢] and c; are the creation and annihilation operators of electrons at the
site i, o,,, are  the Pauli matrices. Matrix J;=
—[it, (a cosf;; + 0, sin b, ) + t,0,]/2 depicts the hopping between two
neighboring connected sites, where 6;; represents the polar angle of the
vector from site i to site j (see label in Fig. 2a), serving as a hopping phase to

break the time-reversal symmetry of the system. Note that although the
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Fig. 1 | Type-I and type-II hyperbolic lattices. a One brunch of a two-sheet
hyperboloid (t — x* — y* = 1) in (2 + 1)-dimensional (x,y,) Minkowski space-
time is mapped onto a Poincaré disk (z = 0) by stereographic projection through the
point (0, 0, —1) (green dot). b Poincaré disk with unit radius. ¢ A type-I hyperbolic
lattice with {8, 3}-tessellation constructed by discretizing the Poincaré disk with
octagons. d One-sheet hyperboloid (42 + v? — z2 = 1) in (1 + 2)-dimensional
(u,v,2) Minkowski spacetime is mapped onto a set of overlapped line segments at z

d One-sheet hyperboloid

mirror symmetry of the sublattices outside and inside , is broken by the
current hopping phase setting, the amplitudes of all couplings are identical,
ensuring the nature of negative constant curvature. We henceforth set
system parameters t; = ¢, =1, M = —1. We directly diagonalize the
Hamiltonian H; to obtain the energy spectrum, as shown in Fig. 2c. The
bulk energy gap (orange region), indicated by the vanished bulk density of
states (DOS) (see Methods) shown in Fig. 2b, is occupied by paired inner
(red dots) and outer (blue dots) CESs, whose intensity distributions are
displayed in Fig. 2e.

To further verify the nontrivial topological properties of these CESs, we
first calculate their corresponding real-space Bott index Cjg, as shown in
Fig. 2d. In the gap region, Cz = —1 indicates the nontrivial band topology
of the type-II HCI phase (see Methods). Next, to characterize the non-
reciprocal and robust transport of these CESs, we inject wave packets
vo(t) = exp( 202) sin(2me,t) with &, = 0.0064 and o = 50 (green stars in
Fig. 2f) into the outer and inner edges to investigate their dynamic time
evolution and introduce several on-site potential defects (white circles in
Fig. 2f) to test their topological protection. Figure 2f presents the instanta-
neous intensity distributions of |1//0(t)| at different times t = 60, 172, 292,
424, respectively. It can be seen that the wave packet is well-confined to the
outer (inner) edge of the type-II HCI and propagates nonreciprocally along
the counterclockwise (CCW) [clockwise (CW)] direction, smoothly passes
through the defects without any backscattering. These results prove that
both the inner and outer edges of type-II HCIs can support robust and
nonreciprocal CESs.

Dynamic transfer of CESs in modulated type-Il HCls

The key to achieving the dynamic transfer between the outer and inner CESs
lies in introducing interaction and controlling the evolution path of the
coupled states in real space or parameter space. In real space, a straight-
forward paradigm is to completely couple a CCW-propagating CES at the
outer edge, through the bulk, to a CW-propagating CES at the inner edge,
and vice versa. This implies that these two CESs coalesce as one state with
zero power flow, which is the characteristic signature of an APT EP*™*. We
start by considering a two-level model and selecting the two modes in Fig. 2d
as its orthonormal basis { |y, ), |y;) }, representing the CESs localized at the
outer and inner edges, respectively. The CCW and CW power flows of the

bases are defined as f, = }<q/0|u/o>‘2 - }<wi|u/0>‘2 =1=A and
B, = |<1;/0|1//1.>}2 - |<V’i|1/’i>|2 = —1 = —A, respectively. To manipulate
the interactions between these two counterpropagating CESs, we introduce
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axis by stereographic projection through the point (0,1,0) (green dot). Inset displays
a Poincaré band configuration formed by extending the line segments along angular
position ¢. e Poincaré ring with unit outer radius, inner radius r;,, and characteristic
radius r, generated by wrapping and gluing the Poincaré band in d. f A type-II
hyperbolic lattice with {r,, 8, 3}-tessellation constructed by discretizing the Poincaré
ring with octagons.
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Fig. 2 | Type-1I hyperbolic Chern insulator (HCI). a Schematic illustration of Qi-
Wu-Zhang model on a type-II hyperbolic {0.365, 8, 3} lattice. b Bulk density of state
(DOS) of the Type-II HCI in a, the energy region with vanished DOS indicates the
bulk energy gap (orange region). ¢ Energy spectrum of the Type-II HCI in a, inner
(red dots) and outer (blue dots) chiral edge states (CESs) fill the energy gap. The inset

displays the zoomed-in view of the CESs near zero energy. d Real-space Bott index
Cp as a function of energy. e Intensity distributions of the outer and inner CESs
marked in the inset of c. f Instantaneous intensity distributions of wave-packet
excited by two edge sources (green stars) at time 60, 172, 292, and 424, respectively.

