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Relative subsystems and quantum
reference frame transformations
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Recently there has been much effort in developing a quantum generalisation of reference frame
transformations. Despite important progress, a complete understanding of their principles is still
lacking. Here we derive quantum reference frame transformations for a broad range of symmetry
groups from first principles, using only standard quantum theory. Our framework, naturally based on
incoherent rather than coherent group averaging, yields reversible transformations that only depend
on the reference frames and system of interest. We find more general transformations than those
studied so far, which are valid only in a restricted subspace. Our framework contains additional
degrees of freedom in the form of an “extra particle”, which carries information about the quantum
features of reference frame states. We study the centrally extended Galilei group specifically,

highlighting key differences from previous proposals.

Transformations between reference frames play a crucial role in physics. In
practice, reference frames are realised by physical systems, which are stan-
dardly treated as classical. However, assuming that every physical system is
ultimately quantum, it is interesting to ask how a theory of transformations
with respect to quantum reference frames (QRFs) would look like, and what
implications it would have for our description of the physical world.

The study of QRFs is broad in scope. Seminal works have studied the
connection between QRFs and superselection rules'~, the study of quantum
mechanics with respect to finite-mass QRFs*”, quantum tasks and opera-
tions under symmetry constraints**'**', QRFs as resources of
asymmetry’”’, and QRFs as a means to define physical observables in
quantum gravity”’ ™.

Recently, attention has turned towards understanding how to change
between QRF perspectives, giving rise to formalisms for quantum reference
frame transformations™ . Given the description of a physical process with
respect to a QRF A, how do we obtain the description from the point of view
of QRF B? A precise formulation and answer to this question has the
potential to generalise the notion of symmetry and covariance™****"**, with
important consequences such as the relativity of entanglement and
superposition”, and the (closely related) relativity of subsystems™. It can
also provide an operational understanding of spin for relativistic
particles*®”’, contribute to understanding the physics of gravitating quan-
tum systems**”*”, and to quantum extensions of the general relativistic
equivalence principle”™’.

Despite the important progress done in this line of research, it is safe to
say that the principles and operational interpretation of “jumping” from one
quantum reference frame to another are not yet fully understood. In

particular, as we argue below, previous proposals seem to inevitably
encounter the property that reversible transformations between the
descriptions relative to different arbitrary QRFs are in general obtained only
when these descriptions include the whole rest of the universe. This “non-
locality” of the prescriptions is unsettling from a conceptual point of view as
it goes contrary to the intuition that predictions concerning local systems
should require only local data, raising the question of whether a local
approach could be developed.

Here, we derive reversible transformation rules between any two QRFs
A and B that only depend on these QRFs and the system S they are used to
describe. Our framework holds for unimodular groups, which covers a vast
set of symmetries of physical interest. However, we expect that the main
principles could be appropriately adopted to even more general groups.
Starting form an external observer who uses standard quantum mechanics
to describe all internal QRFs and systems, our formulation differs from the
purely “internal” approach of”’. However, both approaches agree when
restricted to the fully invariant subspace of pure states. That is, the subspace
of pure states |y) such that U(g)|y) = |y) forallg € G, where Uis the global
action of G on the total Hilbert space. This is precisely the relevant subspace
for the “perspective neutral” framework for QRF transformations™, which
obtains the same transformations of ’ for the translation group. In this case,
restricting to the trivial subspace means restricting to global states with
vanishing total momentum.

Our approach is less restrictive. On purely operational grounds,
observers who lack access to the external reference frame are constrained to
density operators p that are invariant under the action of G. This is a weaker
requirement than demanding invariance of state vectors |y) under G.
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Therefore, in this paper we take the view that restrictions purely based on
symmetry should be implemented as

U(g)pU(9)" = p (1)

rather than

U(9ly) = ly). (2)

This distinction is important, and in this paper we argue in favour of the
former option. To illustrate the difference, consider for example the case of
the translation group. In our framework, one does not need to specify the
value of the total momentum, even less to demand that its value is zero. In
general, group theoretic terms, our formalism does not need to specify the
value of the total charge, a global invariant quantity, and QRF perspectives
are defined locally. The QRF transformation rules that we obtain are
therefore different than the ones found in previous works. They are, how-
ever, consistent with them provided that the total charge vanishes, a fact that
can be checked “internally”, as the total charge is an invariant observable.

Essential to our framework is the algebra of an “extra particle,” which
emerges as a consequence of the invariant degrees of freedom of the
reference frame. We argue that the extra particle should be included in the
relative description of quantum systems in a standard way. The reason why
its importance has not been noticed so far is that we normally deal with
sharply-defined, classical reference frames, for which, as we show, the extra
particle is always in a maximally mixed state. However, when considering
general QRFs, the extra particle should be included, because it is essential for
obtaining reversible QRF transformations. As an illustration of the physical
meaning of our framework, we analyse quantum reference frame trans-
formations with respect to the (centrally extended) Galilei group.

In the following we argue, via a thought experiment, that existing
approaches to QRF transformations are not satisfactory when it comes to
adding extra systems to our description of an experiment. The situation we
consider is a modification of the so-called “paradox of the third particle,”
first introduced in ref. 7. (For a comparison between the solution to the
paradox offered in ref. 7 and the one offered here, see Subsection Com-
parison with other frameworks.

Consider a reference frame for spatial translation in nonrelativistic
physics. Classically, this is equivalent to a point-like particle (e.g., the centre
of mass of a body) that occupies a certain position in space. Since every such
particle is ultimately a quantum system, it could in principle also exist in a
state that is a quantum superposition of largely different spatial positions.
One of the questions that the theory of QRFs is concerned with is how
physical systems would be described if one uses a reference frame in such a
quantum superposition, and what the transformation rules relating the
descriptions relative to different QRFs are.

Imagine that we start from a reference frame A that is well localised in
space from the point of view of an observer E. (Ignoring special-relativistic and
gravitational considerations, the uncertainty in the position of a particle can in
principle be made arbitrarily small at a given instant.) Imagine that we describe
two more particles, B and S, each in a pure state, where S is also well localised,
say at position rg),, relative to A. How should we describe the state of the
system S if we use B instead of A as a reference frame for position in space?

If B is well localised itself, say at position 7, relative to A, we are
effectively in a classical situation and the answer is given by a classical
coordinate transformation: relative to B, we would see S at position
Tsig = T'sja — ja- But what if B is in a quantum superposition of different
positions? Since the location of B relative to A is uncertain and A is at a fixed
distance from S, the position of S relative to B is uncertain too. But if both A
and S are described jointly relative to B, they have to be correlated in the
position basis as they are a fixed distance from each other (and the distance is
invariant under changing the origin of the coordinate system). This means
that S cannot be in a pure state relative to B, even though it is in a pure state
relative to A. This shows that the descriptions of S relative to the two
reference frames A and B cannot be related by a unitary transformation.

One can propose a potential solution to this problem using the
transformation found in ref. 37. There, one obtains reversible transforma-
tions between QRFs by including each QRF in the other’s description. In this
case, the state of AS relative to B can be pure and unitarily related to the state
of BS relative to A, without contradicting the expected correlations between
A and S in the perspective of B.

However, imagine that in addition to the described particles, we extend
the systems under consideration, adding another particle, S’, localised at a
fixed position relative to A. Furthermore, we assume that S’ is sufficiently far
away from the rest of the systems, so that it cannot influence them in any
way. In operational formulations of quantum theory, one is always allowed
to add extra systems to the description, so that adding S’ in the perspective
of A seems to be innocuous. However, following the same argument as
before, the state of AS relative to B could not be pure, since the positions of
A and S relative to B must be correlated with the position of S’ relative to B.

Therefore, it seems that the QRF transformation rule of ” leads to a
conflict: not including the system S’ (from the perspective of A) leads to a
pure state of AS relative to B, whereas including it leads to a mixed state.
This ambiguity entails not only different descriptions of the same physical
situation — ultimately a matter of taste—but rather leads to conflicting
physical predictions: one can always distinguish a pure state from a mixed
one by performing suitable measurements.

A possible answer is that we obtained a contradiction because we failed
to include particle S’ in the former analysis. The system S, which for
simplicity we assumed to be a single particle here, must in principle contain
all particles that are not in translationally invariant states relative to A. Only
then are these unitary transformation rules supposed to hold. Indeed, as put
forward by the perspective-neural approach™, and as we will see again here,
the unitary transformation rules” for jumping between different QRFs for
the translation group can be derived assuming that the total system ABS has
a vanishing total momentum. A vanishing total momentum can be shown
to guarantee, in particular, that, relative to A, there are no systems outside of
BS in translationally non-invariant states. This forces the system S’ to be in
a state of vanishing momentum, thereby avoiding the paradox.

How shall we interpret physically the condition of zero total momentum?
We distinguish two possibilities: (1) The condition of zero total momentum is a
constraint, implying a redundancy in our description. This interpretation,
however, rejects the possibility of extending our description to other degrees of
freedom transforming nontrivially under translations. In a cosmological con-
text, this condition could be naturally justified from a global Dirac constraint on
the Hilbert space of the full universe". However, such a constraint is in general
only supposed to hold on all physical systems and need not hold for arbitrary
subsystems of the universe. Even in field theories like general relativity, where
the momentum constraint is local, meaning that the total momentum vanishes
at each point in space, there could be different separations of the fields into
subsystems, such that the constraint holds for the full system but not for the
subsystems. Moreover, such a constraint would arise from the quantisation of a
full dynamical theory, given by a specific (translation-invariant) Lagrangian,
and not from symmetry considerations alone. Indeed, different Lagrangians
with the same symmetry (up to a total derivative) could lead to different
constraints (see Methods: Lagrangians for translation gauge symmetry for an
example). (2) Alternatively, the system ABS must be explicitly assumed to have
a total momentum zero with respect to some external observer E. This,
however, is a rather restricted scenario for reasonably confined systems, which
in practice cannot capture even the case of localised reference frames such as
those that we use in everyday situations.

A natural question then is whether it is at all possible to formulate
reversible QRF transformation rules that apply to arbitrary subsystems. As
we show in this paper, the answer is positive. Our key insight is that in order
to obtain such reversible transformations, we must define the perspective of
each frame as containing all invariant degrees of freedom of the reference
frame and system of interest, which is a strictly larger set than the set of
degrees of freedom describing the system of interest relative to the frame.
The end result is a framework that transforms the invariant, operationally-
defined description of one observer, who can only perform invariant

Communications Physics| (2025)8:187


www.nature.com/commsphys

https://doi.org/10.1038/s42005-025-02036-x

Article

R
P
S|A
A

Fig. 1 | One-party setup. An observer, Alice, has only access to the degrees of
freedom that are invariant under the action of the group G. The latter is defined
relative to some external observer. As we show in Subsection Relative subsystems,
the invariant degrees of freedom are independent of any external observer or
reference frame. These invariant degrees of freedom include the system S (in purple)
relative to the reference frame A (in orange). They are described by a set of operators
forming an algebra, called S|A. Alice’s apparatuses, by means of which these degrees
of freedom are accessed, are not part of the quantum system under consideration.
They lie on the “other side” of Heisenberg’s cut.

measurements on a subsystem of a potentially larger system, to the invar-
iant, operationally-defined description of another observer with the same
restrictions. Note that this operational interpretation differs from that of the
perspective-neutral framework, presented in ref. 40, where a quantum
reference frame transformation is a change of mathematical description of a
state before imposing symmetry invariance.

