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Spin pumping effect in non-Fermi
liquid metals
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Xiao-Tian Zhang 1,7 , Yi-Hui Xing 2,7, Xu-Ping Yao 1, Yuya Ominato3, Long Zhang 1,4 &
Mamoru Matsuo 1,5,6

Spin pumping effect is a sensitive and well-established experimental method in two-dimensional (2D)
magneticmaterials.We propose that spin pumping effect can be a valuable probe for non-Fermi liquid
(NFL) behaviors at the 2D interface of magnetic heterostructures. We show that the modulations of
ferromagnetic resonance exhibit power-law scalings in frequency and temperature for NFL metals
induced near a quantum critical point (QCP). At the Ising nematic QCP, we demonstrate that the
enhancedGilbert dampingcoefficient δαacquires negative power-lawexponents in distinct frequency
regimes. The exponents convey universal parameters inherited from the QCP and reflect the non-
quasiparticle nature of the spin carriers in theNFLmetal. At finite temperature,we show that theGilbert
damping mechanism is restored in the quantum critical regime and δα measures the temperature
dependence of the correlation length. Our theoretical proposal has the potential to stimulate the
development of an interdisciplinary researchdomainwhere insights fromnon-equilibriumspinphysics
in spintronics are integrated into strongly correlated matter.

Dimensionality plays a vital role in many-body physics, particularly, the
universal critical phenomena near a quantum critical point (QCP)1. Two-
dimensional (2D) correlated systems with strong quantum fluctuation
have been a fertile land for various unconventional quantum phases of
matter and associated QCPs, including the cuprate oxide layers in high-
Tc superconductors2,3, non-Fermi liquid metals4 and exotic quantum
magnets5. The atomic-level 2D nature facilitates the formation of the
proximity effect, thus, offering a practical platform for co-integrating
distinct physical ingredients by artificial design of heterostructures6. The
stacking and twisting of 2D materials have expanded the boundary of
condensed matter physics and give birth to the van der Waals (vdW)
heterostructure5 and “twistronics”7. The lower dimensionality enables
otherwise unattainable fabrication, manipulation, and measurement as
their bulk counterparts8. The strain9, gating10, light11 and electric field10

can couple with various internal degrees of freedom — charge, spin,
orbit, lattice, etc. This offers unprecedent tunability towards QCPs. In the
mediated quantum critical region, wild quantum fluctuations can lead to
Fermi liquid instability for the conduction electrons12. The breakdown of
coherent Fermi-liquid quasiparticles13 is the most dramatic manifestation
of the many-body correlation, which is known as non-Fermi liquid
(NFL) behavior.

Despite the success in fabricating 2D magnetic thin layers, the
experimental detection of the critical spin fluctuation poses significant
challenges. The conventional magnetic probes, such as neutron scatter-
ing, superconducting quantum interference device magnetometry, are
designed for bulk magnets, therefore, are insensitive provided the
weak signals from magnetic vdW materials. The effectiveness and
efficiency of optical probes, such as Raman spectroscopy or magneto-
circular dichroism, are currently under investigation14. It is greatly
desired that a clever implementation of the magnetic vdW hetero-
structure probes the many-body correlation in directly in the spin
channel. Many-body correlations have been probed using the pure spin
current in the spintronics community15. The interface at the hetero-
structure of various 2D magnetic materials is particularly beneficial
for harnessing spintronic functionalities16. The spin current can be
mediated by various quasiparticles given the rich combination of
heterstructures.

The spin pumping effect17,18, originally designed at the interface of
magnetic heterostructure to generate pure spin current, develops potential as
a sensitive probe in measuring the magnetic phase transitions in 2D thin
layers19. The heterostructure comprises a magnetic insulator subjected to
dynamical driven field and a 2D quantum magnet as the spin current

1Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, China. 2Institute of Physics and University of Chinese Academy of
Sciences, Chinese Academy of Sciences, Beijing, China. 3Waseda Institute for Advanced Study, Waseda University, Shinjuku, Japan. 4CAS Center for Excellence
in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, China. 5RIKEN Center for Emergent Matter Science (CEMS),
Wako, Japan. 6Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Japan. 7These authors contributed equally: Xiao-Tian Zhang, Yi-Hui
Xing. e-mail: zhangxiaotian@ucas.ac.cn; longzhang@ucas.ac.cn; mamoru@ucas.ac.cn

Communications Physics |           (2025) 8:103 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-025-02033-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-025-02033-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-025-02033-0&domain=pdf
http://orcid.org/0000-0003-1468-2092
http://orcid.org/0000-0003-1468-2092
http://orcid.org/0000-0003-1468-2092
http://orcid.org/0000-0003-1468-2092
http://orcid.org/0000-0003-1468-2092
http://orcid.org/0009-0006-2600-6621
http://orcid.org/0009-0006-2600-6621
http://orcid.org/0009-0006-2600-6621
http://orcid.org/0009-0006-2600-6621
http://orcid.org/0009-0006-2600-6621
http://orcid.org/0000-0002-5431-6049
http://orcid.org/0000-0002-5431-6049
http://orcid.org/0000-0002-5431-6049
http://orcid.org/0000-0002-5431-6049
http://orcid.org/0000-0002-5431-6049
http://orcid.org/0000-0002-9981-106X
http://orcid.org/0000-0002-9981-106X
http://orcid.org/0000-0002-9981-106X
http://orcid.org/0000-0002-9981-106X
http://orcid.org/0000-0002-9981-106X
http://orcid.org/0000-0003-1303-7614
http://orcid.org/0000-0003-1303-7614
http://orcid.org/0000-0003-1303-7614
http://orcid.org/0000-0003-1303-7614
http://orcid.org/0000-0003-1303-7614
mailto:zhangxiaotian@ucas.ac.cn
mailto:longzhang@ucas.ac.cn
mailto:mamoru@ucas.ac.cn
www.nature.com/commsphys


