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Unconventional bulk-Fermi-arc links
paired third-order exceptional points
splitting from a defective triple point
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Linjun Wang1, Xiaoping Ouyang 5, Yifei Zhu 6, Hongwei Jia 2,7 & C. T. Chan 2

Exceptional degeneracies, unique to open systems, are important in non-Hermitian topology. While
bulk-Fermi-arcs connecting second-order exceptional points (EP2s) have been observed, the
existence of bulk-Fermi-arcs linking higher-order exceptional points remains unexplored. Here, we
introduce an unconventional bulk-Fermi-arc in systems with parity-time and pseudo-Hermitian
symmetries, which links paired third-order exceptional points (EP3s), where three eigenvalues share
identical real parts but distinct imaginary parts.We realize these systemsusing topological circuits and
experimentally demonstrate this unconventional bulk-Fermi-arc. A winding number defined from
resultant vector shows that the bulk-Fermi-arc is stabilized by the exchange of Riemannian sheets.
Furthermore, analysis via eigenframe deformation and rotation reveals that the EP3 pair is
topologically nontrivial and equivalent to a single defective triple point. The EP3s can split from the
triple point by varying systemparameters,with this splitting protectedby topological equivalence. This
finding offers insights into non-Hermitian topology with potential applications in wave engineering.

The band degeneracies have been extensively recognized as topological
defects in parameter space1–20. A very typical example of such defects in the
three-dimensional (3D) Hermitian setting is the Weyl point1–7. Its topolo-
gical invariant, generally obtained by integratingBerry curvature on a closed
surface enclosing theWeyl point, is a crucial measure for predicting Fermi-
arc surface states at system boundaries1–6. Recently, non-Hermitian physics
has attracted growing interest as it addresses the ubiquitous open systems
that exchange energy with the surrounding environment. The energy
exchange is represented by the imaginary parts of the complex eigenvalues,
which significantly expands the classes of topological phases of matter10–23.
The exceptional point (EP) is a unique feature of non-Hermiticity, featuring
the coalescence of both eigenvalues and eigenstates. In two-dimensional
(2D) systems, a pair of EPs of order two (EP2) can be obtained by splitting a
topologically nontrivial Dirac point by introducing non-Hermitian per-
turbations. Due to the eigenvalue braiding around each EP, the EPs gen-
erally carry half-quantized topological invariants, knownas energy vorticity,
resulting in a stable bulk-Fermi-arc (BFA) linking the pair of EP2s11–13. This
is fundamentally distinct from the commonly observed Fermi-arc surface
states that arise from the 2D projection of Weyl points in 3D Hermitian

systems1,3–6, while the BFA resides in the bulk dispersion of a 2D system
supporting the EP pairs11–13. So far, the BFA is widely recognized as a stable
link of EP2s. However, other forms of BFAs that link higher-order EPs,
remain unexplored.

In this study, we unveil an unconventional BFA linking paired
exceptional points of order three (EP3), which can widely exist in 2D
non-Hermitian systems with parity-time (PT) symmetry and an addi-
tional pseudo-Hermitian symmetry. High-order exceptional points,
unlike second-order ones, are multifold degeneracies where three or
more eigenvalues and their eigenstates coalesce21–24. These points, com-
mon in non-Hermitian systems, enable unique applications such as
enhanced sensitivity and the realization of exotic topological structures,
making them useful for advancing sensing technologies and exploring
novel physical phenomena18,25. In 2D systems with multiple eigenstates,
the EP3s can exist in the form of cusps that are located entirely on
exceptional lines (EL) under the protection of PT symmetry20–23. Here we
reveal that by imposing an additional pseudo-Hermitian symmetry, EP3s
can emerge in pairs. Unexpectedly, these paired EP3s are stably con-
nected by an unconventional form of BFA, on which the three
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eigenvalues possess identical real parts but disparate imaginary parts,
significantly distinguished from the conventional form. By defining
winding numbers using a resultant vector22, we find that the paired EP3s
possess opposite winding numbers, indicating inverse exchanging pro-
cesses of Riemannian sheets around the two EP3s, which stabilizes the
unconventional BFA. The two EP3s linked by the BFA originate from the
splitting of an accidental three-fold degeneracy that holds two linearly
independent eigenstates (dubbed a defective triple point, DTP), which is
also distinguished from the conventional case. It is known that paired
EP2s stably linked by a BFA carry nontrivial eigenvector topology11,12.
However, prior topological characterization for high-order EPs that
utilize the resultants, which primarily focus on the eigenvalues21,22, cannot
reveal the topological nontriviality of eigenvectors of the EP3 pair. To
address this limitation, we incorporate the eigenvectors and employ the
notion of eigenframe deformation and rotation, which aligns with the
intersection homotopy26,27, to characterize the topology of such singula-
rities that are located entirely on ELs. The paired EP3s, which possess
opposite winding numbers of resultant vectors and are connected by the
BFA, are shown to have a nontrivial topology identical to that of the
DTP. Therefore, the splitting of the EP3s from the DTP is topologically
protected. Finally, by realizing such systems with nonreciprocal circuits,
the new form of BFA is experimentally demonstrated.