Results and discussion

Modelling a quantum reference frame

Let us now introduce the basic ingredients of our framework. In particular,
we define the notion of quantum reference frame that we will use
throughout this work.

Consider the one-party setup of Fig. 1. An observer, Alice, possesses a
reference frame A, associated with the symmetry group G. She uses it to
perform quantum operations on a system S, which transforms under some
unitary representation of G. We treat both A and S quantum mechanically. To
do this, we imagine an external observer, Eve, with a reference frame E, who has
full access to both systems. Eve assigns a Hilbert space to the composite system

Hasie = Hae @ Hge- (3)

The reason for the notation |E in Eq. (3) is that the quantum mechanical
description of A and S is defined with respect to the reference frame of Eve.
In the remaining of this section, we will omit this label, as we will be
concerned with Eve’s description only. However, in Subsection Relative
subsystems, this point will be important and we shall introduce the notation
again to distinguish it from the “internal” perspective of Alice, who has only
access to operators that are invariant under the action of G. Eventually, we
will do away with the external observer by considering only operators living
in the invariant subspace. At this level of description, Eve regards the degrees
of freedom of Alice’s measurement apparatus (and Alice herself) as implicit.
They lie on the “other side” of Heisenberg’s cut. If desired, the cut can be
moved to include such degrees of freedom explicitly.

To make contact with the standard situation in quantum mechanics,
where reference frames are assumed to be classical and are treated implicitly,
we assume that the QRF A is perfect. That is, it can be prepared in a basis of
states that break the symmetry of G maximally’. Therefore, the Hilbert space
of A, Hp, is the span of a fully distinguishable basis of “classical” states

labeled by group elements, |g) 5. Because basis states are fully distinguish-
able, we have (g|g’) = 0(g™'¢’). Here, 8(g) denotes the Dirac delta dis-
tribution for continuous groups, where the group identity element e plays
the role of the real number 0, or the (single-argument) Kronecker delta for
discrete groups. Thus, H , consists of square-integrable functions on G with
respect to the invariant measure dg. (In this work, we consider only
unimodular groups, that is, groups for which the left-invariant and the right-
invariant measure are the same.) H, carries the left- and right-regular
representations of G. The left-regular representation, Ly, acts as

LA(g)Ig/)A = Igg/>A, 4)

for all ¢ and ¢’ in G. The right-regular representation, R, acts as
RA(Q)lg')a = 1¢'g 1) or all gand ¢’ in G. Both L, and R, are unitary
representations. The only assumption we make on S is that it transforms
under a unitary representation, Ug, of G. Mathematically, this setup closely
resembles that of ref. 4, where the regular representation is used as a token in
a quantum communication scheme.

The regular representation is highly reducible—it contains all irreducible
representations (irreps) of the group. We can write the basis states |g) , as’

dim(q)

1§)a = / dgdedy) [ =7 9()1g; X, y)as )

where ¢ is the “charge” labelling a specific irrep. For compact groups, dim(g)
denotes the dimension of the irrep labeled by g, and | G| denotes the order of
G. The complex numbers ng)( g) are matrix elements of the irrep g for
g € G. The left-regular representation L, ( g) acts on the “colour” degrees of
freedom, labeled by x, whereas the right-regular representation R ( g) acts
on the “flavour” or multiplicity degrees of freedom, labeled by y°. For the
regular representation, the dimension of the multiplicity degrees of freedom
for a given irrep g equals the dimension of g.

Although Eq. (5) is written under the assumption that both dim(g) and
|G| are finite, a similar equation holds more generally, not only for compact
groups. For example, for translations, Eq. (5) reduces to the well-known
Fourier transform relation between position eigenvectors |x) and momentum
eigenvectors |p): |x) = (1/+/27) [ dp exp(—ipx)|p). Strictly speaking, the
vectors |x), more generally |g), are not elements of the Hilbert space. How-
ever, we will work with them as is customary in the physics literature. As we
will see in Subsection Centrally extended Galilei group, Eq. (5) will be useful in
the case of the centrally extended Galilei group, where the quotient
dim(g)/|G] is replaced by the mass parameter, m, labeling the irrep.

For an example in the case of compact groups, suppose G is the rotation
group SU(2). In this case, q corresponds to the total angular momentum, and
the integral with respect to ¢ is replaced by a sum that runs over all values of
total angular momentum, or equivalently, all irreps of SU(2). As the labels x
and y are discrete, the integral in Eq. (5) is also replaced by a sum running over
all possible projections for a given irrep. From Eve’s point of view, G acts
physically on the colour degrees of freedom of A, leaving the multiplicity
degrees of freedom untouched. For SU(2), the action of G corresponds to
physically rotating the reference frame A. In this case, the label x corresponds
to all the projections of the angular momentum along a specific axis, say Z.

The previous discussion implies that 7 has the following associated
decomposition:

(9) (9)
Hap = @HXL ® HA?R’ 6)
q

where the direct sum runs over all possible values of the charge g. The charge
could take discrete or continuous values, where in the latter case the states
pertaining to the subspaces labeled by g need to be properly normalised as
elements of the full Hilbert space. For the time being we will ignore this
technicality, and revisit it again in Subsection Centrally extended Galilei
group and Methods: Basis vectors for centrally extended Galilei group.
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The left (HX’L)) and right (HZ){) tensor factors in each subspace labeled
by the charge correspond, respectively, to the colour and flavour degrees
of freedom of A. With respect to this decomposrtlon, the left- regular
representation has the form Ly(g) = @ D ( 9® 1 " ), where D ( Q) is
an irrep of G corresponding to the charge q Slmrlarly, the right- regular
representation has the form Ra(g)= @, Tl(q) D(q*)( g), where D(q*)
denotes the conjugate representation correspondlng to the charge q. G1ven
a choice of basis as defined in Eq. (5), D % s obtained by complex-
conjugating the matrix elements of D qi

In general, a Hilbert space decomposing as a direct sum of tensor pro-
ducts, like in Eq. (6), is said to decompose into subsystems™*. Here, we will
use a slightly more general terminology, associating a subsystem with a
subalgebra of operators™®. In particular, we will speak about the left sub-
system, which is associated with the subalgebra of operators of the form

T =, TXIL) ® Il(q;, and about the right subsystem, which is the commu-
tant of the left, and consists of operators of the form Tr= (P, II)(fL) ® TXI; LA

given (type-I von Neumann) subalgebra (equivalently, its commutant)
always induces a decomposition of the Hilbert space of the form (6)***. Note
that the basis vectors |g), generally involve nontrivial superpositions of
vectors belonging to the subspaces corresponding to different charges.

What is the physical realisation of an ideal quantum reference frame as
defined above? The answer generally depends on the group. In Subsection
Centrally extended Galilei group, we will discuss reference frames for the
centrally extended Galilei group. We will show that for this group a reference
frame is physically equivalent to two particles—one that serves as a reference
for position and the other one as a reference for velocity.

Relative subsystems

Here we construct the description of the setup in Fig. 1 from Alice’s refer-
ence frame. First, we find the subsystem of the full A and S system that Alice
has access to. Afterwards, we construct a map form the Hilbert space
associated to the external observer, Eve (see Subsection Modelling a quan-
tum reference frame), to a Hilbert space with a tensor product structure that
is natural from the point of view A. This map entails a refactorisation of the
Hilbert space, which can be interpreted as “jumping” into Alice’s reference
frame. We study how the representation of the invariant subsystem changes
under this refactorisation. We find that the full invariant subsystem is larger
than the algebra of relative observables between the system and frame. It
contains an extra subsystem, which we call the “extra particle,” due to its
physical realisation in the case of the Galilei group, discussed in Subsection
Centrally extended Galilei group.

The invariant subsystem. From Eve’s perspective, the Hilbert space of A
and S factorises as Hpgg = Hae ® Hgje. We call this tensor product
factorisation the standard partition. In the standard partition, G acts
transversally on operators T, as T+Lx(g) ® Us(g) TLZ( 9® Ug( 2
for g € G. Throughout, we assume that G is a unimodular group and that
the Hilbert space on which it acts is separable. Unless otherwise stated, all
operators are assumed bounded.

What are the degrees of freedom that Alice has access to, and how
would she describe them? By assumption, Alice has no access to the external
reference frame E. Therefore, she has only access to the G-invariant degrees
of freedom of the AS system. That is, operators on H g e that are 1nvar1ant
under the transversal action of G: T = Lp(g) ® Ug( g)TLA( 2R Us( 92
for all g€ G. Note that she has access to all these degrees of freedom. This
fact can be derived from the description of relative operators given in Eq. (8):
if an observer loses access to the reference frame relative to which their
description of the system is given, they would still be able to make sense of
the subset of relative operators that are localised entirely on the system, and
these are exactly the set of invariant operators on the system. This argument
justifies our use of an incoherent group averaging approach to QRFs.

Therefore, we see that symmetry considerations alone do not imply the
coherent group averaging approach. Indeed, when we use coherent twirling
instead of incoherent, we do more than implementing a symmetry resulting

from the lack of a reference frame—we impose a charge sector. Moreover, as
we show in Methods: Group action in A’s decomposition, this result is
independent of the external reference frame that is assumed in the deriva-
tion, which justifies lifting it to a general principle that holds even when an
external reference frame does not exist physically.

The set of all bounded G-invariant operators forms an algebra, which
we call the invariant subsystem. We assume that Alice has access to all of
these (and only these) operators.

Note that any unitary representation of a locally compact group G on a
separable Hilbert space H induces an analogous decomposition to that in
Eq. (6), H= @ J9 ® IC(") such that G acts irreducibly on each J' @ and
trivially on each IC(q) In general, the labels g need not go over all possible
irreps, like in the case of the regular representation, and the Hilbert spaces
1@ need not be of the same dimension as J9. This decomposition is a
consequence of the fact that a generally reducible representation splits into a
direct sum of irreps, some of which might have nontrivial multiplicities. By
Schur’s lemma, all invariant operators are proportional to the identity on
J@ for all g and are possibly nontrivial on the multiplicity factors 9.
These operators form the invariant algebra, or the invarijant subsystem. Its
commutant—which is the algebra with trivial action on the multiplicity
factors K’ —is what we call the gauge subsystem. For example, in the case of
the Galilei group for a system of particles, the gauge subsystem corresponds
to the centre of mass degrees of freedom’™’.

In our case, any operator on the gauge subsystem is physically irrele-
vant for Alice—it is redundant. This redundancy can be removed by aplying
asuperopertaor projector 7 5g that projects the algebra of operators over the
Hilbert space onto the invariant algerba. In the case of compact groups, this
projector is given by the G-twirl’,

Tys = [ d1a(9)® Us()- Li(9)® UL(g) @)

Asshown in ref. 3, this operation is equivalent to first projecting the operator
into a block-diagonal form over the charge sectors (i.e., killing off-diagonal
elements between subspaces corresponding to different charges), followed
by applying fully depolarising channels in the left tensor factors. In the
standard partition, the space of physically relevant (bounded) operators
from the point of view of Alice, denoted by B, (H 4g), is defined by those
operators which are invariant under the G-twirl, T, = T aog[Tin)-

By (Hagje) is a proper subspace of the vector space of operators on
Hase called L(Hage)-

Note that B, (Hage) is independent of Eve’s external reference
frame, E, with respect to which the systems A and S, and the action of G
were defined. More precisely, as we show in Methods: Independence of
external frame, the invariant algebra of a given system (in this case AS) is the
largest common subalgebra of the “relative algebra” (to be defined precisely
shortly) AS|E for all conceivable external reference frames E. The invariant
algebra B;,,,(H 45) can thus be regarded as meaningful on its own. We can
imagine external reference frames being “out there” or not; our framework is
agnostic to their existence.