receiver. Conventionally, one consider a ferromagnetic insulator (FI) with a
precessional magnetization at its resonance states, the spin current is injected
into the adjacent material via interfacial spin exchange interaction20–22. The
spin injection has a backaction on the FI in modulating the frequency of
feromagnetic resonance (FMR) and the Gilbert damping. The modulated
FMR signal carries information about the dynamical spin susceptibility of the
2D magnetic thin layer, making it a effective probe for studying its spin
characteristics of 2D magnetic materials. It is therefore appealing to probe
the spin correlation, particularly the critical spin fluctuation near the QCP, in
2D magnetic heterostructure using the spin pumping.

In this work, we consider the spin pumping effect in the magnetic
heterostructure composed of a 2D NFL metal and a ferromagnetic
insulator (FI) thin film schematically plotted in Fig. 1. We demonstrate
that the spin pumping is an effective method to probe the critical
spin fluctuation for 2D magnetic heterostructure in the dynamic regime
near the QCP. We consider the type of QCP near a Pomeranchuk
instability which is described by gapless Fermi surface coupled with
critical bosons. We begin with generic analysis based on universal
scaling rule near the QCP; Then, we take the 2D Ising nematic QCP
induced NFL as a concrete example which is relevant to underdoped
cuprates3 and Fe-based superconductors23. The FI is at the resonant
frequency under the microwave radiation, the magnon excitations are
damped by the phenomenlogical Gilbert mechanism. Pure spin current is
injected into the adjacent NFL where the spin angular momentum is
carried by “non-quasiparticles”. The backaction of the spin injection can
be read off from the magnon self-energy correction. The perturbation is
carried out up to second order in interfacial exchange coupling in the
Keldysh representation which gives rise to a direct relation between
the magnon self-energy and the dynamical spin susceptibility in the
NFL metal.

We evaluate the dynamical spin susceptibility χuni(ω) near Ising
nematic QCP when the itinerant spins in NFL metal are subjected to the
interfacial exchange interaction from the FI. The interfacial spin exchange
interaction not only facilitates the spin injection and FMRmodulations but
also provides a relaxation channel for the itinerant spins. Thus, it promotes
the spin dynamics in the uniform component which conceives the non-
quasiparticle nature of the underlying NFLmetal. To this end, we deal with
the fermion-boson coupling near the QCP in a self-consistent manner, and
then we obtain power-law scalings for χuni(ω) perturbatively in terms of
interfacial exchange interaction. The FMR signals, namely the shift of
resonance frequency and enhanced Gilbert damping coefficient, are sig-
nificantly modulated: The enhanced Gilbert damping coefficient exhibits a
power-law divergence in the low-energy limit indicating that the conven-
tional Gilbert mechanism becomes invalid. The scaling exponents are
intimately related to the university class of the underlying QCP. At finite
temperatures, we adopt revised Eliashberg equations for fermions and
bosonswhere bosonic correlation length and electron scattering rate acquire
characteristic temperature dependence. In the quantum critical regime, the
Gilbert damping is restored and the temperature dependence in the
enhanced Gilbert damping coefficient captures the distance towards
the QCP. We show out that, at both zero and finite temperatures, the shift
of resonance frequency captures characteristics of quasi-particle
disappearance.

Results
Magnetic heterostructure
Let’s consider the magnetic heterostructure composed of a NFL metal
and a FI thin film shown in Fig. 1a. The FI is driven by an external ac
magnetic field in resonance with the precession of local spins. The spin
current is injected into the NFLmetal via the spin exchange coupling at the
interface. The full Hamiltonian of the NFL/FI heterostructure comprises
three parts,

HðtÞ ¼ HFIðtÞ þHex þHNFL: ð1Þ

The first term describes the FI with the ferromagnetic Heisenberg model
subjected to an oscillating magnetic field,

HFIðtÞ ¼ � J
X
hi;ji

Si � Sj þ γgH
X
i

Szi

� γhac
X
i

Sxi cosωt � Syi sinωt
� �

;
ð2Þ

in which J > 0 is the ferromagnetic exchange coupling constant. Si stands for
the local spin at site i in the FI. H is the magnitude of the Zeeman field. γg
(< 0) is the gyromagnetic ratio. hac and ω are the amplitude and the fre-
quency of the circularly oscillating externalmagnetic field, respectively. The
second term inEq. (1) is the exchange coupling at the interface between local
spins in the FI and itinerant electrons in the NFL metal,

Hex ¼
X
i

Z
d2r Jðr; riÞSi � sðrÞ

¼
X
k;q

Jk;qs
þ
q S

�
k þH:c:

� �
þ � � � ;

ð3Þ

where sðrÞ ¼ 1
2 c

y
αðrÞσαβcβðrÞ is the itinerant electron spin operator. The

exchange coupling function in the reciprocal space is approximately given
by ref. 24

jJk;qj2 ¼
J21
N
δk;q þ

J22l
2

AN
; ð4Þ

where A is the area of the NFL at the 2D interface, and N is the number of
sites in FI. The first and second terms describe averaged uniform and spa-
tially uncorrelated roughness respectively. l is introduced as an atomic scale
length for the continuous model. J1 and J2 are the mean value and the
variance of the exchange coupling.