a radial coupling channel (pink region) consisting of seven modulated
couplings (pink short lines) T;(p) = p-J;;, as illustrated in Fig. 3a. Figure 3b
shows the eigenenergy of the system as a function of the modulation
strength p. As p increases, the approximately degenerate states
Iy, x)(k=1,2) gradually split, and their power flows, given by
Br = |(l//D|1//P_k)|2 - |(V’i|‘/’p,k>|2’ change from 1 (blue color) or —1 (red
color) to 0 (green color) simultaneously. This phenomenon of power flow
evolution can be described by a two-level effective Hamiltonian

Ky . .

Hy = (f ° ﬁ“‘ ), where the coupling factors are derived as purely
io i

imaginary numbers x,; = «;, = ix due to the power-flow-difference con-

servation in the contra-directional coupling process*™* (see Supplementary

Note 1). Hence, we arrive at the Hamiltonian written as:

A ik
HAPT:(I.K —A) ()

which is APT-S, i.e, {H 4pr, 137"} = 0 and gives eigenvalues:

B= VA -2 3)

As shown by solid lines in Fig. 3¢, in the weakly coupled regime |k| < |A|
(pink region), B appear as two real numbers, corresponding to an anti-
parity-time-symmetry-broken (APT-B) phase which hosts two propagating
eigenstates with CCW (blue line) or CW (red line) power flows. Especially,
when the coupling reaches a critical point || = |A| (yellow dashed line),
coalesces to zero, corresponding to an EP (yellow star) and non-propagating
eigenstates with vanishing power flow. Additionally, 8 in Fig. 3b can also be
retrieved as a function of effective «, as demonstrated by circles in Fig. 3b,

which exhibits a quantitative agreement with the analytic results from
Eq. (4). Figure 3d shows the EP eigenstates corresponding to the yellow stars
in Fig. 3b, ¢, which exhibit nearly identical intensity distributions that
conform to the coalescence of eigenvectors at the EP, and the equal intensity
distribution between the outer and inner edges coincide with the vanishing
power flow at the EP.

We then examine the dependence of outer edge to inner edge trans-
missions on the modulation strength p. As illustrated in the inset of Fig. 3e,
we inject the formerly used wave-packet y,(¢) from an outer edge source
(green star marked 1), and then evaluate the transmission S, (S;;) from an
outer (inner) edge probe [blue dot marked 2 (red dot marked 3)] for dif-
ferent p. Figure 3e reveals that, for sufficiently weak p (<8), S,; (S3;) remains
stable at 1 (0), indicating the wave-packet only propagates along the outer
edge. As p increases, the system gradually approaches the EP, S,; (S;;)
exponentially decays (increases) to 0 (1), signifying the dynamic transfer
from the outer CESs to the inner CESs. Figure 3f presents the instantaneous
intensity distributions of ‘wo(t)| at different times t = 40, 84, 104, 292 with
p =101, respectively. It can be seen that the wave packet initially propagates
CCW along the outer edge, and then gradually crosses the coupling channel
and continues to propagate CW along the inner edge, thereby achieving the
dynamic transfer of CESs in type-II HCIs via the APT phase transition
which has never been reported before.

Next, to overcome the challenge of the CESs failing to dynamically
transfer under sufficiently small p (ie., far from EP), we harness a robust
mechanism regardless of modulation strength, namely the dynamic state
pumping along an adiabatically evolved path in parameter space, such as LZ
single-band pumping. As illustrated in Fig. 4a, we introduce additional non-
reciprocal phases @ into the couplings T'; (p) as a new degree of freedom.
For p=6, which is an extremely weak modulation strength that cannot
induce CES transfer using the APT phase transition. Figure 4b shows the
eigenenergy of the coupled outer and inner CESs near zero energy as a
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Fig. 3 | Dynamic transfer of chiral edge states via anti-parity-time (APT) phase
transition. a Schematic illustration of a modulated type-II hyperbolic Chern insu-
lator for implementing an effective two-level anti-parity-time symmetric (APT-S)
model. b Eigenenergy of the system in a as a function of the modulation strength p,
where the color indicates the power flow 8 of each eigenstate. ¢ 8 as a function of «.
The solid lines (dots) are analytic (numerical) results calculated from the APT
Hamiltonian H , ;- (tight-binding model calculations). Pink and blue regions denote
the anti-parity-time-symmetry-broken (APT-B) and APT-S phase, respectively.