Results and discussion
We start with a direct comparison between the two forms of BFAs. As
shown in Fig. 1a, a 2D Hermitian system with PT symmetry generally
displays Dirac point degeneracies as linear crossings of two bands. By
introducing non-Hermitian perturbations with specific symmetries, the
Dirac point is split into a pair of EP2s (see Fig. 1b), which are stably con-
nected by the conventional BFA with two eigenvalues sharing identical real
parts but different imaginary parts11–13. The unconventional BFAwe study is
inherently different. We consider the following 2D non-Hermitian

Hamiltonian with three eigenstates,

H ¼
�gðf x; f yÞ � f x þ 1 �gðf x; f yÞ �f x

gðf x; f yÞ gðf x; f yÞ þ f y �f y
f x �f y f x þ f y

2
64

3
75 ð1Þ

where fx and fy are real and constitute the 2D parameter space. This non-
Hermitian Hamiltonian is chosen to manifest both PT symmetry and an
additional η-pseudo-Hermitian symmetry28,29 (ηHη-1 =H†, η takes the
form of Minkowski metric η = diag(−1,1,1)30). The specific function
g(fx, fy) = 0.343-fx+ b is chosen because it exhibits an accidental three-
folddegeneracy atb = 0, as shown inFig. 1c. This degeneracy is defective and
has two linearly independent eigenstates, which we therefore refer to as a
defective triple point (DTP). By introducing perturbations while preserving
the symmetries (simply by tuning b), this DTP can split into a pair of EP3s
lying on the cusps of ELs. The EP3s are stably connected by a special type of
BFA, which resides in the broken phase region, as displayed in Fig. 1d. We
note that the three eigenvalues on the BFA have identical real parts, while
their imaginary parts are different. The DTP should be distinguished from
the EP3, despite that they are both defective three-fold degeneracies, due to
the fact that the EP3 only has one eigenstate.

To experimentally observe the unconventional BFA, we employ a
nonreciprocal electric circuit that incorporates three nodes (labeled A, B,
and C in Fig. 2a) to emulate the hoppings in a three-state non-Hermitian
model. The tight-binding hopping parameters are utilized to construct a
synthetic 2D parameter space. The electric circuit platform31–35 offers sig-
nificant advantages over others in implementing and precisely controlling
complex nonreciprocal hoppings, thanks to the diverse range of readily
available active circuit elements. Nonreciprocity in electric circuits refers to
the direction-dependent transfer of signals or energy between two nodes,
enabling functionalities such as directional amplification and robust

Fig. 1 | Comparison between the conventional
BFA and the unconventional BFA. a Dispersion
diagram near the 2D Dirac point (DP), obtained
with the PT symmetric Hermitian Hamiltonian
H ¼ f xσ1 þ f yσ3. Re(ω) denotes the real part of
eigenvalues as a function of fx and fy for the two
eigenvalues in orange and blue, respectively.
b Paired second-order exceptional points (EP2, red
dots) obtained from splitting the DP by introducing
gain and loss term qiσ3 to the Dirac Hamiltonian
(σ1�3 denote Pauli matrices), where q is the per-
turbation term. The paired EP2s are stably con-
nected by the conventional bulk-Fermi-arc (BFA).
The eigenvalues on the conventional BFA are con-
jugate to each other (real parts coalescence).
c Dispersion diagram near the defective triple point
(DTP) on the 2D parameter space. The red lines
denote ELs, and the DTP is embedded in the ELs.
The three real eigenvalues are marked in orange,
blue, and green, respectively. dPaired EP3s obtained
from splitting theDTP by introducing perturbations
with symmetries preserved. EP3s are both cusps of
ELs, which are stably connected by the unconven-
tional BFA residing in the broken phase domain.
The three eigenvalues on the unconventional BFA
share identical real parts and have different ima-
ginary parts. Two of the three eigenvalues on the
unconventional BFA are conjugate to each other,
while the other eigenvalue is real.
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unidirectional transport. This is often achieved using a negative impedance
converter with current inversion (INIC), an active circuit element that
breaks reciprocity by introducing asymmetric hopping parameters32,35. The
PT symmetry inherent to the non-Hermitian system ensures that these

asymmetric hopping parameters are real and can be implemented using
conductance or inductance combined with the INIC33. The structure of the
circuit elements and their corresponding hopping parameters are shown in
the left panel of Fig. 2a. Specifically, an INIC in series with a capacitor,