Let us now turn to Alice’s perspective on S. Imagine that Alice
describes an operator T acting on the system from her point of view. What
would be the corresponding operator in the standard tensor product
decomposition? We denote the operator Tg on S relative to A by Tg). All
operations on S from Alice’s viewpoint correspond to elements of the
algebra of system S relative to reference frame A, denoted S|A. In the
standard partition, elements Tg s € S|A are of the form™""*""

Tga= / dglg) (gla ® Us(9)TsUS(g), (®)

where T'g is an operator on Hgg. Seen as an abstract mathematical object,
S|A is independent of the choice of tensor product decomposition: as we
will see below, it can have different representations, which are natural to the
viewpoint of different reference frames. A rough analogy is that of a point or
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a tangent vector to a manifold, which can be represented in different
coordinate systems, which are natural from the viewpoint of different
observers.

Note that S|A is not the full algebra of G-invariant operators. This is
because the reference frame A lives in a Hilbert space that carries the regular
representation of G, which is reducible (see Eq. (6)). As such, it has multi-
plicity subspaces that are invariant under the action of G>*. The multiplicity
degrees of freedom are invariant under the transversal action of G, as this
action is defined in terms of the left-regular representation. As a con-
sequence, any operator T on H g g of the form

— (@) (9)
TR - @ IlAL ® TAR ® ls (9)

q

is G-invariant. Here, the first tensor factor denotes the subsystem of A where
La(g) acts, the second denotes the subsystem of A where Rp(g) acts (see
Eq. (6)) and the third one denotes S’ degrees of freedom (all in Eve’s
standard partition). Note that operators of the form (9) generally overlap
with S|A, but do not belong to it. Therefore, the full invariant system is
strictly larger than S|A. This fact will be important in what follows, as we
shall introduce an “extra particle” belonging to the full invariant system.

Change of preferred tensor product factorisation. We now construct
a representation of the invariant subsystem that captures Alice’s per-
spective in a natural way. Namely, a representation that (i) contains only
degrees of freedom accessible to Alice (i.e., it is gauge-free), (ii) contains
S|A as an explicit tensor factor. We call this representation “Alice’s
perspective.” This term is motivated by the conventional treatment of
subsystems in quantum mechanics, where each subsystem has a tensor
factor of its own (more generally, as noted in Subsection Modelling a
quantum reference frame, a subsystem is associated with a subalgebra).
Thus, when Alice refers to “the system,” she is implicitly referring to the
system relative to her reference frame. Alice’s perspective makes this fact
explicit. Moreover, it is justified from an operational perspective (see for
example ref. 62), where Hilbert space operators represent experimental
procedures defined with respect to laboratory instruments — Alice’s
reference frame, A, in this case.
The first step is to note that there exists an alternative factorisation of
Hpag)e that is induced by the algebra S|A and its commutant, C:
Hase = He ® Hga =: Hegja- (10)
To see that this is the case, let us construct explicitly a Hilbert space iso-
morphism. First, define
Fe_al@ae ® lt)ge = I8)c ® l@)gias (11)
where |a)gg and |a)g|a are fixed yet arbitrary bases of Hgg and Hgya,
respectively. The isomorphism can then be wrltten as a map
Ve_a : Hagg —Hc ga» defined by Ve o = FEﬁAoUS(gA) where

Uk = [ dgle) ela © UL (o) (12)

As a consequence of the orthogonality of the vectors |g) a, Ug (gp)isa
unitary operator on Hage. It then follows that H carries the left- and
right-regular representations of G, and Hg carries a representation U4 of
G which is isomorphic to Us. (A transformation of the form of Eq. (12) is
called a “trivialisation map” or a “disentangler” in ref. 38 and ref. 52.)

A straightforward calculation shows that the super-operator Vg _, o =
Ve_a - Vi_ 5 maps the representation of S|E in H g to the tensor factor

HS\A’

Ve A {/ dglg) (gla ® Us(g)TsUE(g) = l¢c ® Tgja, (13)

where (a|sTslf)s = <0‘|S\ATS\A|ﬂ)S\A'

Note that, from Alice’s perspective, operators on Hg g are not
redundancy-free. This is because we have not projected out the gauge
subsystem as in Eq. (7). To do so, we use that Vg_ 5 maps the gauge
subsystem to the left-regular representation of H:

Ve alla(g) ® Us(g)] = Lc(g) ® lgja- (14)
We prove Eq. (14) in Methods: Group action in A’s decomposition.
Therefore, we can equivalently eliminate the gauge degrees of freedom from
any operator by projecting it onto the operator subspace that is invariant
under the action of the left-regular representation in Hc. Let
Tc=Ve, A°TAS°VE_> a- Using Eq. (14), it is straightforward to verify
that this is a superoperator projector on the invarinat subsystem with respect
to the left-regular representation in . The full procedure of refactorising
the Hilbert space and eliminating the redundancy is captured by the map
Epn =T coVe_a= Ve po7 as- In Methods: Explicit form of the £,
transformation, we obtain a useful expression for this transformation in the
case of compact groups. This means that removing the redundancy and
changing the factorisation commute in a natural way.

Following the reasoning leading to Eq. (6) and the discussion below it,
we see that all operators in B, (Hc g ) are of the form

(q) (q)
@ Ie, ® T, siar

(15)

where T(C 5| 18 an operator on ’H( ® Hsa w1th a notation analogous to
that of Eq (6). Clearly, the 1dent1ty operators ﬂ ) are not physically mean-
ingful for Alice, as she cannot access the gauge subsystem. For this reason, we
could define Alice’s perspective by pro;ectln% Eq. (15) on each charge sector g
and then tracing out the corresponding H Hilbert space. However, we will
keep the operators 1 9 asin Eq. (15) for mathematlcal convenience, as will be
clear in Subsection Qﬁantum reference frame transformations.

To summarise, in the perspective of A, the full Hilbert space is asso-
ciated with the following decomposition:

HCAS\A == (@ HqCL ® HqCR> ® HS|A7
q

(16)

where the left subsystem of C contains the gauge degrees of freedom.

The extra particle. What is the physical meaning of the right-regular
subsystem of C? To answer this question, consider a general operator on
C, [ dg'dgT(g',9)lg’) (glc ® lgjas and act on it with 7 ¢. The result is

= [ 48 4T ORERol D) ® Lo a7)

Tiny is G-invariant, and therefore represents a physically meaningful operator,
expressed in Alice’s perspective. We call the set of these operators the algebra
S|A. Ttis the complement of S|A in the full invariant subsystem, Biw(He sia)
in the sense that its tensor product with S|A gives the full invariant sub-
system, B, (Hc gia) = SIA® SIA.

In the standard partition, S|A corresponds to a subsystem which is
non-trivial in both the right-regular representation and the system, as can be
seen by applying the inverse of Eq. (12) to a general operator on S|A.
Explicitly, in the standard partition, S|A consists of operators of the form

Tsa =/ dg' dglg) (¢'ITREIS) €lae ® US|E(£J)U;E(g)7 (18)

where TA\E is left-invariant.
We call the algebra S|A the “extra particle,” because it formally satisfies
(in a single mass sector) the algebra of a single particle in the case of the
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centrally extended Galilei group, as we show in Subsection Centrally
extended Galilei group. As we will see in Subsection Quantum reference
frame transformations, S|A is essential to the unitarity of quantum refer-
ence frame transformations at the level of algebra of observables. For this
reason, we argue that, in a fully relative formulation of quantum mechanics,
the “extra particle” has to be considered standardly when we refer to a
quantum system. In this way, the relative nature of quantum objects with
respect to a reference frame, which is normally considered implicit, becomes
explicit in our formalism. Moreover, the extra particle is key to making our
formalism consistent with the potential existence of an external frame, thus
solving the problem presented in the Introduction.

One might wonder under which circumstances the extra particle does
not play a significant role and can be considered implicitly. This is the case
when the state of the reference frame A in E’s factorisation is classical, that is,
for states on H g of the form |g) (g|5 ® pg for g€ G and pg a state on Hg,
or any convex combination (probabilistic mixture) of such states. Applying
T coVe_, o to any such state, we immediately see that the extra particle S|A
is in the maximally mixed sate and in a tensor product with the state of S|A.
In this sense, the extra particle carries information about the “quantumness”
of the reference frame state. This “quantumness” is independent of any
potential external observer, as S|A is part of the invariant subsystem. This
implies that our framework distinguishes between a coherent superposition
of states related by a “gauge transformation” and a classical mixture thereof
(both as defined in Eve’s perspective). This is not surprising: these two states
are indeed different, and there is no reason to expect that they should
coincide in the invariant subsystem. Alice can check this difference even if
she does not have access to Eve’s reference frame. However, she cannot see
the difference by doing operations on S|A alone—the algebra S|A is key in
this distinction. This fact distinguishes our approach from the perspective-
neutral framework for quantum reference frame transformations, in which
a coherent superposition and a mixture of states related by a “gauge
transformation” are mapped to the same zero-charge state®. The reason
behind this is that the perspective neutral framework does not consider the
information carried by SJA and its correlations with S|A.

Quantum reference frame transformations
Consider now 2 observers, Alice and Bob, with QRFs A and B, respectively.
The total Hilbert space in the standard partition is H = Hp ® Hg ® Hg
(we omit the explicit reference to Eve’s reference frame for simplicity). As
before, A and B are perfect reference frames, so H, and Hg each carry the
left- and right-regular representation of G. Hg carries an arbitrary unitary
representation of G. Following the procedure of Subsection Relative sub-
systems, we can express the invariant subsystem of the joint system ABS in
the perspective of Alice. This gives rise to the invariant subalgebra
By (Hegsia), where He ggia = He ® Hpgia = He ® Hgja ® Hgjas
with obvious notation. The space H¢ decomposes into a left- and a right-
invariant part. The left-invariant part is the subsystem BS|A and the right-
invariant part is the gauge subsystem.

An analogous procedure gives rise to Bob’s perspective, corresponding
to the algebra B, (Hp agjg)- As in the case of Alice, H, decomposes into a
left- and a right-invariant parts, which are the extra particle AS|B and the
gauge subsystem from B’s perspective, respectively. In what follows, we
construct a unitary map that relates Alice’s and Bob’s perspectives. To
this end, we note that both perspectives are unitarily related to the
standard decomposition (E). Then, to “jump” between the perspective of
A and B, we can map the representation of A to that of E and then map the
representation of E to that of B. This same logic is used to relate different
QRFs in the “perspective neutral” approach™.