Transmission

The yellow star represents an APT exceptional point (EP). d Intensity distributions
of quasi-EP eigenstates marked by yellow stars in b and c. e Wave packet trans-
missions of outer-outer (S,,) and outer-inner (S5, ) edge transports as a function of p.
Inset illustrates that a wave packet excited by an outer edge source (green star), is
splitted into two wave packets by the channel, which are detected by outer (blue dot)
and inner (red dot) edge probes. f Instantaneous intensity distributions of wave-
packet at time 40, 84, 104, and 292, respectively, for p = 100 marked by yellow dashed
line in e.

function of the non-reciprocal phases @, where the blue and red colors
represent the weighting of the corresponding eigenstates on the bases |y,
and |y;) with a CES gap (green region) of a size of AE = 0.000446 at ® = .
These two gapped bands can be modeled as a two-level LZ Hamiltonian*"":

(4)

T adD

—add T
Hy(60) = ( )

where T' = AE/2 is determined by the gap size and a=0.002 is a fitting
parameter. If the initial state is |y;) at @ = 7-1 (red stars in Fig. 4b, c), there
are two possible routes of state evolution, as illustrated by the dashed red and
blue arrows in Fig. 4b. When it follows the red arrow path, the |y,) com-
ponent always dominates during this process, and the final state (red
rhombus in Fig. 4b, ¢) remains localized at the inner edge. In contrast, when
it is pumped along the blue arrow path, the final state (blue rhombus in
Fig. 4b, c) will be dominated by |y, ), leading to the transition from the inner
edge to the outer edge and the final states will be localized at the outer edge.
The final state |y/) is a superposition of bases |y,) and |y;) given by
|1//f) = O(t)|y,) + I(t)|y,), where the composition O(t) and I(t) satisfy:

,d<O(t)) (nt r )(O(t)) )
iz =

dt \ I(t) r —nt)\ I

where 1 = a(A®D/T) characterizes the adiabaticity that depends on the
evolution rate A®/ T, i.e., the ratio of phase range A®=2 and the number of
evolution steps T. The state evolution starts with the initial state dominated
by |y,), i.e. the initial condition is (0, 1)”. Using Eq. (6), the weightings of
the final state on the bases |y;) and |y,) can be derived as a function of T:
P‘W =IT) = e/ andPW/o) =0T} =1- e~ /3637 We plot the
weightings as solid lines in Fig. 4d, it can be seen that P, and Py, ,

intersects at T, = %ﬁ“z = 17747 (black dashed line), which is the LZ
transition point. When T >> T (blue dashed line in Fig. 4d), the state evolves
sufficiently slowly to remain adiabatic and stays on the same band with the
final state dominated by |y,), corresponding to the LZ single-band
pumping (blue arrow in Fig. 4b). However, when the same process occurs
with T < T, (red dashed line in Fig. 4d), the state evolution will be fast
enough to be nonadiabatic and tunnel across the energy gap, populating the
upper band with the final state dominated by |y,) and corresponding to the
LZ tunneling (red arrow in Fig. 4b).

For the initial state (red star) shown in Fig. 4b, ¢, we calculate the
evolved final state at different evolution rates and determine its weightings
on the bases |y,) and |y ) as functions of T, as plotted by colored dots in
Fig. 4d, which coincide with the results of the LZ model. Figure 4e, f display
the intensity distributions of the state during the nonadiabatic
(T =T, =1001) and adiabatic (T = T, = 125001) evolution, respec-
tively. As predicted in our theoretical analysis, for the LZ tunneling with
nonadiabatic evolution (Fig. 4e), the initial inner CESs remain localized at
the inner edge, while for the LZ single-band pumping with adiabatic evo-
lution (Fig. 4f), the initial inner CESs pump across the bulk to the outer edge,
achieving the dynamic transfer of the CESs in type-II HCIs. Given that the
characteristic radius r;, plays a pivotal role in type-II hyperbolic lattices, we
have discussed the influence of r;, on the dynamic transfer of CESs via two
mechanisms. We find that the transfer efficiency of CESs in the process of
APT phase transition is not significantly affected by r,, whereas in the
process of LZ single-band pumping, a larger r;, leads to a lower transfer
efficiency (see Supplementary Note 2).