The third term in Eq. (1) is a fermion-boson coupledmodel describing
theNFL inducedby critical bosonmodes. Themechanismand classification
of different types ofNFLhas a long anddistinguishedhistory4,25–27with ever-
increasing new developments28–32. The critical boson induced NFL can be
described by a generic form of Hamiltonian,

HNFL ¼
Z

d2r cyαðrÞϵð�i∂rÞcαðrÞ � λOðrÞϕðrÞ þ 1
2

∂rϕ
� �2 þ r

2
ϕ2 þ � � �

� �
;

ð5Þ

Here cyα(cα) is the electron creation (annihilation) operator for spin the spin
up/down α = ± . ϵ(k) is the spin degenerated, bare electronic dispersion near
the Fermi surface. ϕ is a critical fluctuating bosonic field admitting a
Ginzburg-Landau expansion near a QCP tuned by r→ 0. λ is the coupling
constant of electrons and the bosonic order parameter field. O(r) is a
fermion bilinear operator, which transforms inversely as ϕ(r) under
symmetry actions guaranteeing the invariance of the coupling term. We
note that the boson field ϕ(r) is not directly coupled to the FI via magnetic
exchange interactions. It’s reasonable to assume that the boson field is either
regarded as non-magnetic for the Ising nematic case, or being ineffective in
coupling to the localmagneticmoment Si in FI. Invoking the direct coupling
of both itinerant spins and local moments, e.g., near the magnetic QCPs,
would introduce additional complexity, which is left for future studies.

Spin pumping and FMRmodulations
The spin pumping, at a microscopic level, is initiated by the magnetic
exchange interaction at the heterostructure interface between the magne-
tization in theFI and the electron spinof theNFL.This interactionpromotes
spin injection and generates a self-energy correction for themagnons in the
FI as a backaction, modulating the frequency of FMR and Gilbert
damping20–22. The modulated FMR signal carries information about
the dynamical spin susceptibility and is shown to be related to the magnon
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self-energy. TheDyson equation for themagnonGreen function, illustrated
in Fig. 2a, is written as

G�1ðk;ωÞ ¼ G�1
0 ðk;ωÞ � Πðk;ωÞ;

G�1
0 ðk;ωÞ ¼ ω� ωk þ iαω;

ð6Þ

where the bare magnon Green function G�1
0 has a dispersion that reads

ωk =Dk2 − γgH (γg < 0) and the imaginary term proportional to ω33 is
knownasGilbert dampingwith a coefficientα17. In addition, there emerges a
magnon self-energyΠ(k,ω) due to the backaction of the spin injection. The
FMRmodulation shown inFig. 1b is determinedby theuniformcomponent
(k = 0) of the magnon Green’s function, in which the pole dictates the
resonance condition, ωþ γgH � ReΠk¼0ðωÞ ¼ 0, thus the resonance
frequency is shifted by δH ¼ γ�1

g ReΠk¼0ðωÞ. The imaginary part of the
self-energy leads to an enhanced Gilbert damping coeffi-
cient, δα ¼ �ω�1ImΠk¼0ðωÞ.

The magnon self-energy can be calculated perturbatively up to the
second order in terms of the external oscillating magnetic field hac and the
exchange coupling ∣Jk,q∣ [see Supplementary Note 2 for derivations],

Πðk;ωÞ ¼ �
X
q

jJk;qj2χðq;ωÞ; ð7Þ

with χðq;ωÞ � i
R
dteiðωþi0þÞtΘðtÞh½sþq ðtÞ; s��qð0Þ�i being the retarded spin

susceptibility for NFL metals. Inserting the exchange coupling function in
Eq. (4), the magnon self-energy is given by ref. 24

Πk¼0ðωÞ ¼ � J21
N
χuniðωÞ �

J22l
2

AN
χlocðωÞ: ð8Þ

where two terms corresponds to uniform and uncorrelated roughness
contribution of the interfacial exchange interaction. J1, J2 are themean value
and variance, singling out the uniform and the local components of the
dynamical spin susceptibility. They are expressed as χuni(ω)≡ χ(q = 0, ω)
and χloc(ω)≡∑qχ(q, ω).

In the vicinity of the QCP at r = rc, the dynamical spin susceptibility
takes the following universal scaling form at
T ¼ 0; χðq;ω; r � rcÞ ¼ ξdχ χðqξ;ωξzÞ, in which ξ is the spatial correlation
length, dχ is the scaling dimension of the spin susceptibility, and z is the
dynamical exponent. At theQCP, the correlation length diverges, leading to
the reduced scaling form, χðq;ω;T ¼ 0Þ ¼ ω�dχ=z~χðq=ω1=zÞ. Themagnon
self-energy correction has different power-law scaling forms inherited from
the uniform and local components in respective limits,

Πk¼0ðωÞ ¼
� J21

N χuniðωÞ ’ ω�dχ=z; η≫ 1

� J22 l
2

AN χlocðωÞ ’ ωðd�dχ Þ=z ; η≪ 1:

8<
: ð9Þ

Here dχ and z are two independent critical exponents which can be
uniquely determined by tuning the interfacial roughness η ¼ J1

ffiffiffiffi
A

p
=ðJ2lÞ.