We define a quantum reference frame transformation from Alice to
Bob, Sp_.g : Biny(Hc gsia)—> Bin(Hp asip)> s

Sas = Ve Vi a- (19)
Following the same logic as in Subsection Change of preferred tensor pro-

duct factorisation, we define Vg . pg= Vg_pg- VE_)B and

Vi Aa=VEi a Ve.oa Here Vg,g=Fg goUrg(@s) and
Ve_a = Fg_aoUgg(ga), where
Uss(@n) = / dglg) (gla ® Le(9) ® Us(g),  (200)
Ups(@s) = / WL ® g glg® Us(g)  (20b)

Fg_, p acts as Fg_,plg)alhgla)s = Ig)clh)gale)gia, and an analogous
equation holds for Fg_ .

The quantum reference frame transformation of Eq. (19) generalises the
one of ref. 37 for Lie groups by including the algebra of the extra particle. To
see this, we write Eq. (19) in a similar form to that of ref. 37. Assume that G is
a Lie group such that, for any g € G, we can write U(g) = exp(—i}, - X),
where A, is a vector of parameters corresponding to gand X is a vector whose
components are the generators of the Lie algebra of G. Under these condi-
tions, as shown in Methods: Exponential representation of quantum refer-
ence frame transformation, we arrive at the following form

NGRS PAdeifdg"c!'g)(g'B\A'(X@+XS‘A), 21
where we have left tensor products with the identity operator implicit. Here,
Xgga Is the infinitesimal generator acting on the extra particle BS|A and
X is the infinitesimal generator on the subsystem S|A. The parity-swap

operator Pp_, g acts as

Pa-sl®n =18 )ap (22)
with an implicit trivial action on all subsystems other than B|A. A few
comments are in order: (1) The transformation of Eq. (21) includes extra
degrees of freedom in the form of the extra particle BSJA; (2) the trans-
formation is block diagonal, with each block corresponding to a different
irreducible representation of G, labeled by ¢, so the choice g=0 is not
necessary and we can focus on any sector for arbitrary g; (3) for the special
case q = 0, the transformation is compatible with to that of ref. 37. Consider
the translation group as an example. In this case, Eq. (21) reads

iXgia (ﬁm +f’sm) (23)

Sa—s = Page

which differs form the one of ref. 37 due to the extra term ﬁm. In the case of
zero total momentum, this term vanishes and both transformations are equal.

We can now use Eq. (19) to compute the transformation of operators
from the perspective of A to that of B. Let us divide the set of operators in the
reference frame of A into 3 classes. Class 1 is made of operators of the form
le® ]lB‘ AR Ts‘ A 1€, elements of S|A; class 2 is made of operators of the
form lc ® Tga ® lgpa, ie, elements of B|A. Finally, class 3 is made of
operators of the form T§ ® lga ® lgja, where TR is left-invariant, ie.,
elements of BS|A. The transformation of each of these 3 classes of operators
is computed explicitly in Methods: Transformation of relative subsystems.
The result is

Spollc ® lgp ® Tl = / dglg) glag ® 1p ® US\B(g)TS|BU;|B(g)
(24a)

Saopllc ® T ® Igpl = / dhdg [h™") (h|Taglg) € ' ap®

Rp(h™'g) ® Ugg(h™'g)

(24b)

SaoalTE ® Tgn ® Tgpl = / dg1g) (glas ® Ro(9TRRL(9) ® lgp.  (24c)
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Equation (24) fully characterise the relation between A’s natural tensor
product factorisation and B’s. We thus see that a quantum reference frame is
a preferred tensor factorisation of the invariant subsystem. Alice and Bob
have 2 such partitions, natural to their relative degrees of freedom. This fact is
at the heart of the relativity of entanglement under QRF transformations™*.
As we show in Methods: Restriction to the zero-charge sector, in the zero-
charge sector Eq. (19) reduces to the QRF transformation found in ref. 39,
which is equivalent to that of ref. 37 for the case of translations.

Note that S|A and S|B partially overlap but are not equal. The same is
true for the subalgebras BS|A and AS|B. For this reason, we cannot expect
these subalgebras to be unitarily related. However, the extra particle comes
to the rescue, as it complements each of BS|A and AS|B to the full invariant
subsystem. This is why the extra particle is essential for unitarity.

It is worth emphasising the generality of the transformations in Egs.
(24). They do not merely allow us to say how to “jump” between two fixed
reference frames, but also how the description from the point of view of one
reference frame would change if that reference frame is subjected to an
arbitrary active transformation from the perspective of another. For
instance, if Alice applies an active unitary transformation on B, Ug)a, the
state of the invariant subsystem in the perspective of Bob would undergo a
corresponding passive unitary transformation, whose form can be com-
puted from Eq. (24b) by plugging Ug, in the place of Tgja. The trans-
formation seen by Bob would generally spread over the system, Alice’s
frame, as well as the extra particle, where the latter is again essential for
recovering unitarity (see Methods: Extra particle and unitarity). The
transformations of Eq. (24) are obviously not restricted to scenarios invol-
ving two reference frames, as additional frames can be included in S.

Note that the extra particle S|A arising in the description of a given
system S by a given frame A overlaps with any relative system, such as B|A,
that may be brought into the description relative to A, and in this sense can
be said to contain information about the “rest of the world” relative to A (of
course, if we consider the extra particle SBJA, it would be separate from
both S|A and B|A). This explains why, if we jump from a classical frame toa
frame in a superposition, any system that was previously in a pure non-
invariant state would look correlated with any other such system in the
universe, yet its purification can be found in its corresponding extra particle
without violating the monogamy of entanglement. It is important to stress,
however, that even though the extra particle overlaps with additional sys-
tems (including other reference frames) relative to the frame in question, it
does not contain gauge degrees of freedom as it is fully within the invariant
subsystem of the system and frame.

To summarise, our framework decomposes the full invariant sub-
system as a network of subsystems, whose “threads” represent the view-
points of A and B. A QRF transformation is a change from a decomposition
which is natural to Alice to a decomposition which is natural to Bob. Figure 2
depicts how each subalgebra in Alice’s reference frame commutes or fails to
commute with each subalgebra in Bob’s partition. The vertical “threads”
correspond to Alice’s QRF, whereas the horizontal ones correspond to Bob’s
QREF. More generally, we can imagine multiple reference frames and the
corresponding network of relative subalgebras related via analogous prin-
ciples. A feature of these algebraic relations is that, as commented earlier (see
Methods: Independence of external frame, they concern algebras that are
independent of external reference frames, yet compatible with any potential
external reference frame in the sense that they would automatically embed
as subalgebras of the corresponding larger invariant algebra entailed by the
existence of such a frame. This unveils a mathematical landscape of nested
subalgebras that may represent both actual and potential scenarios.

Centrally extended Galilei group

In this Subsection, we apply our framework to the case of the centrally
extended Galilei group. We start by briefly introducing the Galilei group and
its central extension. Then, we compute the algebras S|A and S|A, and give
a physical interpretation of the regular representation as a quantum refer-
ence frame. For simplicity, we treat the case of 1 spatial dimension and focus
only on spatial translations and boosts, leaving time translations to further

SA|B

A|B

S|B

B|A S|A

Fig. 2 | Natural subsystem decompositions. The full invariant system can be
decomposed in a way that is natural to A (vertical, orange “threads") and in a way
that is natural to B (horizontal, green threads). A QRF is a preferred factorisation of
the invariant system, and a QRF transformation is a change from one preferred
factorisation to another. In this illustration, when 2 different subsystems overlap it
means that their corresponding operators don’t commute in general. In this way,
when A refers to “the system,” she is actually referring to the subsystem A|B, which
overlaps with S|B and A|B from the point of view of B. Note that the inclusion of the
subsystems SB|A and SA|B is essential to find a unitary relation between A's and B's
tensor product factorisations.

work. Although our treatment is formal, glossing over normalisation issues
and applying our theory to unbounded operators (strictly speaking, it is
developed for bounded operators only), we extract the essential physics and
obtain compelling insights about the physical realisation of the regular
representation as a QRF. It would be interesting to see if our construction
can be cast in the rigorous formulation of covariant “screen observables” for
the Galilei and Poincaré groups™. In addition, the recent developments of
ref. 65 might also be helpful in this regard.

Introducing the group. In 1 spatial dimension, the Galilei group consist in
elements (a, v), labeled by a translation parameter a € R and a boost
parameter v € [R. Physically, the transformation (g, v) means changing to
a reference frame which is displaced in space by a distance a and moving
with a constant velocity v with respect to the original reference frame. The
composition rule of the Galilei group is (@', V') - (a,v) = (@’ + a,v' +v).
Galilean transformations on a quantum particle of mass m are gen-
erated by the momentum operator p (translations) and by the boost
operator k = pt — mx (boosts), where ¢ is the time and % is the position
operator. The commutation relation of the group is [p, k] = im. The non-
commutativity of the Galilean generators in quantum mechanics implies the
well known fact that the Galilean group has a projective representation in
Hilbert space
U™ (a', vY U™ (a,v) = &5 ~“VU(d + a,v + ), (25)
where U(a,v) = exp(—i(ap + vk)). In order to apply our framework, we
consider the central extension of the Galilei group, G (see, for examplef‘"’“).
G has group elements (6, a, v) and group multiplication rule
@,a,v)-(6,a,v)= (0 +0+¢,v;a,v),d +av +v), where
o(d',v';a,v) = (av' — a'v)/2. For a given mass m, we define the (irre-
ducible) representation of G by fJ(m)(G, a,v) = e™U™ (g, v). It is easy to
check that Eq. (25) is an ordinary (i.e., not projective) representation of the
centrally extended Galilei group.
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The centrally extended Galilei group involves an additional parameter,
6, whose physical meaning as the conjugate variable to a dynamical mass
variable has been discussed in the literature””””". Regardless the specific
meaning of 6, we do not miss any physics by conceiving a (possibly ficti-
tious) reference frame for it, since the physically accessible projective
representations of the Galilei group are naturally recovered in the case of
reference frames of fixed mass. What is more, this treatment highlights the
interesting possibility of having an explicit QRF for dynamical mass,
allowing for coherences between different mass sectors.