Fig. 2 | Experimental observation of the unconventional BFA with topological
circuit. a Implementation of the Hamiltonian. Left panel: The system includes three
nodes A, B, and C. The hoppings between A and B, and between A and C are
nonreciprocal hoppings, implemented using an impedance converter with a current
inversion (INIC) circuit in series with capacitors (C1, Cx). The hopping between
B and C is reciprocal, realized with a pure capacitor (Cy). The hoppings between
A and C and between B and C implement synthetic dimensions fx and fy, and the
hopping betweenA and B is a linear function of fx and fy, g(fx,fy) = 0.343-fx+ b. Here,
b in the linear function denotes the perturbation term. Rag, Rbg, and Rcg are all
grounded resistors; Cag, Cbg, and Ccg are all grounded capacitors. Right panel: INIC
structure, with two equal resistors Ra in both the positive and negative feedback paths,
and capacitorCi in series. b–d Experimental measurements of admittance eigenvalues
for the cut planes with perturbation terms b = 0 (b), b = 0.0299 (c), and b = 0.0569

(d), respectively. Left panels: Degeneracies in the synthetic 2D parameter space on these
cut planes. The ELs, DTP, and BFAs are denoted by the orange lines, red star, and blue
line, respectively. The experimentally identified degeneracies are marked with solid dots.
Dashed lines in different colors correspond to the measured lines (fy = t) on the right
panels. Right panels: Real parts of the dispersion of eigenvalues as a function of fx for
different fy lines (fy = t) on the corresponding cut planes. The eigenvalues are ordered in
exact phases from small to large. The experimentally measured admittance eigenvalues
aremarked in circles, and all the degeneracies (EL, DTP, EP3, and BFA) are indicated by
arrows. The experimental error bars are provided in Supplementary Note 1. The
unconventional BFA can be found to stably connect the paired EP3s. Increasing the
perturbation simply enlarges the interspace between the two EP3s, but cannot eliminate
the BFA, demonstrating the stability of the BFA. Experimental raw data for plotting
(b–d) is provided in the Supplementary Data.
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denoted as ±Ci (see right panel of Fig. 2a), is employed to achieve the
nonreciprocal hoppings depicted. In this setup, the circuit’s admittance
matrix J and its eigenvalues, labeled j, are analogous to the Hamiltonian
matrix and energy spectra, respectively31,32,34. In the experiment, we applied
current inputs to each of the three nodes andmeasured the resulting voltage
responses. From these measurements, we constructed the matrix-form
Green’s function, whose inverse yields the circuit Laplacian, enabling the
analysis of its eigenvalue and eigenstate spectra. Further details on the
experimental implementation andmeasurements can be found inMethods.

We first observe the unperturbed case (b = 0)where theDTP is present
on the 2Dplane of the dispersion diagram. From the left panel of Fig. 2b, we
see that four ELs (orange lines) emerge from the DTP (red star), three with
fy > 0.121 and one with fy < 0.121, and we measured the admittance bands
marked by the three dashed lines (fy = 0.3, 0.121 and 0.01), which are shown
in the right panel of Fig. 2b. It can be identified that three of the ELs are
formed by the degeneracies of the 2nd and the 3rd bands (fy = 0.3 and 0.01,
right panel), while the other is formed by the 1st and the 2nd bands (fy = 0.3,
right panel). The DTP, therefore, serves as the aggregation node of all the
ELs. By introducing the perturbations (b = 0.0299), theDTP is split into two
EP3s lying on the cusps of ELs (see the left panel of Fig. 2c).We see that each
of theEP3s is connectedby twoELs, andoneEL is formedby the degeneracy
of the 1st and the 2nd bands, while the other is formed by the degeneracy of
the 2nd and the 3rd bands (see the right panel of Fig. 2c). The

unconventional BFA (blue line in Fig. 2c), onwhich the real parts of all three
eigenvalues coalesce, can be clearly indicated by the experimental results in
the right panel of Fig. 2c. By further increasing the perturbations
(b = 0.0569), the separation between the paired EP3s in parameter space
becomes larger. However, the BFA is stable against this perturbation, which
still stably links the two EP3s, as shown in the left panel of Fig. 2d. Addi-
tionally, from the right panel of Fig. 2d,we observe that the dispersive nature
of the BFA that the real parts of all three eigenvalues coalesce remains intact
regardless of increasing the perturbation in the Hamiltonian. This experi-
mental result demonstrates the stability of the BFA, which comes from the
topological nontriviality of the paired EP3s.