And, dχ is often related to the physical dimension d where deviation are
encountered when hyperscaling is violated approaching certain QCPs34,35.
The power-law scalings are in sharp contrast to the conventional linear-in-
frequency Gilbert damping term, thus reflects the NFL behavior associated
with the QCP. In the finite temperature regime mediated by the QCP, a
different set of critical exponents d0χ and z0 emerge

χðq;ω; r � rc;TÞ ¼ L
d0χ=z

0

τ ~χ qL1=z
0

τ ;ωLτ ; ξðTÞ=L1=z
0

τ

� �
. Lτ = 1/(kBT) is the

characteristic scale in the imaginary time. Note that the correlation length
(or the boson mass) is originally a quantum parameter, now, acquires a T-
dependence endowed by higher order magnon interactions. The uniform
and local components are expressed in terms of correlation length as

χuniðω;TÞ ¼ ξðTÞd0χ~χ ω=T; ξðTÞT1=z0
� �

; ð10aÞ

χlocðω;TÞ ¼ ξðTÞðd0χ�dÞ~χ ω=T; ξðTÞT1=z0
� �

: ð10bÞ

Henceforth, we consider the smooth interface η≫ 1 and the interfacial
exchange interaction is reduced to Hex ¼ J1=

ffiffiffiffi
N

p P
ksk � Sk . Our focus is

the uniform component of the spin susceptibility χuni(ω) that dominates the
magnon self-energy correction in Eq. (8). However, for a decoupled Fermi
liquid/NFL metal layer with a single source of magnetism, χuni(ω) vanishes
as a consequence of total spin conservation. In contrast, the scenario
illustrated in Fig. 1a is fundamentally different. The magnetic hetero-
structure constitutes a correlated system with two magnetic degrees of
freedom. The interface provides a relaxation channel for itinerant spins
enabling the spin dynamics in theNFLmetal. Additionally, we note that the
local component of the spin susceptibility χloc(ω), at a rough interface is not
subject to the strict constraints of spin conservation, which is an interesting
topic but beyond the scope of this study.

(a)                                                                                              (b)

Fig. 1 | Feromagnetic resonance-driven spin pumping effect in the magnetic
heterostructure considered in this work. a Schematic plot of the NFL/FI bilayer
structure for the FMR-driven spin pumping experiment. The pink arrow in the FI
indicates the spin S precessing in the external ac magnetic field hac. The blue arrows
in the NFL metal indicate the itinerant electrons exchanging spin angular
momentum at the interface with magnons in the FI layer. The gradually fainted
green balls illustrate the incoherent quasiparticles in the NFL metal. b The FMR
signal modulation due to the interlayer coupling, where H is the magnitude of the
Zeeman field and α is the coefficient of the Gilbert damping.

Fig. 2 | Feynman diagrams for perturbative calculations. aDyson equation for the
magnon Green’s function. The thin and the thick wavy lines are the bare and the
renormalized magnon Green’s functions, respectively. The shaded circle represents
the magnon self-energy Π. b The fully renormalized charge polarization bubble.
Thick straight lines are the fermion propagators and shaded circle represents the
vertex function in the fermion-boson model Eq. (5). c–g Feynman diagrams for the
charge polarization bubble. At leading order in interfacial exchange coupling~J , there
are (c, d) the self-energy diagrams and (e) the vertex diagrams. On the next leading
order, the potentially relevant diagrams are (f, g) the Aslamazov-Larkin diagrams.
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Non-Fermi liquid at the Ising nematic QCP
ThePomeranchuk instability near the2D IsingnematicQCP is describedby
critical bosonicmodes of the collectively distorting Fermi surface. The four-
fold lattice rotational symmetry of the 2D Fermi surface is on the verge of
spontaneouslybreakingdown to two-fold.Theorderparameterfieldϕ(r), in
the NFLHamiltonian in Eq. (5), is coupled to the fermionic bilinearO(r) as

OðrÞ ¼ 1
A

X
q

X
k;α

dkc
y
k�q=2;αckþq=2;αe

iq�r ; ð11Þ

where the d-wave form factor can take a form dk ¼ cos kx � cos ky . We
adopt the patch decomposition scheme4 and divide the Fermi surface into
2Np number of patches labeled by s-index in Fig. 3a. The s’th patch is
centered at the Fermi momentum kF,s and the momentum nearby is
expanded as k = kF,s + δk in Fig. 3b. The small variation δk can be further
decomposed into radial and tangential components δkx, δky with respect to

the directional vector k̂ ¼ kF;s=kF;s. The coupled fermion-boson model
specified by Eq. ((5), (11)) admits a self-consistent solution[see Supplemen-
tary Note 1 for a self-contained review], where the renormalized fermionic

Green function reads gs;Rðδk;ωÞ ¼ icFd
2
kF;s

jωja � vFδkx � κ
2 δk

2
y

� ��1
36

where the spin index α is omitted and the exponent is expressed as
a ¼ d

z ¼ 2
3. The dynamical exponent z= 3 holds up to three-loop

perturbations36. The bare dynamic term iω is overwritten by the fermionic
self-energy ΣF(kF,s, ω) in the low-energy regime jωj<ωc ¼ c3F. The real part
of the self-energy can be derived using the Kramer-Kronig relation in the
low-energy regime as ReΣFðkF;s;ωÞ ¼ � ffiffiffi

3
p

d2kF;s cFsgnðωÞjωj
2=3. The NFL

feature with kF,x ≠ ± kF,y manifests as a vanishing quasiparticle

weight: ZkF;s
ðωÞ � 1� ∂ωReΣFðkF;s;ωÞ

	 
�1 ’ d�2
kF;s

ω1=3 !ω!0
0.