QRFs forthe centrally extended Galilei group. Suppose that Aisa QRF
carrying the regular representation of G. This representation is spanned
by vectors of the form

(&)
16, a,v) = / dmdp o/ (06, 4, lm; p)) ® mi phg,  (26)

with 6, a, v € R*, and has inner product (see Methods: Basis vectors for
centrally extended Galilei group)
((8,d',V)(0,a,v)) = &(¢

— 0)8(a’ — a)d(v' — v). (27)

Consider a system S carrying an irreducible representation of G, labeled
by the mass mg. This is equivaent to a particle of mass mg. (While we are
considering a single such system, our results apply automatically to a system
of multiple particles, where the role of S would be played by the centre of
mass.) Usmg Eq. (8) we can compute the generators of Galilean transfor-
mations, pg  and ks| a» in the standard partition. As shown in Methods:
Relative generators for the centrally extended Galilei group, the result is

f)S|A =1, ®pg — ms/ dodadvv|(6,a,v)) ((6,a,v)|n ® 15, (28a)
ksia = 1a ® kg + mg / dfdadva (6, a,v)) ((6,a,v)[ ® 1g. (28b)

Note that the integral terms in Eqs. (28a) and (28b) can be interpreted as
velocity and position operators on the Hilbert space of the reference frame.
In terms of the decomposition into irreducible representations of the
reference frame, the generators read

~ ~ @ dm m mx m ~(m*
PS\A:1A®pS_mS/ m (p( )®]1( ) Il;) pi\R)>®]ls,
(29a)
7. 7 ® d (m) s m (mx)
kS|A=1A®ks—ms/ (kAL L = 137 ® kn, )®1s7
(29b)
where we have taken ¢ = 0 for simplicity. Here, 1, = [®dm Tl(m) l(m*)

and we have used the same notation as in Subsection Relative subsystems
We can use Egs. (29) to compute the algebra of the extra particle in the
standard partition (see Methods: Relative generators for the centrally

(m) A (mx) A (mx) 7 (mx)
where pR = [Cdm1Y" @ P, and p’" and kp_
of the complex-con)ugate representat1on acting on Ag. The generators

are the generators

of the extra particle, ps‘ ~ and ks, satisfy the commutation relations

SIA

— v — [® (m)
Psak ﬁ = —i(Mp ® lg + 1o ® mglg), where My = [ dmml,’
®I|Xg*) . The reason for the minus sign in the commutation relation
of the extra particle is a consequence of the commutation relations

of the complex-conjugate representation ﬁx::*) and IACXZ*), which

satisfy {p(m*) k(m*)}

Although m can take, in principle, values over all R, we can focus on
the positive mass case by restricting the set of states on which our operators
act. Let us now focus on a single mass sector of the regular representation,
corresponding to mass m > 0. In Methods: Basis vectors for centrally
extended Galilei group, we discuss normalisation issues that arise when
restricting to a single mass sector. In what follows, it will be more instructive
to deal with position operators instead of boost operators, so we write

the boost operators in terms of position ones in Eq. (29). Thus, we focus on
(M*) _

. mx
= —imljp

the momentum operator PS|A = Jl(m) ® pg — (mg / m)(p(m)

~(mx)

Il(m) ®Pa, )® g and the position operator xs‘ A= ]1("’) ®x3—

Aﬁ('z) ® 13" + 13" @ &y ® g, where 15" = 13" @ 15"
We will now show that the system A can be seen as cons1st1ng of two
particles, called A, and A, of respective masses m; and m,, such that

my + m, = m, where A, serves as a reference for position and A, asa
= (mxxt) ® ]l(m*) m, 1&?@
(mx(m) ® ]l(m*) +m,; ]l(m)® A(m*))/Zmz. The

are the con]ugate varlables to xA

reference for velocity. We define 5cA
i) /2m,, and Fa,,

momenta p,  and ﬁ A, and ch
) ® Tl(m) (the left-regular representatlon) can be

seen as the position operator for the centre of mass of a system of our two

respectively. In this way, X

particles, A, and A, . That is, ¥ A("’) IIX? = (mxp + myxs )/m.
my g
Similarly, the operator p(m) ® Tl(m*) is the momentum of the centre of mass,
ﬁ(A"z) ® le::) = pA +pA .On the other hand, the operator ]l(m) A(m*)
(the right- regular representatlon) is proportional to the relatlve
distance between A, and A, , 1, ®X A(m*) = (my/m)(xp —Xp )
- -
whereas Il(m) ® 13)((" ) corresponds  to the relative momentum,
](m) ®P(m*) Pa, — (ml/””z)PA

Puttmg everything together, we arrive at
';CS|A = HA ®JACS - &Aml ® ls (313)

~ ~ mg .
Psa=1a®ps — . Pa,, ® Is, (31b)

2

which expresses Xg) and pga as the position and momentum relative to
two different particles, as we wanted to show.
We can also rewrite the algebra of the extra particle in terms of the two

s independent particles A, and A, . For a single mass sector labeled by m,
extended Galilei group): we plug the definition of A and A , into Eq. (30), obtaining
~ ~ ~ @ dm m ms m ~(mx
pm=p§®ﬂs+h®ps—ms/ (e 1 -1 e p) ® L, kg =
m; +m, +m
(303) 1 2 S (323)
((mz +mg)kp, ©lg—mxp ®lg—mgly®xs
l;ﬁ:i(i@]ls—i—h@fcs—ms/@d—m (B o1 -1 @k ) @ 1, . . L mtmg
" Psa=ra, ®ls+1a®ps —————pp ®ls. (32b)
(30b) m,
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Note that p Psia in Eq. (32b) is nothing elese than the relative momentum of
particles S and A, with respect to particle A,

If we have 2 QRFs, A and B, for the centrally extended Galilei group,
the natural tensor product decompositions associated to A is related to the
decomposition of B via Egs. (24). In Methods: Relative generators for the
centrally extended Galilei group, we compute explicitly the QRF transfor-
mation connecting the infinitesimal generators of the group “as seen” from
QREF A to those “as seen” from QRF B.

In conclusion, the regular representation of the centrally extended
Galilei Group can be seen as a system of variable mass, which under a
properly normalised restriction to a fixed mass sector, consists of 2 particles,
one of them serving as a QRF for position and the other as a QRF for
velocity. These particles transform under the usual projective representation
of the Galilei group. (In future work, it would be interested he formalism
presented here can be extended to the case of projective representations).
The case of a single mass sector with m; = m, = m/2 is depicted in Fig. 3.

Comparison with other frameworks. It is instructive to compare our
framework in a given mass sector with other proposals for the relational
description of multi-particle systems under Galilei and translation
symmetries””*. Assume that our reference frame A in the given mass
sector is realised by particles 1 and 2 (we drop the label A for simplicity)
serving as references for position and velocity, respetcively, and let the
system S consist of N-2 particles, labeled by i = 3, --- , N. Denote the mass
of particle i by m; and the pair of its position and momentum operators in
the standard partition by (x;, [)1.), i=1,-- ,N.The Hilbert space of such an
N-particle system defined relative to a hypothetical external observer
decomposes as” H = Hcy ® H,,» where Hy, is the gauge subsystem
corresponding to the centre of mass, defined by the position and
momentum  operators  Xgy = »_;mX;/M,Peyy = > p»  where
M = 3m;, and H,, is the invariant subsystem containing relational
degrees of freedom.

In our framework, the choice of particles 1 and 2 asa QRF givesrise to a
decomposition of the invariant subsystem into a tensor product of the N-2
“system” particles defined relative to the QREF, plus the corresponding extra
particle. The relative particles are given by the canonically conjugate palrs of
relative posmon and momentum operators (Xij1s Pyp)» Where X, = X; — Xy,
and p;, = p; — . Zip,, fori=3, -+ , N, and the extra partlcle by the cano-
nically conjugate pair (30) restrlcted to the respective mass sector.

In comparison, ref. 9 considers only a single particle as a reference for
either the position or velocity of the remaining particles. For example, if
particle 1 is used as a reference for position, this is associated with a
decomposition of the invariant subsystem into N — 1 relational particles,
defined by the relative position operators X; = X;—X,i=2,-- ,Nand
canonically conjugate momenta p, n= = p; — 3 Poy- Note that, as seen from
an external observer, the momenta in this case do not have an interpretation
as the relative momenta of one particle relative to another, as the centre of
mass is not a separate subsystem from such a perspective but rather it
depends on the positions and masses of the whole collection of particles. In
contrast, the relative momenta defined here depend only on the momenta of
two particles: the momentum p,, i=3, --- , N and the momentum of the
reference frame for velocity, particle 2.

Reference 37 has a completely internal treatment, where one
“jumps” form the QRF of one internal observer to that of another one
without invoking an external observer. It treats translations and Galilean
boosts in 1 dimension as 2 separate cases, introducing a QRF transfor-
mation for translations and a different QRF transformation for boosts.
Similar to refs. 7,9, ref. 37 uses a single-particle model of QRF. A single
particle of finite mass m can be either a perfect reference frame for the
translation group, or a perfect reference frame for the group of Galilean
boosts in one dimension, but not for both. In contrast, here we consider,
in a fixed mass sector, a system of 2 particles serving as a QRF for both
translations and boosts (which combined form the Galilei group in 1
dimension). Note that, in the limit 7 — oo, a single particle can serve as a
perfect reference frame for both position and velocity. It would be

Ts|a

e

.
C

)
Q

S A

Fig. 3 | Physical interpretation of the regular representation of the centrally
extended Galilei Group. For a given mass sector m, the regular representation can
be seen as a system of 2 particles. Here we depict the case where each particle has a
mass m/2. In this interpretation, the left regular representation corresponds to the
degrees of freedom of the centre of mass, CM, of the 2-particle system. The right
regular representation corresponds to the distance of any of the 2 particles to the
centre of mass, or half their relative distance, REL. Imagine that Alice, using the
reference frame A (orange flag), describes an operation on the system S (in purple).
We can then ask how this operation “looks like” from the standard partition
viewpoint. Roughly speaking, in this viewpoint, A uses one of the particles, A, (left
orange circle), as a reference frame for position, and uses the other particle, A,,,
(right orange circle), as a reference frame for velocity (see Egs. (31)).

interesting to investigate the connection between this limit and the QRF
model presented here.

Reference 38 obtains the QRF transformation for translations of ref. 37
by means of a gravity-inspired momentum constraint, which forces the
centre-of-mass momentum of a “perspective neutral” state to vanish,
Poy'¥) = 0. Within the p,, =0 subspace, the relational variables of
refs. 37,38 are equivalent to that of’. However, the perspective-neutral state
of ref. 38 does not have an immediate operational interpretation, as there is
no external observer “out there” to measure such a state. Our framework is
agnostic to whether such an external observer exists or not, and the con-
straint state |¥) can be interpreted as a state whose centre-of-mass
momentum vanishes “as seen” by the external observer. This can be mod-
elled in our framework by introducing an external reference frame for
velocity, aligned with the velocity of the centre of mass. In this case, we would
have a total of N 4 1 particles, where particle N + 1 serves as a reference for
velocity (and thereby momentum), while one of the other particles, say
particle 1, serves as a reference for position. Note that Particle N+ 1 in this
example corresponds to what we have called particle Ay, in the previous
subsection. The total relative momentum with respect to particle N + 1 thus
coincides with the momentum of the extra particle given in Eq. (32b).

Ignoring the extra particle, and assuming that the total momentum of
all particles from 1 to N is zero relative to particle N+ 1, we recover the
description of refs. 37,38. In particular, the jumping transformations derived
there can be understood as corresponding to changing which particle from 1
to N serves as a reference for position, while keeping the reference for
velocity fixed. As shown in Methods: Restriction to the zero-charge sector,
our framework, restricted to the zero-charge sector for a general group
reduces to the QRF transformation found in ref. 39. For the case of trans-
lations, this recovers formally the perspective-neutral computation of the
QREF transformation developed in ref. 37.