Now we delve into the topological aspects of the stability of the
unconventional BFA.Aswehave claimed, the assembling of thepairedEP3s
is topologically nontrivial. This point of view compliments the conventional
understanding where the winding number of cusps of ELs are defined with
the resultant vector21,22,

W ¼ 1
2π

X
α¼x;y

I
lλ

ðR1∂R2=∂f α � R2∂R1=∂f αÞdf α
jR2

2 þ R2
1j ð2Þ

and the integration results for the two EP3s areW = ± 1. Here lλ denotes a
closed loop enclosing a single EP3, e.g., L1 or L2, as displayed in the lower
panel of Fig. 3a. R1 and R2 denote the components of the resultant vector

Fig. 3 | Topological understanding of the uncon-
ventional BFA and the paired EP3s. a Two closed
loops encircling each of the paired EP3s (purple loop
L1, and blue loop L2), and another loop encircling
both (green loop L3). The eigenvalues on the loops
are shown in the upper panel, and the structures of
the loops in the 2D parameter space are shown in the
lower panel. b, c The eigenvalue evolution processes
along L1 (b) and L2 (c), respectively. The eigenvalues
j1, j2, and j3 are colored in yellow, blue, and green,
respectively. The order exchange processes are
inverse along L1 and L2. For L1, j1 and j2 coalesce and
swapwith j3 (j1,2↔ j3), while for L2, j2 and j3 coalesce
and swap with j1 (j1↔ j2,3). d The eigenvalue evo-
lution processes along L3. The eigenvalues do not
experience order exchange along L3. The solid lines
and rhombus symbols in panels (b, c, and d) cor-
respond to theoretical and experimental results,
respectively. e, f Demonstration of the nontrivial
topology of the paired EP3s with the evolution
process of eigenframe along L3, corresponding to the
real and imaginary parts of eigenstates, respectively.
The eigenstates φ1, φ2, and φ3 are also colored in
yellow, blue, and green, respectively. The lower
panels show the corresponding accumulated angles
to the initial states. We see that the imaginary parts
of eigenstates serve as an intermediate process.
Eigenstates φ1 and φ3 accumulate nontrivial quan-
tized angle π, and thus their final states are on the
antipodal points to the initial states. The accumu-
lated angle for φ2 is zero. The experimental raw data
for plotting the symbols in (b–d) is provided in
the Supplementary Data.
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field. Details on obtaining the resultant vector and deriving Eq. (2) are
shown in Supplementary Note 2. The opposite windings arise from the fact
that the eigenvalues undergo converse exchanges of Riemannian sheets
around the twoEP3s.As can be observed in Fig. 3b, c (theoretical: solid lines,
experimental: symbols), along loops L1 and L2, the eigenvalues j2 and j3 are
initially coincident because the starting point (SP) of loop L1 is selected to be
on the EL formed by j2 and j3 (see stars in the lower panel of Fig. 3a). As the
tracking point on L1 departs from the EL, the degeneracy point of j2 and j3
bifurcates. j2 will then coalesce with j1 as the tracking point approaches the
other EL along L1. From this point, j1 and j2 form a common Riemannian
sheet in their real part dispersions because they become conjugated. Finally,
when the eigenvalues continue to evolve with the moving of the tracking
point along L1, the three eigenvalues exchange their order j1j2↔ j3 (indi-
cated by the vertical dashed lines), which indicates the exchange of two
Riemannian sheets—one shared by Re(j1) and Re(j2), and the other by j3.
The eigenvalues on loop L2 simply experience the reverted order exchange
process. As shown in Fig. 3c, j1 and j2, initially coalesce at SP, bifurcate as the
tracking point departs from the EL. Next, j2 coalesces, bifurcates, and finally
coalesces againwith j3, throughwhich they swapwith j1 (j1↔ j2j3, indicated
by the dashed lines). TheBFA is stable because it arises from the intersection
of the two Riemannian sheets, an inevitable consequence when these sheets
exchange orders (indicated by the nonzero winding W) as they evolve
around the EP3s.