The itinerant spins in the NFL are degenerate and are not on the verge
of forming any magnetization since the critical fluctuation is in the charge
channel. The spin susceptibility is proportional to the charge polarization

bubble, plotted in Fig. 2b, is given by χuniðiq0Þ ¼ �A
P2Np

s¼1 Πsðiq0Þ. The
charge in each patch is separately conserved provided that the inter-patch
scattering is ignored. A direct evaluation of polarization bubble at s’th patch
Πs(iq0) using the fully renormalized fermionic Green function yields a non-
vanishing result [see Supplementary Note 2a]

Πsðiq0Þ ¼
Z

d2k

ð2πÞ2
dk0
2π

gsðk; ik0Þgsðk; ik0 þ iq0Þ;

’ �sgnðq0Þjq0j�ðd�zÞ=z;

ð12Þ

where we have kept a shortened notation for the small variation
denoted as k. However, this naive result contradicts the generic
constraint imposed by the spin conservation: χuni(iq0) = 0 for any
given frequency. The discrepancy arises from inappropriate and
incomplete accounting of the critical boson fluctuations. By using the
renormalized Green function, we take into account of the self-energy
corrections in Eq. (12); Whereas, the vertex corrections are
overlooked, which is crucial in maintaining the Ward-Takahashi
identity in the dynamic limit ∣Ω∣ > vFq. In fact, at the QCP, if we
adopt the renormalized fermion Green function, the vertex correc-
tions are of order one at any perturbative order in OðλÞ37,38. Summing
up infinite ladder series of vertex corrections in Fig. 2b yields the
correct result for uniform spin susceptibility at Ising nematic QCP,

χuniðiq0Þ ¼ 0: ð13Þ

Wederive the cancellationbetween self-energyandvertex inSupplementary
Note 2 where we extend the derivation to a noncircular 2D Fermi surface.

Furthermore, we turn on the coupling between itinerant spins
and local moments at the magnetic heterostructure interface

[see Eq. (3)]. The magnetic excitation in the FI is a Goldstone mode
of the FM order, which has been proven ineffective in coupling to
quasiparticles in the Fermi liquids39. The NFL phase already formed
at Ising nematic QCP is not sabotaged. As a result, the primary effect
of the magnetic excitations is the promotion of the spin dynamics in
the NFL metal. To this end, we use the fully renormalized NFL Green
function at Ising nematic QCP, and treat interfacial spin exchange
perturbatively. Since the restriction of spin conservation for the NFL
metal is lifted, the magnetic heterostructure, originally designed for
the spin pumping, represents a natural setup to directly probe the
spin dynamics of non-quasiparticles at a Pomeranchuk instability.

Divergent FMRmodulation at T = 0
The analysis of the spin dynamics at the magnetic heterostructure interface
involves two magnetic degrees of freedom. The evaluation of spin-
polarization bubble for the itinerant electrons perturbatively in interfacial
spin exchange interaction requires renormalizations from all diagrams
depicted in Fig. 2, that includes (a) the self-energy(SE) diagram, (b) the
vertex(V) diagram and (c) Aslamazov-Larkin(AL)-type diagrams.

To set the stage, let’s first consider the case for a free-standing 2D layer
of itinerant electronswhere themagnetismhas a single source. The uniform
spin susceptibility calculated from SE+V diagrams in Fig. 2c–e is not
vanishing, which reads

χuniðq0Þ ¼ ISEðq0Þ þ IVðq0Þ≠0: ð14Þ

It is pointed out that40 the seemingly higher order AL diagrams in Fig. 2f, g
are crucial in restoring the spin conservation near the magnetic QCPs. The
dynamical fermion-fermion interaction is mediated by the critical
fluctuations in the spin channel. The Stoner criterion reduces AL diagrams
to the same order as self-energy and vertex diagramswhich restores the spin
conservation with χuni(q0) = ISE(q0)+ IV(q0)+ IAL(q0) = 0.

In sharp contrast, the spin pumping setup in Fig. 1a is at the magnetic
heterostructure interface with two sources of magnetism, namely, the itin-
erant electron spins in NFL metal and the local moments in FI. It is
important to note that the NFL is formed at an Ising nematic QCP in the
charge channel. And, the effective interaction between these non-
quasiparticles is in the spin channel, which is mediated by the magnon
excitations in the adjacent FI. The magnon has its own dynamics due to
magnon-magnon interactionasdescribed inEq. (6),which is fundamentally
different from the Landau damping inherited from the gapless fermions. In
this case, theALdiagrams is officially a higher order perturbation compared

kF,s

δk
δkx

δkykF

2Λ

s = 1

s = Np + 1

(a) (b)

Fig. 3 | Schematic illustration of the patch decomposition for 2D circular Fermi
surface. aThe critical Fermi circle in 2D is approximated by the orange polygon, the
dashed gray circle represents the Fermi surface and each red line segment stands for
decoupled patches with the width 2Λ. Orange fainted rectangle is the low-energy
region for a single decoupled patch labeled by index s ∈ [1, 2Np]. b The small
momentum variation δk in the s'th patch centered at kF,s is decomposed into radial
component δkx and tangential component δky.
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with SE+V diagrams. As a result, the overall dynamic spin susceptibility at
leading order, as given in Eq. (14), is non-vanishing, consistent with the
expected breaking of spin conservation for the NFL metal.