In Methods: Compatibility with an external zero-charge state, we
develop further the connection between our framework and the perspective
neutral one by showing that, for compact groups, any state pgiz 5 » in Alice’s
viewpoint is consistent with the existence of a reference frame B and a pure
state living in the zero-charge sector. Specifically, we show that if PSIASIA is
an arbitrary (invariant) state of S|A and S|A in Alice’s perspective, then

there is a pure state |¢p)agg in Eve’s perspective such that
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(1) Upps(8)19) ags = |9) ags for all g (i.e., the state lives in the zero-charge
subspace) and (ii) If we trace out B and “jump” to Alice’s reference frame, we
obtain pgiz g 5. Notice, however, that although such a “purification” in
terms of the perspective-neutral framework is always possible, it is by no
means necessary, as our framework contains the full invariant algebra of A
and S. In fact, the extension to a zero-charge pure state is done at the
expense of adding more (gauge and invariant) variables.

Finally, the work of Angelo et al., proposed a relational description of
particles within the invariant subsystem that uses a single particle, e.g., particle
1, as areference for both position and velocity of the other particles, leading to
a notion of relational particles With position and momentum operators
(xlu,p,) i=2,--,N, wherep, o +m (P’ pl) (note that this notion of
relative momentum is not equal to 'the Telative veloc1ty of the respective
particle times its mass, but times the reduced mass of the particle and the
reference, which is needed to ensure the canonical commutation relations for
each particle). As emphasised in ref. 7, these particles are not separate systems,
since their algebras do not commute with each other, and the canonical
commutation relations are only recovered in the limit #; — oo.

The fact that (%, [7,1), as defined by Angelo et al. are not a separate
subsystems for different i has drastic consequences, as ref. 7 illustrates by
introducing the “paradox of the 3rd particle”. In short, the paradox concerns
the observation that, if one uses a single particle as a reference frame for both
position and velocity in the context of Galilei symmetry, one arrives to the
conclusion that the state of particle S, defined relative to particle S,
depends on whether, relative to an external classical reference frame E
(which can be modeled by a very heavy particle), there exists another particle
S,, separate from S, and S,.

The resolution of the paradox proposed in ref. 7 is that two systems that
are separate relative to E (in this case S, and S;) may be overlapping when
described relative to S;, and therefore one cannot trace out S; from the state
relative to S, . Note, however, that this conclusion is obtained for a different
model of QRF than the one we consider. In our framework, two separate
systems are always separate relative to any QRF, and one can trace them out in
any reference frame. Nevertheless, one should do this with care. As we have
seen, when two observers using different QRFs refer to the same “system”,
they are referring to DOFs that belong to two different, albeit overlapping,
subalgebras. Thus, in general their descriptions of the “system” would not
contain the same information. Moreover, even if two observers Alice and Bob
each describe the reference frame of the other in addition to the system S, the
description of BS relative to Alice is given by an algebra BS|A that is not
equal to the algebra AS|B describing AS relative to B. Thus, even in this case
their descriptions would not contain the same information. The full invariant
information, which is accessible by both observers, is only obtained when the
extra particle is included in the description.

Recently, ref. 40 proposed a different analysis of the paradox of the
third particle. They introduce a “relational partial trace” as a mathematical
procedure for discarding subsystems, in an attempt to resolve the paradox in
a gauge-independent way. That procedure, which has different operational
grounds, leads to conclusions that are inequivalent to ours.

Discussion

Symmetry transformations between QRFs can lead to a more general notion
of symmetry in quantum mechanics, potentially sharpening our operational
understanding of spacetime at the quantum level. For this reason, it is very
important to understand what is at the root of the key differences between
classical and quantum reference frame transformations. In this work, we
have developed an approach to QRF transformations that focuses on the
algebra of relative observables between a system and a reference frame. From
this point of view, a QRF transformation is a change from a preferred tensor
factorisation to another one. Moreover, given a set of QRFs, our approach
fully characterises how different subsystem decompositions are connected
to each other. This leads to a picture of the full invariant system of a quantum
system as being composed by a network of subalgebras, with different parts
of the network corresponding to different QRF viewpoints. A recent “per-
spective neutral” approach, presented in ref. 72, also develops QRF

transformations algebraically, for a large class of symmetry groups. While
both approaches use similar mathematical techniques, our approach is
applicable to the full invariant subsystem rather than to the zero-charge
subspace. As discussed in the introduction, this implies a significant dif-
ference in the scope and physical interpretation of the two frameworks.

Our framework is naturally compatible with an incoherent-twirling
approach to QREFs rather than a coherent twirling approach. This feature
makes our approach a good candidate for studying QRF symmetries in a
proper subsystem of the universe in the most general way. Approaches that
restrict to a given charge subspace restrict the possible states in which the
subsystem of the universe under study can be with respect to potential new
systems out there. For this reason, a framework that focuses on a given
charge subspace fails to capture the potential relation that the subsystem of
interest might have with external degrees of freedom. Our approach,
developed at the level of the full invariant subsystem of a given system, is
compatible with extending the system we are interested in an arbitrary way.
In this sense, our framework supports the view that, in some situations,
incoherent twirling should be preferred to coherent twirling in the quan-
tisation of systems with gauge symmetries™”

There are several research avenues that our work opens. On the one
hand, it would be very interesting to study QRF transformations with
respect to relativistic groups, i.e., the Lorentz and Poincaré groups, and ask
what operational notion of spacetime arises from such reference frames.
These QRF transformations would allow us to study proper subsystems
transforming under Lorentz and Poincaré symmetries, which is not thor-
oughly understood, and would be an important step towards ultimately
incorporating general relativistic symmetries, which would be important in
quantum gravity. We believe our approach is general and powerful enough
to make such a study feasible. We note that there are recent examples in the
quantum gravity literature that do not impose a total charge equal to zero in
the Hamiltonian constraint; see, for example,”.

On the other hand, we have focused on a very restrictive notion of
quantum reference frame, namely, that corresponding to the regular
representation of the group. The reason for doing this is to make explicit
contact with our more familiar classical notion of reference frame view-
points and transformations. Admittedly, the regular representation is a
highly idealised object, and it would be very important to learn how to treat
situations in which our reference frame is bounded in resources™*”. The
first steps towards applying our framework to non-ideal frames appear in
ref. 75. We believe the solution to this open problem can yield important
insights beyond the approximation of superpositions of semiclassical causal
structures and spacetimes, as for example the case considered in ref. 76.

Methods

Lagrangians for translation gauge symmetry

Here we give an example of two different Lagrangians that have the same
gauge symmetry but impose different constraints. Our starting point is
Eq. 57 of ref. 38. In the case V = 0, it reads

w(&s)

This Lagrangian specifies the dynamics of an N — particle system with
coordinates g, i=1, ...N. It is invariant under gauge transformations rea-
lised by time dependent translations, g; — g; + f(t), ; = ¢, + f. Com-
puting the canonical momenta p; = dL/9g; and adding them up, we get a
constraint on the total momentum, P=3_,p;=0

At this point, it would seem that gauge invariance of the dynamics
implies that the total momentum is constrained to be zero. However, there
are more general possibilities. Consider the Lagrangian

(33)

_IN
—5;% -

(34)

1L . 1 (S, »p :
—2;%2—2]\](;%—]\])-
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It is easy to check that the new Lagrangian L’ is related to L by a total
derivative. Moreover, L’ has the same gauge symmetry as L. Under time-
dependent translations, L' changes by a total derivative.

Therefore, L' is a completely valid Lagrangian under the lack of an
external reference frame for spatial translations. However, L' imposes a
different  constraint on the total momentum. We now
have P =3 p; =3 ,0L'/oq = p.

We have constructed an example of two systems with the same gauge
symmetry but different constraints on the total momentum, showing that a
Lagrangian having a translation gauge symmetry (¢ — q + f(f)) up to total
derivatives does not necessarily impose a vanishing total momentum as a
constraint. At the quantum level, this argument shows that the coherent
gauge condition P|¥) = 0 comes from a specific choice of the Lagrangian (L
instead of L' in our case), which imposes a constraint on a specific
momentum sector.

As explained in the main text, the condition Pl‘l’) = 0 can be inter-
preted in 2 ways: (1) P is not measurable and is set to vanish by convention.
In this case it is clear that P=k # 0 is also a valid choice. This view is
supported by our analisis of L and L' above. (2) P is measurable and found to
vanish, as determined by some translation-invariant reference frame for
momentum. If we admit the possibility that such translation-invariant
reference frame for momentum could exist tacitly in our description, we
should express the lack of a reference frame for translations in a way that
makes no extra assumptions on the total charge. This is done by demanding
[P, p] = 0 instead of P|¥) = 0.

Basis vectors for centrally extended Galilei group
Here we compute the inner product between the basis vectors |(0, a, v)) of
the regular representation of the centrally extended Galilei Group, and
discuss the normalisation of states belonging to a single mass sector. For
simplicity of notation, we omit the subscripts referring to the QRF
perspective.

The Hilbert space of the regular representation of the centrally
extended Galilei group is of the form

53}
H= / dmH™ @ HE™, (35)

where H(Lm) (Hg"*)) corresponds to the colour (flavour) degrees of freedom
for mass m. The left-regular (right-regular) action of the group is trivial in
Hg"*) (H(Lm)) for all m. For all m, the subspace H(Lm) ® H(Fz"*) is spanned by
vectors of the form |m;p,q), satisfying (m;p,qlm;p’.q) =
0(p — p')8(q — ¢q'). The labels p and (g) are eigenvalues of the momentum
operator on H(Lm) (Hg’*) ). The inner product of 2 states, |¢) = [ Cdm|g,)
and |y) = f®dm ly,,) is defined by

(oly) = / dm (@, 1y,)- (36)

A normalised state |v) satisfies | dm (,,|y,,,) = 1.
By analogy with the compact group case of Eq. (5), vectors corre-
sponding to a fixed group element (6, a, v) are given by

(&)
16,a,v)) = / dmdp /m (00, a,v)lm; p)) ® Im; p)g,  (37)

where U(’”)(a a,v) = efe~{@p=—m) e show that they are ortho-
normal in a generalised sense.
Using the Baker-Campbell-Hausdorff formula, we have

U(m)(& a,v) = eMO+satv) p—ilatvip gims (38)

With the help of Egs. (37) and (38), we can compute straightforwardly the
inner product between 2 basis elements

7 (m)

(@',a,)I(6,a,v)) :/ dmdpm (m,p|0 (9 ~0 @ —dv.a—dv- v’) Im. p)

=/' dmdpm e[m(s#;(a+[3t))e—[(lx+[3t)p5(7mﬁ)7

(39)

wheres =0 — 0 — %(av’ —av),a=a—a and B = v — v. Because for
any normalised state there will always be an integral over f3, we can use the
identity §(—mp) = 6(8)/m. Performing the integral over p, and going back to
the original variables, the end result is
(0, a, V)6, a,v)) = 80 — 6)d(a — a)o(v —v'), (40)
as we wanted to show.
Given the full Hilbert space H, how do we represent normalisable states

on a single mass sector labeled by m? Because m is a continuous parameter,
we will only be able to do this in an approximate way. Consider the states

lo' ) = [Fdm’ \/A(m — m)| g, ) € H, for i running over a set of
indices 7. Let {l‘Piwm/)}ieI be an orthonormal basis on Hf_m,) ® H(Rm,*) for
each m’, and A(m — m’) be a sharply peaked function around m, such that
we can approximate it by a Dirac delta, §(m — m'). Then, in this limit, we
say that a normalisable state |,,) € H belongs to the sector of mass m if it is
oftheform |y, ) = > ¥ ¢ ), with >",|y! |> = 1. Then, formally, we can
write the normalised basis states of a subspace of definite mass m as

®
o) = [’ /5= g, (4)

and the projector onto the mass m sector is given by
0, = Z |‘le) ((Ptml (42)

Using the properties of the Dirac delta function, one can check that
I12, = II,,. For an explicit constructions of a set of functions converging to
the square root of the delta function on three dimensions, see ref. 77.