Conclusion
In conclusion, we have theoretically demonstrated the nontrivial CESs and
their dynamic transfer in topological type-II hyperbolic lattices. By
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Fig. 4 | Dynamic transfer of chiral edge states via Landau-Zener (LZ) single-band
pumping. a Schematic illustration of a modulated type-II hyperbolic Chern insu-
lator for implementing an effective two-level LZ model. b Eigenenergy of the system
in a as a function of modulation phase @, where the color indicates the weightings of
each eigenstate on the bases |y;) (red color) and |y,) (blue color). The solid lines
(dots) are analytic (numerical) results calculated from the LZ Hamiltonian H;,
(tight-binding model calculations). The green region represents the energy gap.
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¢ The intensity distributions of the initial state (red star) and the two possible final
states (red and blue rhombuses) along different state evolution paths. d The
weightings of final state lyy) on the bases |y;) and |y, ) as a function of the number of
evolution step T. e and f The changes in intensity distribution of state during a
nonadiabatic (e) and an adiabatic (f) evolution, corresponding to the red and blue
dashed lines in d, respectively.

extending the QWZ model to the type-II hyperbolic space, we achieve a
type-II HCI featuring inner and outer CESs with opposite chirality, in
contrast to its type-I counterpart which only has outer CESs with a single
chirality. More interestingly, we demonstrate that the counterpropagating
CESs at the outer and inner edges of type-II HCIs can be dynamically
transferred via two distinct mechanisms: the completely reversed power-
flow conversion at an APT-S EP and the adiabatic evolution along a single-
band in LZ model. Our work thus significantly expands the research scope of
hyperbolic topological physics and establishes a paradigm for exploring
novel topological effects in more complex non-Euclidean spaces. We
envision the dynamic transfer of hyperbolic surface states or hyperbolic
hinge states that can be achieved in three-dimensional stacked type-II HCISs.
Given current experimental techniques, the dynamic transfer of the CESs in
topological type-II hyperbolic lattices can be readily realized in circuit
quantum electrodynamics™, electric circuits'>"’*"*, integrated nanopho-
tonic chips™, and nonreciprocal networks™. Our work may inspire potential
applications in robust and compact hyperbolic topological devices by
leveraging dynamic manipulations of the hyperbolic topological states, such
as hyperbolic topological laser**** and optical frequency combs*’ ™.
Methods

Embedding infinite hyperbolic planes into 3D Minkowski
spacetimes

1) R? topology In the (2 + 1)-dimensional (x,y,f) Minkowski spacetime
with metric:

dst = —dt* + dx* + dy?, 6)

the two-sheet hyperboloid described by t* —x?> —y* =1 can be
parameterized by:

t = cosh &, x = sinh a cos B, y = sinh asin f. 7)
The induced metric on the hyperboloid sheet is:
dst = da® + sinh®adf?, 8)

the Gaussian curvature K of this metric can be calculated as:

aﬁg ao

+9 =—-1 (9
f \/gmxgﬁﬁ>

whereg,, = diag[1, sinh?a], 4 and v are space indices, running from a to .
This reveals that two-sheet hyperboloid in (x,y, f) Minkowski spacetime
indeed has constant negative curvature and therefore effectively realizes the
hyperbolic plane with R? topology.

(2) Rx S topology In the (1 + 2)-dimensional (z, u,v) Minkowski
spacetime with metric:

9.8, 8B

S (aa
2\/gmxgﬂﬁ \/gouxg[}ﬂ

A2 = —di® — v + d2?, (10)

the one-sheet hyperboloid described by u?+v* —2z*> =1 can be
parameterized by:

(11)

u = cosh acos B, v = cosh asin 8, z = sinh a.
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The induced metric on the hyperboloid sheet is:

ds}, = do* — cosh*adf?,

(12)

the Gaussian curvature K of this metric can be calculated as:

(a ) 0wy

wherer,, = diag[1, —cosh’a], 4 and v are space indices, running from & to
B. This reveals that one-sheet hyperboloid in (z,u,v) Minkowski spacetime
indeed has constant negative curvature and therefore effectively realizes the
hyperbolic plane with R xS topology.