To be concrete, we adopt the zero-temperature NFL Green function
and calculate the uniform spin susceptibility by evaluating the SE and V
diagrams in Fig. 2c, d and Fig. 2e, respectively. They are given by

ISEðq0Þ ¼ 6
Z

k
g2s ðk; k0Þgsðk; k0 � q0ÞΣexðk; k0Þ þ ðq0 ! �q0Þ;

IVðq0Þ ¼ 2
Z

k

Z
q
Γðq; k0; q0Þgsðk; k0Þgsðk; k0 � q0Þ;

ð15Þ

where ∫k≡ (2π)−3∫ dk0d
2k and

R
q � ð2πÞ�3 R dq00d

2q.Σex andΓ are the self-
energy and vertex functions due to interfacial spin exchange coupling,
respectively. We define a modified interfacial coupling strength ~J ¼
J1ð16πvFN

ffiffiffiffi
D

p Þ�1=2
and all the calculations below are provided up to

leading order inOð~J2Þ.Moreover, to proceed analytically, wefirstly focus on
the the low frequency limit jq0j≪ξ�2

b � �γgH. At the endof the section,we
present the results for jq0j � ξ�2

b � �γgH and provide the detailed
derivations in Supplementary Note 3.

We start with the SE diagram in Eq. (15) by evaluating the self-energy
functionΣex. In theFMphasewitha short correlation length ξb≪ 1, the self-
energy function is given by

Σexðk0Þ ¼ � J21
N

Z
q
gsðk þ q; k0 þ q0ÞG0ðq; q0Þ

’ ~J
2
ξ�1
b � 4ik0ξb

� �þOðξbÞ:
ð16Þ

In the low frequency limit jq0j≪ξ�2
b , we approximate the bare magnon

Green functionasG�1
0 ðq; q0Þ ’ iq0 � Dq2y � ξ�2

b � αjq0j. Substituting this
expression into Eq. (15) and carrying out the k-integral, we obtain

ISEðq0Þ ¼
�3J21ξb

2π2Nv2F
ffiffiffiffi
D

p
Z jq0j

0

dk0 k0
jq0j � iΔΣFðk0; jq0jÞ
	 
2

¼ �3
ð1� aÞ

~J
2
ξb

πvFc
2
Fd

4
kF;s

jq0j2�2a þOðjq0j2=3Þ;
ð17Þ

where the functional difference is defined as
ΔMðx; yÞ � Mðx � yÞ �MðxÞ, and a is the power of the frequency
dependence in the renormalized fermionic Green function, which has been
previously defined. Next, we evaluate the V diagram in Eq. (15) starting
from the vertex function

Γðq; k0; q0Þ �
J21
N

Z
q
gsðk þ q; k0 þ q00Þgsðk þ q; k0 þ q00 � q0ÞG0ðq; q00Þ

¼ �2~J
2
Z

dq00
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ�2
b þ αjq00j � iq00

q Δsgnðk0 þ q00; q0Þ
q0 � iΔΣFðk0 þ q00; q0Þ

’ �2~J
2
ξb

ð1� aÞcFd2kF;s
jq0j1�a þOðξbÞ:

ð18Þ
Similarly, by substituting this expression into Eq. (15) and carrying out the
k-integral, we obtain

IVðq0Þ ¼
�~J2ξbjq0j1�a

ð1� aÞπvFcFd2kF;s

Z
dk0

sgnðk0ÞΘ½�k0ðk0 � q0Þ�
q0 � iΔΣFðk0; q0Þ

’ �~J2ξb
ð1� aÞ2πvFc2Fd4kF;s

jq0j2�2a þOðjq0j2=3Þ:
ð19Þ

From Eq. ((17), (19)), we conclude that the contributions from SE and V
diagrams are proportional to each other at the QCP in the presence of the
NFL self-energy, which leads to

IVðq0Þ ¼ ISEðq0Þ=½3ð1� aÞ�;
χuniðq0Þ ¼

4� 3a
3� 3a

ISEðq0Þ:
ð20Þ

We remark that (i) the generic scaling exponent of the uniform spin sus-
ceptibility in Eq. (9) can be explicitly expressed as dχ= 2(z− d) = 2; (ii) This
proportionality has been justified previously in the Fermi liquid phase with
well-defined quasiparticles40.

After analytic continuing to real frequency ik0→ω+ i0+, and evoking
the correspondence in Eq. (8), we arrive at the retardedmagnon self-energy
correction in the regime jωj≪ξ�2

b , which reads

Πk¼0ðωÞ ¼
�9~J

2
ξb

πvFc
2
Fd

4
kF;s

jωj2=3 1�
ffiffiffi
3

p
isgnðωÞ

h i
: ð21Þ

Accordingly, the FMR modulations, namely the resonance frequency shift
and the enhanced Gilbert damping, acquire peculiar scalings in frequency

δα � ξbsgnðωÞjωj�
1
3; δH � ξb

γg
sgnðωÞjωj2=3: ð22Þ

These power scalings are schematically plotted in Fig. 4 and are subjected
to experimental validations. In the low energy and zero temperature
limit: T < ∣ω∣ < ωc, the diverging coefficient δα indicates a different spin
relaxation mechanism, which is in sharp contrast to the conventional
linear-in-ω Gilbert damping. The exponents reflect the universal scaling
behavior near the Ising nematic QCP in the dynamic limit. Near the
resonant frequency jωj � ξ�2

b , we show that [see Supplementary
Note 3a] one can simply replace ξb in Eq. (22), which leads to
δα � sgnðωÞjωj�5=6. The FMR modulations take distinct set of scaling
forms where the enhanced Gilbert damping coefficient becomes even
more divergent. Finally, we point out that by comparing with the qua-
siparticle weights, the FMRmodulations capture the disappearance of the
quasiparticles in the low-energy limit.