Group action in A’s decomposition
Here we prove Eq. (14). By direct calculation, we find

Ve a@nlla(8) ® Us(9)] = / A dh |l (W|Le(@)Ih) (hlc @ Uga(H)Usgia(@)Usia(h)

- / A dh ) ( lgh) (hle ® UL (W) Usa(©)Usa(h)

/ dh Le(@)|h) (hlc ® U;‘A(gh)Us\A(g)Us\A(h)

Lc(8) ® lgja,

(43)

Where we have used that Fg_, 5 is its own inverse to change the labels in the
first step. This proves Eq. (14).

Independence of external frame

Let Q be a generic quantum system (in the context of Subsection Modelling
a quantum reference frame, Q = AS). Let E be an external reference frame
with respect to which Q is described. We now show that, for any other
possible external reference frame F describing Q, the invariant subalgebra
B (Hq) is the largest subalgebra common to both B(Hqg) and B(Hqe)-
This implies that B, (Hq) is independent of any potential external refer-
ence frame and at the same time compatible with any such reference frame,
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in the sense that it is automatically a subalgebra of the larger invariant
subalgebra arising from the addition of such a frame. It is easy to see that due
to the assumed transversal action of the symmetry group, enlarging a given
system by tensor-multiplying it with a new system always leads to a larger
invariant subsystem that contains the old one as a subsystem.

Consider a Hilbert space containing all systems Q, E and F, Hgrq =
He ® He ® Hq (defined with respect to a yet more powerful observer). By
definition, B(Hqg) is formed by operators Tqg on Hepq of the form

Tae = [ 419 ¢l ® 1r ® Ua(9 TP UL, (44)
Analogously, B(Hqr) is made of operators of the form
Tar = [ dg1e® 1) (6l @ Va1 VLD, (45)
On the other hand, operators T on B;,,(Hq) have the form
T=1g®lr® T, (46)
where 8" is an invariant operator, Uq( g) Tiav U&( 9= Tiav forallge G.

From these definitions, it is clear that B;,(Hq) is a common subalgebra of
B(Hqe) and B(Hqp), as Eq. (46) is a particular case of both Egs. (44)
and (45).

Now, let T'be a common element of both B(Hq,g) and B(Hqe). We
want to show that T' € B, ,(Hq). For any Hilbert space carrying the left- and
right-regular representations of G, define |Q2) = [ dglg). If we set Eq. (44)
equal to Eq. (45), multiply each side of the equality by |Q) (glz ® |Q) (h|r ®
1 for arbitrary g and h, and take the partial trace on E and F, we find that
(47)

Ua(9TS'UL(g) = Ug(W TS UL (h),

. L E) _ (F)
for arbitrary gand h. Setting g =h gives T, =

h arbitrary gives Tq = Uq(h)Tq Ug(h) for all h. This shows
that T € B, (Hq)-

= Tq.Setting g = eand

Explicit form of the £, transformation

Here we obtain an explicit form of the transformation 4 = 7 coVg_,p =
Ve_ a7 pg in the case of compact groups. Here, 7 5g is a superperator
projector onto the algebra of invariant (bounded) operators and
Tc=Ve_nTas oVE A» Where Ve _  is defined above Eq. (13) in terms
of the isomorphism V_, 5, defined above Eq. (12). If G is a compact group,
7 as has a concrete representation in terms of the G-twirl, and we obtain

‘SA[TAS] = VE%AOTAS[TAS]

= U;A(gc)/ dglo(g) ® US|A(g)TC,S\ALT(g)C ® U;A(g) USlA(gC)

= / dglc(g)® HSlAUg|A(gC)TC<S|AUS|A@C)LE(8') ® Iga

= TcoVe,alTasl
(48)

To pass from the second to the third line, we have multiplied by the identity
in the form US\A(gc)Us\A(gc) on the left of T and in the form
US‘A(gC)Us‘A(gC) on the right. Then we have used Eq. (14).

In the case of compact groups, for any operator Tpg =
[ dg'dglg’) (gla ® Ts(g’,£) in the standard partition, we can find its G-
invariant version in the reference frame of Alice by applying the map &j.
The answer is

ElT] = / dg'dg RE()Rc(8) ® UL A (8) Tsag',©)Usialg). (49)

Proof:

EalTas] =T coVe_alThs]
- / dg'dg R(g) / dlh) hlRe(8) ® U (@) Tsn(@>9)Usa(9)

- / dg'dg RL(§Re(2) ® UL p(€) Ts (@ ©Usa(2):
(50)

Exponential representation of quantum reference frame
transformation

Here we derive a more intuitive expression for the quantum reference frame
transformation of Eq. (19). We work at the operator rather than at the
superoparator level. First, we establish a useful notation for our purposes.
We write

Vase= / dgdhda|g)pe(glc ® Mpie(g 'Hlga ® @) s (@lsaUsialQ),
(51)

and

Vi e= / dgdhdalh'g)ap&lag ® IMpihlgE ® Ug‘s(h)|“>5|a(“|3\5,

(52)
where the operators V5_ g and VE_)E are defined below Eq. (19).
The quantum reference frame transformation is given by
SA*»B = VjE‘!—>EVA~>E (53)

- / dg dhdarlg)plhgle @ Mo (g Ign @ I sp(alsaUsa(e):  (54)

Rearanging terms and using (hg|c = (h|cRc(g), we find

Sa-B =/ dgdhdalg)ap(g ' lga ® IMpiklc ® la)gs(alsa
(55)
[ A DFlon R U0

Form the last expression it is manifest that S,_, g acts trivially on the gauge
subsystem. (We say that a given operator acts trivially on a given subsystem
defined by some subalgebra, if and only if the operator belongs to the
comutant of that sublagebra). In the spirit of ref. 37, we now write the
transformation in exponential form. We assume that G is a Lie group such
that for all g€ G and for all representations U of G we have
U(g) = exp(—i /lg - X). We can thus rewrite the second factor of Eq. (55) in
exponential form, arriving at

’.fdg’\g‘g)@B\A < BS\A+X5\A)

Sas = Pape » (56)

where we have left tensor products with the identity operator implicit. Here

5]
(q) ()
Xggm = / 15 ® Xp, (57)
is the infinitesimal generator acting on the extra particle BS|A, in a notation
consistent with Eq. (16). Note that Xggz is a direct sum of the right-regular
generators of the irreducible subspaces labeled by g, X; Dq) , with identity on
the left-regular part, D, . Therefore, Xggz commutes with any operator in
the gauge subsystem, which corresponds to D; in B’s frame. On the other
hand, Xg), is the infinitesimal generator on the subsystem S|A. We have
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defined the parity-swap operator Pp_ g as

Pasg = / dgdhda |g>A‘B<g_1|B‘A ® |h)p(hlc ® l)gp(alg)a- (58)

Alternatively, Pp_, g can be defined by its action on the subsystem B|A,
acting trivially on all other subsystems:

Passleden =187 )ap- (59)

Transformation of relative subsystems
Here we compute the transformation of observables from A to B. For
operators in class 1, we have
Spsgllc ® lga ® Tl = VE%BOVEﬁA[]C ® lga ® Tgpal
= / dg'dg1g's) (¢'8lap ® 18) (g'lo ® Ugia(¢'8)TsiUs(')
:/ dglg) glap ® 1p ® US\B(g)TS\BU;\B(g)'
(60)

For operators in class 2, we have

As in the main text, the state in the partition natural to A is found by
applying Ugs (&44) on |¥). The result is that the state of the reference frame
A factors out for any initial state |@). That is

Ubs@aIY) = Q)¢ ® / dgLE\A(g) ® U;\A(g)l‘P(g))B\A‘S\Av (64)

where |Q2) = [ dglg), as in Methods: Independence of external frame, and

lp()pasia = J dg'18)gia ® 19(g,8))s)a- We interpret [ dgLTB|A(g) ®
U;|A(g)|¢(g)>B|A,S\A as the state of B and S “as seen” form A.

: (];y construction, applying the operator Sp_,g = UI\S (85)Ups(ga) to
Ugs(g)IY) gives

Uls(@e)¥) = / dgdg Lap(g)! ® 1p ® Ulg()lg)ne®
Qp ® log',9)sis

(65)

Which is the analogue of Eq. (64) with B playing the role of A. Now define

D = SWAP,go ¢ ®/ dh 1) (Rlgia ® UL A(h). (66)

Sasellc ® Tga ® Igal =Ve_s [/ dglg) (gla ® Le(9)TsLi(9) ® s

= / dhdgdh’ |h™'H) (g™ |pg ® Ih) () W Tpl()'g) (glp ® UL g(Hh)Ugg(Hg)

(61)

- / didg 1) (AT 4 51g) (& 1y ® Rolh™'9) ® Ugp(h™'g),

where we have done the changes of variables (k') ' h—>hand (W) ' g—>g
to pass from the second equality to the third one. Finally, for operators in
class 3, we have

SasslTR ® lgp ® Lgal =Ve_p { / di dh |1y (1| TRIR) (hla ® Lg(W)LE(h) ® Us(H)UL(h)
= / dgdi'dh|g™") (g7 |yp ® RL(QIH) (WITRIR) (hRp(g) ® 1gg

:/ dg19) (gle ® Ro(Q)TERL(2) ® e

(62)
This proves Egs. (24).

Restriction to the zero-charge sector

Here we consider the special case of the zero-charge sector of the invariant
subspace, and show how to formally obtain the transformation rule of 3
from our framework. The derivation follows the perspective neutral
framework™ applied to a general group G.

Consider 2 reference frames A and B and a quantum system S. As in
the main text, the total Hilbert space decomposes into a sum of charge
sectors. Suppose we have a quantum state |'¥) in the zero-charge sector of
the total Hilbert space. In the standard partition, such a state satisfies
La(9) ® Lg(g) ® Ug(g)|¥) = |¥) forallg € G. Note that this condition is
strictly stronger than requiring the invariance of the density matrix p under

; . T i 1 —
the action of G: Ly(g) ® Lg(g) ® Us(g)pLa(g) ® Lg(g) ® Ug(g) = p.
The state |¥) can be obtained by “coherent group averaging” over an

arbitrary state |¢p) = [ dgadgglga)a ® Ig8)g ® l9(ga,g8))s- Then we
have

|\11>=/ dg La(2) ® Lg(g) ® Us(g)lg)- (63)

where SWAP g is the operator that swaps A and B’s Hilbert spaces. A
straightforward calculation gives

DULs a@a)Y) = Upgp(@8)1Y), (67)

showing that Sy g and D coincide in the zero-charge subspace. The
operator D is the one found in ref. 39 up to an arbitrary exchange of the roles
between the left- and right-regular representations. In ref. 39, the state
associated to the reference frame whose perspective we “jump” into is the
neutral element of the group e. This can be fixed in the present perspective,
up to normalisation, by conditioning the state of the reference frame to be
|e)**. In conclusion, we have shown that our results formally reduce to those
of ” in the zero-charge subspace.