1
B 2 \/ na(x ’1;;/3

aﬁ Now
p \/ ﬂaa ’7[3[3

9atlgs
: \/ﬂaa ’7[3[3

Stereographically projecting infinite hyperboloids in 3D Min-
kowski spacetimes as planar Poincaré models

(1) Two-sheet hyperboloid The stereographical projection, as illustrated by
black rays in Fig. 1a, that maps the two-sheet hyperboloid into a planar
hyperbolic model can be completely and mathematically described by the

coordinate transformation:

o
p; = tanh <5>, (14)
The Eq. (9) thus reduces to a conformally flat form:
d52 _ 4 ( d 2 + 2 d 2)
disk = vz (dp” T pAp). (15)
(1 - PI)

Applying the complex coordinate z = p;e® the Eq. (16) can be
rewritten as:

2

disk = ( 7 dedz”.

* 16
-2 (16)
which indicates a disk configuration dubbed as Poincaré disk.

(2) One-sheet hyperboloid The stereographical projection, as illu-
strated by black rays in Fig. 1d, that maps the one-sheet hyperboloid into a
planar hyperbolic model is mathematically equivalent to a conformal

mapping:

(17)

on the Poincaré disk, as shown in Fig. 5a. The Eq. (17) thus reduces as:

7.[2

st = —— " dfdf*. 18
Sband 4cos? (g Im (f)) f f ( )
which indicates a band configuration dubbed as Poincaré band, as shown
in Fig. 5b.
The transformation that warps and glues this band model as ring
model can be mathematically described by the conformal mapping:

w(f) =m0, (19)

The Eq. (19) thus reduces as:

2
2 "h

dSiing = : 5 dwdw
(|w| s1n(rh log(|w|)))

which indicates a ring configuration dubbed as Poincaré ring, as shown
in Fig. 5c.

Construction of type-II hyperbolic lattice Fig. 6a shows an infinite
type-I hyperbolic lattice with {8, 3} tessellation. After the conformal map-
ping in Eq. (18), the type-I hyperbolic lattice is stretched as an infinite band
with a discrete translation symmetry along the horizontal direction, as
illustrated in Fig. 6b. The period is the width of a unite cell (blue region) as
P=1.559. Subsequently, after the conformal mapping in Eq. (20) with r, =
e % (here we set k=8), the band lattice is wrapped and glued as an infinite
type-II hyperbolic lattice, as shown in Fig. 6c.

Calculation of bulk density of states Given a tight-banding Hamil-
tonian H on a finite type-II hyperbolic lattice, we perform exact diag-
onalization to obtain its eigensystem {(E,, |y;)) }il, where |y,) is an
eigenvector with eigenvalue E;, and N is the number of sites. For each state
|y;) we define a bulk weight factor as follows:

=3

a=1

*

(20)

2

: (1)

‘//,:,a

where the subscript a represents the innermost bulk site indices. We then
convert the information about the eigenvalues and eigenvectors into a
continuous DOS function via

(E—E)
21

1
pbu]k(E) = ; Wi rlm exp |:_ (22)

We use # = 0.05 throughout the manuscript.

a b c
Poincaré disk Poincaré band Poincaré ring
y Y n
z=x+1iy f=9+ic w=¢+i0n
1 1
2 1+z T
f(Z) = —log 11— B W(f) — elzrh(fﬂ)

X

[
<

U2 —

X

/=
Q

K

Fig. 5 | Conformal rules for mapping a Poincaré disk to a Poincaré ring. a Poincaré disk. b Poincaré band transformed from Poincaré disk with conformal rule f(z).

¢ Poincaré ring transformed from Poincaré band with conformal rule w(f).
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a

Fig. 6 | Octagon tessellations in Poincaré models. Infinite {8, 3} tessellation in a Poincaré disk, b Poincaré band, and ¢ Poincaré ring.

Calculation of real-space Bott index In conventional flat lattices,
topological edge states are characterized by Chern number in momentum
space. Since there is no well-defined translation symmetry in the type-II
hyperbolic lattice, we utilize the real-space Bott index to characterize the
topological nontrivial phase of the chiral edge states in type-II hyperbolic
chern insulators. The real-space Bott index Cj is defined as:

1 ;
Cp =5 Im trflog(VUV" Ui, (23)

with U = Pe?™ P and V = Pe>"' P, where X (Y) is a diagonal matrix
whose diagonal element x; (y,) is the new coordinate of the ith site after

rescaling the coordinate interval xj(y}-) e (-1, 1) to xj(yj) € (0,1), P=

N(?CC
> ‘1//” W, ’ is the projector operator of the occupied states [y,,).

Data availability
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