Fig. 4 | Schematic illustrations of the feromagnetic resonance modulations
scaling forms. The frequency and temperature dependence of the enhanced Gilbert
damping coefficient ∣δα(ω, T)∣ is plotted in distinct regimes. The low-fre-
quency(∣ω∣ < T, left) and high-frequency(∣ω∣ > T, right) regimes are separated by a
blue shaded region.
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FMRmodulations at finite temperatures
The finite-temperature properties of NFLs in the quantum critical regime
mediated by the Ising nematic QCP cannot be simply inferred from the
zero-temperature results. The quantum fluctuation of the bosons obeys the
ω/T scaling rule and leads to T

2
3 dependence for fermion self-energy; while,

the contribution from thermal fluctuation is drastically different and
dominates at low temperatures41. Importantly, it is demonstrated that vertex
correction is subdominant when both thermal and quantum fluctuations
are included42. As a result, one canwrite down thefinite temperature version
of Eliashberg equations which leads to the solution

g�1
R ðk;ωÞ ¼ ωþ i0þ � ϵk þ iγkF ðTÞ; ð23aÞ

D�1
R ðq;ΩÞ ¼ ξ�2ðTÞ þ ajqj2 � ib

Ω

γðTÞ : ð23bÞ

where a and b are nonuniversal constants. The boson correlation length and
electron scattering rate scale as ξ�1ðTÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T lnðϵF=TÞ

p
and

γðTÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T= lnðϵF=TÞ

p
, respectively. We note that the expressions in Eq.

(23) can not be deduced from the opposite T = 0 limit by applying the ω/T
scaling. This is due to the T-dependence of the boson correlation arising
from the dangerously irrelevant boson interactions. The imaginary part of
the retarded fermion self-energy at T≫ ∣ω∣ is derived as γkF ðTÞ ¼
λ2d2kFTξðTÞ=ð4vF

ffiffiffi
a

p Þ for T≪ T0. The upper energy bound T0 ¼
ϵFe

�λ2=v2F is specified by the condition jγkF ðTÞj≪ξ�1ðTÞvF=
ffiffiffi
a

p
within

which the solutions in Eq. (23) hold. Moreover, we focus on the quantum
critical regime jωj≪jγkF ðTÞj where the fermion self-energy overwrites the
bare dynamics. Thefinite-T expression inEq. (23a) canbe further simplified
as ImgRðk;ωÞ ’ γkF ðTÞ= ðvFkxÞ2 þ γ2kF ðTÞ

h i
.

In parallel with the previous section, we evaluate the uniform spin
susceptibility in the quantum-criticalfinite-temperature fan from the SE+V
diagrams. The calculation details are written in Supplementary
Notes 4 and 5. Similarly, we first calculate the fermion self-energy due to
interfacial spin exchange interaction where the local moments in FL are in
the FM ordered phase with small correlation length ξ�2

b ≫Tð≫jωjÞ. The
imaginary part of retarded component is given by

Im½ΣR
exðjωj≪TÞ� ¼ � J21

4π3N

Z
d2qdΩ½nBðΩÞ þ nFðΩÞ�

× ImgRðqþ k;ΩÞImG0ðq;ΩÞ
’ �4α~J

2
ξ3bT

2 þOðξ3bÞ:

ð24Þ

Using the Lehmann representation, we obtain the expression at Matsubara
frequencies as

Σexðik0;TÞ ¼
Z þωc

�ωc

dω
π

ImΣR
exðω;TÞ

ω� ik0

’
Z þT

�T

dω
π

ImΣR
exðjωj≪TÞ
ω� ik0

¼ �isgnðk0Þ4α~J
2
ξ3bT

2:

ð25Þ

We note that the dominant contribution in the frequency integral comes
from the finite-temperature regime approximately bounded by ∣ω∣≤T.
Then, we substitute this expression into ISE(q0, T) and sum over the
Matsubara frequencies, which yields

ISEðq0;TÞ ¼ � 24α~J
2

πvF
ξ3bT

2 jq0j
jq0j þ 2γkF ðTÞ
h i2

’ � 6α~J
2
ξ3b

πvF

T2

γkF
2ðTÞ jq0j:

ð26Þ

For the V diagram, we first calculate the vertex function,

Γðq; k0; q0;TÞ ¼ � α~J
2
ξ3b

γkF ðTÞ
Z

dΩΩ �2sgnðk0Þsgnðk0 � q0ÞnBðΩÞ
�

þ sgnðq0Þsgnðq0 � k0Þ þ sgnðq0Þsgnðk0Þ
	 


nFðΩÞ�

ð27Þ

where the bare magnon self-energy at finite-T is approximated as
ImG0ðq;ΩÞ ¼ �αΩ=½ðDq2k þ ξ�2

b �ΩÞ2 þ α2Ω2� ’ �αΩ=ðDq2k þ ξ�2
b Þ2

. Substituting this expression intoEq. (15) andcarryingout thek-integral,we
obtain:

IVðq0;TÞ ¼ � α~J
2
ξ3b

πvFγkF ðTÞ
Z

dΩ
jq0j2Ω½nBðΩÞ þ nFðΩÞ�

jq0j þ 2γkF ðTÞ

’ � 2α~J
2

πvFξ
3
b

T2

γkF
2ðTÞ jq0j:

ð28Þ

By comparing Eqs. ((26), (28)), we conclude that the proportionality
between SE and V in Eq. (20) continuities to hold at finite temperatures in
the quantum critical regime jq0j≪jγkF ðTÞj.