Extra particle and unitarity

To appreciate the importance of the extra particle for obtaining a unitary
(passive) transformation in Bob’s description when Bob’s reference frame is
subject to a unitary (active) transformation relative to Alice, consider a
simple scenario. Let A be in a classical state and let B be in the state [e) (elg|a
in the perspective of A. This means that A is also in the state e} (e|a g in the
perspective of B (ie., the two reference frames are aligned).

Let S be in some pure state [y) (|, which would be the same in both
perspectives, i.e., we have |y) (ylg s and |y) (y|gg. If now a unitary is
applied in B|A, taking the state of B relative to A to a nontrivial super-
position of group states, |¢) (¢|ga, where [$)gia = [ dg¢(2)Ig)ga> such
that this state is not invariant under the action of the group, it is easy to see
that Bob would describe the system and reference frame of Alice by the
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mixed state
Pasip = / dg1(I’lg™") (g ' ap ® UT(®spl¥) (WlseU(Qgip:  (68)

which cannot be unitarily related to the initial pure state
le) {elajg ® |y) (ylg)g- In other words, some information has been lost.

A naive attempt to recover this information by searching for it in the
rest of the universe outside of A and B can be immediately seen to fail since
any system S outside of A and B will be in an analogous classical correlation
with A from the perspective of Bob. The resolution to this apparent paradox
is that the state of AS|B is purified on the extra particle AS|B, which is
inside the invariant subsystems of ABS. This should come as no surprise
since the active unitary transformation we considered was confined within
this invariant subsystem.

One may nevertheless ask how come any other system in the rest of the
universe gets correlated with A in the perspective of Bob if the transfor-
mation is so confined. The answer is that even thought other systems in the
perspective of Bob correspond to separate subsystems, such A|B, S|B, etc.,
each of these subsystems overlaps with the subsystem B|A on which the
unitary acts (in the sense that the corresponding algebras do not commute),
hence they would generally all be affected.

Relative generators for the centrally extended Galilei group
Here we derive Egs. (29) of the main text. We work in the standard partition.
By definition (Eq. (8)),

Psa = / d6dadv |(68, a,v)) (8,a, V) ® U (6, a,v) ps U™ (8, a,v),
(69a)
ksia = / d6dadv (6, a, v)) (6, a, V)| ® UL®(0,a,v) ks UL (6, a,v).

(69b)

A straightforward calculation of the second tensor factor in Egs. (69) gives

bsia = 1a ® pg — mgip® @ 1, (70a)
ksa = 1p ® ks + mgay® ® 1g, (70b)
where
aNE = / dfdadval(0,a,v)) ((0,a,v)|a, (71)
N / dédadvv|(6,a,v)) (6, a,v)|s- (72)

(The superscript reg. stands for “regular” as in the regular representation).
Therefore, it all amounts to calculating 4 a A 5 and ¥ VA .

Let us start by expressing the projector [(8, a, v)) ((6, a, v)|5 in the basis
of irreducible representations of G. As in the main text, we denote the left-
regular subsystem of A by A| and the right-regular subsystem by Ag. For the
case of the (noncompact) extended Galilei group, the analogue to Eq. (5) is

@
(6.5 = [ dmdp i (0" 6.0 ) ® Iipl.  (73)

where pp |m;p)a = plm;p), . Note the presence of the factor /m, ana-
logue to dJm(q) /| Q |, which ensures that the normalisation condition is met
(see Methods: Basis vectors for centrally extended Galilei group). With this

identity at hand, together with k = tp — m%, we can write

@
(6., (6.0, 9la = [ dmdn (m -t s
(74)

lm; p =+ mv) (m'; p' + mvly ® |m;p) <rn’;p’|AR)-

The only dependence on 6 in both 4, and ¥, comes from the first

exponential in Eq. (74). This means we can perform the integral over 0
straight away, leading to a superselection on the mass. (We neglect factors of
7 when using the Fourier transform of the Dirac delta function).

Doing the change of variable a + vt — a, it follows by direct calcu-

~/1eg:

lation that &;f =d," - tf/rAeg', where

@ : ’
NG / dadvdmdpdp’ ma e *=P)|p + mv) (p' + mvly ® |p) (P'la,
(75)
At this point, the integral #,* follows immediately, resulting in
- / I HD & 15— 1 @ ). (76)

For each irrep, labeled by m, both the left-regular and the right-regular
operators pX") ® ]l(m*) and ]l(m) ® p(m*) are present in Eq. (76). Note that
this integral has a block dragonal structure due to superselection on
the mass.

Finally, using |m;p + mv) A =€ ’m"|m mv)p , We can compute
g . The result is

dm ~(m)

~ reg. mx m A~ (mx)
a/Ag — _/ 7(kAL ]I(A ) ]1( )® kAR ). (77)
Putting all the pieces together (at t = 0), we arrive at
Psa = 1A ®ps — ms/ (P(m) H(n;*) (M) ®P(m*)) ®lg, (782)
P 7 ©dm 2om 1m0 _ q(m) o 10
ksia = 1p ® kg — mg —(kAL I =1 @ ks, ) ® 1, (78b)

which are Egs. (29).

Let us now compute the generators of the extra particle, p Pgja and ks‘ x
To do this, we use a trick that is valid for QRFs associated to arbitrary Lie
groups G. Let Rp(6) = f dql AqL) DXI:) (8) be the right-regular repre-
sentation of a group element § (for simplicity of notation, we write R (5)
instead of Ry g(6)). Assume dis such that, for every value of the charge g, we

. ies- X I .
can write DX’:)(L?) = ¢““" for a parametrisation of & given by 5 and an

infinitesimal generator Xﬁf:) By the orthogonality of the subspaces corre-
sponding to different ¢’s, we can write

(q%) . ”
.XAR — eles-Xﬁ ,

® .
RA(8) = / dgq r;zf ® e (79)

where XR* f dq ]l(q) ® Xff:) . Let us expand R, () to first order in a
Taylor series around €5, 50 that Ry (8) = 1 + ieg - XR* + - - - . Now we can
use this representation of Ry (8) to compute X5z from Eq. (18). There are 2
ways in which we can compute the right-hand side of Eq. (18) for the case of

RA(6). We can expand to first order in €5 and then compute the integral, or
we can first compute the integral and then expand to first order in €.
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Equating the order €5 of both Taylor series gives

Xgp=Xp ® lg+ 1, ® Xs. (80)
Note that both XR* ® 15 and 1, ® Xg have an overall positive sign in
Eq. (80). This is because the right-regular representation is defined in terms

. (q%)
. . X
of the complex-conjugate representations D%:) =¢““"%, whereas

Applying Eq. (80) to the case of the centrally extended Galilei group
gives immediately

®d
R 5 A m .~ (m mx m A (mx
Psr=Pa®ls+ ‘A‘X’PS""S/ SO @Y — 1 e @ s,

(81a)
e =@ lg+ 1, @k T g g o @ 1 @
sa =k ®@ls+1a®ks —mg o K ® 1 — 1y ® ks )@ s,

(81b)

which are Egs. (30).

For completeness, let us write down explicitly Egs. (24) for the infi-
nitesimal generators of the centrally Extended Galilei group. The case of
Eq. (24a) is straightforward from the computation of the algebra S|A, as one
only needs to add an extra identity operator in the Hilbert space of B. We
have already computed this algebra for the centrally extended Galilei group
(see Egs. (29) and Methods: Relative generators for the centrally extended
Galilei group). The result is

Snsgllc ® lga ® pgjal

~ ® dm . mx, m ~(mx
=1ag ® 1Ip ®pg — ms/ W(P%%L ® H;\BL - ]15-\|é,_ ®PX?B)R) ® 1p ® lgpg,
(82a)
Spssllc ® lga ® ];S\A]
: ©dm m - my o gmR
=lag® lp ®kgg — ms/ W(kA\BL ® H,(A\B,l - ME;L ® knp,) ® 1p ® L.
(82b)

Expressing the right-regular action in exponential form, as we did in
the derivation that led to Eq. (80), the case of Eq. (24¢) follows in essentially
the same way as the case of Eq. (24a), giving

AR
Spsloc ® Iga ® Lgal

®d
~R m .(m mk m ~(m* 'y
=laAs®pp ® lgp */ ;(pf’-\ui)i,_ ® 1&\3; - H(A\g’,,_ ®P;(A\B,l) ® Mp ® lgg,

(83a)
R
Saglkc ® lga ® Lgjal
‘R Sdm ~m - my _ (me) .
=lag®ky ® lgg —/ ;(kmaL ® H;\BL - 15—\|é,_ ® kag,) ® Mp ® lgps-
(83b)

Finally, we can compute the case of Eq. (24b) by means of a similar trick
to that leading to Eq. (80). That is, we can compute Eq. (24b) in two
equivalent ways and equate the results. In the first way, we solve the integrals
in Eq. (24b) for an infinitesimal transformation and then expand the result
to first order in the parameter multiplying the generator. In the second way,
we expand first and write down the integrals afterwards. Following this

technique for the generators of the centrally extended Galilei group yields

~Rx

Sppllf@it o1
A BA[L c ®Pga sial - ) (842)
= Pas® lp®lgg + lag ®pp ® lgg — lag ® 1p ® pgps;

~Rx
SAHB[HS ® kgia ® 1gpal (84b)

AL ~Rx .
=—kpp ® lp ® lgp + lag ®kp ® Igp — lapg ® lp ® kg,

SAHB[]IE ® MB\A ® Igpal
=-Mpg®@lp®lgg+ lag ® Mp ® lgg — lap ® Ip @ mglgpp,
(84¢)

and

R o 4L <R ; ; Rx .
Spsllc ®ppp ®@ lgpl == pap @ lp @ lgg + lag ®pp ® lgg — laglp ® pgp
®dm .
~(m) o) _ qm) o s(m) 1
- / o (Pap, ® Las, — Lag, © Pap,) ® Mp ® lgg
Cdm . . (s
[ i, @ 155~ 1K, ) ® lo @ msle,

(85a)

L R <R ) .
SA%B[H(R: ®kga® lgpl = —kpap ®@ Ip ® lgg + lag ®kp ® lgg — laplp ® kg
~(mx)

Cdm (m) . R
_ / o (knp, ® HXTBi - HXTE)!L ® kag,) ® Mp ® lgg

~(mx)

®dm ~(m) ( ( p
+ / — (eap, ® Taie, — T, ® kng) ® 1p @ mglgpg.

(85b)

Compatibility with an external zero-charge state

Here we prove that, for compact G, any state pgjz 5 5 in Alice’s perspective s
compatible with the existence of a reference frame B and a perspective-
neutral pure state |§) yg5. Without loss of generality, we restrict Eq. (49) toa

pure state, so that

peman = [ dedhReze 0 ® ULL(OIW(@) (k) [Usalh). 66)

Consider now, in the standard partition, the zero-charge state |¢)agg
defined by

Bhaos = [ Udgdhifghy ® i)g ® UsDigig. s (67)

where

168, W)s = é UsMly(h'g)s. (88)

Tracing out B from |¢) o5 and then changing to Alice’s perspective via the
Ep map defined in the main text, we obtain pgz g », as we wanted to show.
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