We expect that the assembling of paired EPs linked by the BFA should
carry nontrivial topology11,12. However, applying Eq. (2) on a closed loop
encircling both EP3s (on loop L3) yields a trivial result (W = 0) because the
order exchange of eigenvalues cancels out on L3. This is clearly indicated by
the vertical dashed lines in Fig. 3d, showing the evolution of eigenvalues
along the loop. Therefore, considering only the eigenvalues is insufficient to
demonstrate the topological nontriviality of the paired EP3s. In topological
band theories, additional topological characteristics are encoded in the
evolution of eigenstates, such as the Berry phase36 and the homotopical
invariants8.However, suchapproachesmaynotbe applicablehere due to the
presence of ELs on the loops. We, therefore, employ an intuitively mean-
ingful approach that utilizes the notion of intersection homotopy20,21,26,27 to
characterize the topology of such non-isolated singularities. The symmetry
of system (PT and pseudo-Hermitian) reveals that the eigenstates obey the
Minkowski-type orthogonal relation

φT
i ηφj

¼ 0 i≠j

≠0 i ¼ j

�
ð3Þ

which further determines that the eigenframe evolves in the form of
deformation and rotation when the Hamiltonian changes in parameter
space. Here we employ the eigenframe approach to implement topological
characterization because the eigenframe deformation allows the eigenstates
to be parallel within the evolution process, and thus intersecting ELs by the
loop (i.e. L3 in Fig. 3a) is allowed. Additionally, the topological character-
ization result with eigenframe does not depend on how the conjugate
eigenstates are ordered in broken phase sectors (see details in Supplemen-
tary Note 3.3). This approach therefore effectively addresses the gap closing
on the ELs where the loops intersect20. The evolution process along L3 is
provided in Fig. 3e, f, corresponding to the real and imaginary parts of
eigenstates, respectively. The eigenframe deformation process is obvious
because the right eigenstates are not always orthogonal to each other, and
sometimes they become parallel or antiparallel when the tracking point
approaches ELs, resulting from the Minkowski-type orthogonal relation-
ship (see Supplementary Fig. S6). After a cycle of evolution along L3, the
eigenstates φ1 and φ3 evolve to their antipodal points (indicated by the red
and black dashed lines) but φ2 evolves to the initial state without changing
the sign (φ1 ! �φ1,φ2 ! φ2 and φ3 ! �φ3), which is protected by the
PT symmetry. This indicates that both φ1 and φ3 experience quantized
accumulated angle π (see the lower panel of Fig. 3e) to their initial states
θ ¼ arccosðφT � φiÞ (here φi denotes the initial state). The imaginary parts

of eigenstates serve as an intermediate process because the initial and final
states (and the accumulated angle) are real (see Fig. 3f). Notably, the
accumulated angles of the eigenstates are not quantized along L1 and L2,
because eigenstates exchange orders within the evolution process (see
Fig. 3b, c). By tuning the system parameters, the two EP3s canmerge into a
DTP, with the eigenframe evolution on a closed loop encircling the DTP
being identical to that in Fig. 3e, f (results provided in Supplementary Fig. S7
to avoid redundancy). This demonstrates that the EP3 pair is topological
equivalent to the DTP from an eigenframe rotation/deformation
perspective. Therefore, the merging of the paired EP3s into a single DTP
is a consequence of topological conservation. Additionally, due to this
topological nontriviality, the DTP cannot be totally eliminated, but will be
split into an intersection of ELs and an isolated Dirac point by varying b
from 0 to negative.

Conclusion
In summary, we unveil an unconventional BFA that stably connects paired
EP3s located at the cusps of ELs in non-Hermitian systems with PT sym-
metry and an additional pseudo-Hermitian symmetry. The winding
numbers of the EP3s can be defined with the resultant vectors, and the
assembling of EP3s carrying opposite windings of resultant vectors is
topologically nontrivial and can coalesce into a DTP under symmetry-
preserving parameter changes. This perspective complements the conven-
tional topological understandings of cusps ELs based on resultant
vectors21,22. The topological nontriviality of the EP3 pair (or the DPT) is
characterized through the eigenframe deformation and rotation process.
Our topological characterization transcends the traditional theories that
only consider the evolution of eigenvalues, offering a more holistic theo-
retical understanding for a generic non-Hermitian singularities. Moreover,
by implementing the system in a nonreciprocal circuit, we experimentally
demonstrate the BFA. The study extends the notion of BFA from EP2s to
higher-orderEP3s. It is thus a directmotivation for exploring other forms of
BFA linking even higher-order EP pairs (e.g., EP4s) that are protected by
symmetries inparameter space. Futureworkmay focuson realizing theBFA
in periodic systems, offering platforms to explore the finite-size effects
associated with it. Our discovery also opens new avenues for wave manip-
ulation and precise control in non-Hermitian systems. The topological
robustness of these bulk-Fermi-arcs serves as a basis for designing advanced
devices tailored for energy transport, high-sensitivity sensing, and sophis-
ticated signal processing. These results lay a solid foundation for
innovative applications in wave engineering and next-generation photonic
technologies.