Finally, we arrive at the retarded finite-temperature magnon self-
energy at leading order inOð~J2Þ, which reads

Πk¼0ðω;TÞ �
vFa~J

2

πλ2d2kFξ
3
b

ξ�2ðTÞðiαωÞ; ð29Þ

where the real part is at thenext order taking a form� �ðω2T2Þ=γ3kF ðTÞ and
is therefore omitted. This expression is consistent with the generic scaling
form in Eq. (10) with d0χ ¼ �2 at finite temperatures. Accordingly, the
enhanced Gilbert damping coefficient is given by

δα � αξ�2ðTÞ; ð30Þ

and the resonant frequency shift vanishes δH≃ 0 in the quantumcritical fan
region, which are schematically plotted in Fig. 4. We note that, in the
quantumcritical fan atfinite-T, theGilbert dampingmechanism is restored,
in contrast to the divergent Gilbert damping coefficient at T = 0 in Eq. (22).
The information of the correlation length can be extracted from the FMR
modulations which, at the same time, reflects the non-quasiparticle nature
of the NFL metal and the underlying QCP. To see this, we evaluate the real
part of the fermionic self-energyReΣFðkF;ωÞ � �d2kFωξðTÞ for ∣ω∣ < T <ωc

which leads to a vanishing quasiparticle weight due to the divergent
correlation length [see Supplementary Note 6]

ZðkF;ω;TÞ ’ d�2
kF
ξ�1ðTÞ; kF;x≠± kF;y: ð31Þ

Discussion
We have presented a practical implementation of the magnetic hetero-
structure that probes themany-body spin/charge correlations.We study the
FMR-driven spin pumping effect at the interface of NFL/FI heterostructure
in the absence of quasiparticles. The NFL metal is induced near a
Pomeranchuk-type of QCP in the charge channel; while, the dynamic spin
correlation function of the NFL metal is non-vanishing and acquires uni-
versal power-law scalings in frequency and temperature domains, due to its
interfacial exchange coupling to the adjacent FI. The experimental mea-
surable FMR modulations, namely the resonance frequency shift and the
enhanced Gilbert damping, convey valuable information characterizing the
NFL behaviors and the disappearance of the quasiparticles. We conclude
that the spintronics experiments, particularly spin pumping, can take full
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advantage of the magnetic heterostructure, meanwhile, shed light on the
non-quasiparticle feature of spin relaxation in NFLs. Our proposal is also
helpful in reconciling the current theoretical debates in the scaling forms of
dynamic correlation functions near Ising nematic QCP.

The magnetic heterostructure is far from simple stacking of two dif-
ferent materials. The heterostructure by design breaks inversion symmetry,
thus, allowing the existence of anti-symmetric spin exchange interaction,
which is also known as the Dzyaloshinski–Moriya interaction (DMI). On
one hand, the DMI can drive the magnetic insulators into forming more
complexmagnetic orders, such as the skyrmion lattice structureswhere local
magnetic moments swirl spatially in a non-collinear way while forming a
periodical lattice. The formation of more complex magnetic ordered states
inevitably makes the phenomena of the spin pumping effect more diverse
and interesting. It has already been reported that themagneticfluctuation of
the skyrmion lattices can mediate exotic type of electron interaction in
normal metals. Owing to the non-collinear nature of the magnetic ground
state, topological superconductivity can be induced directly43. The investi-
gation of the competiting role between 2D topological superconductivity
and novel type ofNFLs is an intriguing topic.Moreover, the heterostructure
setup offers an ideal platform for studying the spin pumping effect, which is
particularly appealing to the spintronics community.On the otherhand, the
DMI is an essential ingredient when the magnetic insulator approaches its
criticality. Infinite many critical bosons can simultaneously reach criticality
due to the presence of DMI in three-dimensional chiral magnet30 as well as
2D magnetic heterostructure interface31. The infinite many critical boson
can induce a different type of NFL state for the itinerant magnets
nearby29–31,44,45.

Finally, we remark on the non-equilibrium theoretical framework
adopted in the present study. The FMR modulations are derived pertur-
batively in terms of interfacial exchange coupling strength J1 in the Keldysh
representation. In contrast, the self-energy correction of the NFL is inde-
pendentof J1, that is, the stability of theNFLstate is assumedasprior. Froma
theoretical point of view, it is greatly desired that the coupled two sides of the
magnetic heterostructure are solved self-consistently; yet, it poses great
difficulty. Thanks to the development of Sachdev-Ye-Kitaev (SYK)model46,
the magnetic exchange interaction can be regarded as a random variable in
fictitious flavor space. The replica trick used in solving SYKmodel can lead
to a solvable equation set for the entire magnetic heterostructure. The
mutual interactions between the itinerant magnets and driven magnetic
insulator can be determined self-consistently via numerical calculations.
This greatly improves the current theoretical treatments in analyzing the
spin pumping effect, particularly, the non-steady non-equilibrium spin
dynamics.
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