Methods
In our circuit design, a Negative Impedance Converter through Current
Inversion (INIC) is implemented, using two equal resistors Ra in both the
positive andnegative feedback paths (Fig. 2b), enabling precise emulation of
nonreciprocal hoppings. The output current Iout is opposite to the input
current Iin, making the capacitance behave as Ci when observed from the
output node, while as −Ci when observed from the input node. The
designed circuit sample includes three nodes (labeledA, B, andC in Fig. 2a)
that simulate the nonreciprocal hoppings in the three-state non-Hermitian
model [Eq. (1)]. The circuit obeysKirchhoff’s law, expressedas I = JV, where
I is the input current vector, V represents the node voltages, and J is the
admittance matrix. In the grounded configuration, the system is described
by:

J ¼ DþW � C; ð4Þ

where D is the conductance matrix, W is the ground matrix, and C is the
adjacencymatrix. For our circuit sample in Fig. 2a, the threematrixes can be
respectively expressed as:

D ¼ diagð�iωC1 � iωCx; iωC1 þ iωCy; iωCx þ iωCyÞ; ð5Þ
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W ¼ diagðiωCga þ 1=Rga; iωCgb þ 1=Rgb; iωCgc þ 1=RgcÞ; ð6Þ

C ¼ iω

0 C1 Cx

�C1 0 Cy

�Cx Cy 0

2
64

3
75 ð7Þ

In our design, we set the grounded capacitance and resistance,
respectively, as

Cgb ¼ Cgc ¼ C0; Cga ¼ C0 þ c; Rga ¼ Rgb ¼ Rgc ¼ R0 ð8Þ

and the hopping capacitance as:

C1 ¼ gðf x; f yÞc; Cx ¼ f xc ; Cy ¼ f yc ð9Þ

where C0 = 1 nF, R0 = 1MΩ and c = 10 nF. By inserting Eqs. (5–9) into
Eq. (4), The admittance matrix yields:

J ¼ ðiωC0 þ 1=R0 Þ þ iωc

�gðf x; f yÞ � f x þ 1 �gðf x; f yÞ �f x
gðf x; f yÞ gðf x; f yÞ þ f y �f y

f x �f y f x þ f y

2
64

3
75

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

ð10Þ
Here, we can confirm that the second term realizes the three-state non-

Hermitian matrix H in Eq.(1). Since the driving frequency is an external
parameter (1 kHz in experiments),ω = 2πf is also constant. The first term is
also unchanged, causing only a complex shift in the eigenvalues without
affecting the eigenstates.As a result, the parameters canbeprecisely adjusted
by modifying the corresponding capacitances in Eq. (9) as needed.

The experimental setup, including the circuit samples, is shown in
Supplementary Fig. S1. we use surface-mounted device (SMD) capacitors,
resistors, and operational amplifiers (OpAmps, model ADA4625-1ARDZ-
R7) on a printed circuit board (PCB). Capacitors are connected in parallel
between adjacent nodes, with toggle switches allowing flexible selection of
capacitance values.

In experimental operation, the OpAmps are powered by two DC
power supplies (RS PRO Bench Power Supply, 0→ 30V, 0→ 5 A) with
dual voltages of +5 V and −5 V. A waveform generator (Keysight:
M3201A) drives sinusoidal voltage (1V–2 V at 1 kHz) applied to each node,
with the voltage response measured via an oscilloscope (RS PRO
IDS1074B). Input current is determined by a shunt resistor (4.21 kΩ)
connected from the input node to the voltage source. Analyzing the voltage
response to the input current yields the admittance matrix J, which con-
tributes to the admittance eigenvalues and eigenstates, facilitating obser-
vation of the bulk-Fermi-arc.

Data availability
All data are available in the main text and the supplementary information.

Code availability
The code is available from the corresponding author upon reasonable
request.
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