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reference frame transformations
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Recently there has been much effort in developing a quantum generalisation of reference frame
transformations. Despite important progress, a complete understanding of their principles is still
lacking. Here we derive quantum reference frame transformations for a broad range of symmetry
groups from first principles, using only standard quantum theory. Our framework, naturally based on
incoherent rather than coherent group averaging, yields reversible transformations that only depend
on the reference frames and system of interest. We find more general transformations than those
studied so far, which are valid only in a restricted subspace. Our framework contains additional
degrees of freedom in the form of an “extra particle”, which carries information about the quantum
features of reference frame states. We study the centrally extended Galilei group specifically,
highlighting key differences from previous proposals.

Transformations between reference frames play a crucial role in physics. In
practice, reference frames are realised by physical systems, which are stan-
dardly treated as classical. However, assuming that every physical system is
ultimately quantum, it is interesting to ask how a theory of transformations
with respect to quantum reference frames (QRFs)would look like, andwhat
implications it would have for our description of the physical world.

The study of QRFs is broad in scope. Seminal works have studied the
connection betweenQRFs and superselection rules1–5, the study of quantum
mechanics with respect to finite-mass QRFs6–9, quantum tasks and opera-
tions under symmetry constraints3,4,10–21, QRFs as resources of
asymmetry22–29, and QRFs as a means to define physical observables in
quantum gravity30–35.

Recently, attention has turned towards understanding how to change
between QRF perspectives, giving rise to formalisms for quantum reference
frame transformations36–54. Given the description of a physical process with
respect to aQRFA, howdowe obtain the description from the point of view
of QRF B? A precise formulation and answer to this question has the
potential to generalise the notion of symmetry and covariance37,38,40,41,48, with
important consequences such as the relativity of entanglement and
superposition37, and the (closely related) relativity of subsystems52. It can
also provide an operational understanding of spin for relativistic
particles46,47, contribute to understanding the physics of gravitating quan-
tum systems49,53,55, and to quantum extensions of the general relativistic
equivalence principle55–57.

Despite the important progress done in this line of research, it is safe to
say that the principles and operational interpretationof “jumping” fromone
quantum reference frame to another are not yet fully understood. In

particular, as we argue below, previous proposals seem to inevitably
encounter the property that reversible transformations between the
descriptions relative to different arbitraryQRFs are in general obtained only
when these descriptions include the whole rest of the universe. This “non-
locality” of the prescriptions is unsettling from a conceptual point of view as
it goes contrary to the intuition that predictions concerning local systems
should require only local data, raising the question of whether a local
approach could be developed.

Here, we derive reversible transformation rules between any twoQRFs
A andB that only depend on these QRFs and the systemS they are used to
describe. Our framework holds for unimodular groups, which covers a vast
set of symmetries of physical interest. However, we expect that the main
principles could be appropriately adopted to even more general groups.
Starting form an external observer who uses standard quantum mechanics
to describe all internal QRFs and systems, our formulation differs from the
purely “internal” approach of 37. However, both approaches agree when
restricted to the fully invariant subspace of pure states. That is, the subspace
of pure states ∣ψi such thatUðgÞ∣ψi ¼ ∣ψi for all g∈G, whereU is the global
action ofG on the total Hilbert space. This is precisely the relevant subspace
for the “perspective neutral” framework for QRF transformations38, which
obtains the same transformations of 37 for the translation group. In this case,
restricting to the trivial subspace means restricting to global states with
vanishing total momentum.

Our approach is less restrictive. On purely operational grounds,
observers who lack access to the external reference frame are constrained to
density operators ρ that are invariant under the action ofG. This is a weaker
requirement than demanding invariance of state vectors ∣ψi under G.
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Therefore, in this paper we take the view that restrictions purely based on
symmetry should be implemented as

Uð gÞρUð gÞy ¼ ρ ð1Þ

rather than

Uð gÞ∣ψi ¼ ∣ψi: ð2Þ

This distinction is important, and in this paper we argue in favour of the
former option. To illustrate the difference, consider for example the case of
the translation group. In our framework, one does not need to specify the
value of the total momentum, even less to demand that its value is zero. In
general, group theoretic terms, our formalism does not need to specify the
value of the total charge, a global invariant quantity, and QRF perspectives
are defined locally. The QRF transformation rules that we obtain are
therefore different than the ones found in previous works. They are, how-
ever, consistentwith themprovided that the total charge vanishes, a fact that
can be checked “internally”, as the total charge is an invariant observable.

Essential to our framework is the algebra of an “extra particle,” which
emerges as a consequence of the invariant degrees of freedom of the
reference frame. We argue that the extra particle should be included in the
relative description of quantum systems in a standard way. The reason why
its importance has not been noticed so far is that we normally deal with
sharply-defined, classical reference frames, for which, as we show, the extra
particle is always in a maximally mixed state. However, when considering
generalQRFs, the extra particle should be included, because it is essential for
obtaining reversible QRF transformations. As an illustration of the physical
meaning of our framework, we analyse quantum reference frame trans-
formations with respect to the (centrally extended) Galilei group.

In the following we argue, via a thought experiment, that existing
approaches to QRF transformations are not satisfactory when it comes to
adding extra systems to our description of an experiment. The situation we
consider is a modification of the so-called “paradox of the third particle,”
first introduced in ref. 7. (For a comparison between the solution to the
paradox offered in ref. 7 and the one offered here, see Subsection Com-
parison with other frameworks.

Consider a reference frame for spatial translation in nonrelativistic
physics. Classically, this is equivalent to a point-like particle (e.g., the centre
ofmass of a body) that occupies a certain position in space. Since every such
particle is ultimately a quantum system, it could in principle also exist in a
state that is a quantum superposition of largely different spatial positions.
One of the questions that the theory of QRFs is concerned with is how
physical systems would be described if one uses a reference frame in such a
quantum superposition, and what the transformation rules relating the
descriptions relative to different QRFs are.

Imagine that we start from a reference frame A that is well localised in
space fromthepointof viewof anobserverE. (Ignoring special-relativistic and
gravitational considerations, the uncertainty in the position of a particle can in
principlebemadearbitrarily small at a given instant.) Imagine thatwedescribe
twomoreparticles,B andS, each in apure state,whereS is alsowell localised,
say at position ~rSjA, relative to A. How should we describe the state of the
system S if we use B instead of A as a reference frame for position in space?

If B is well localised itself, say at position~rBjA relative to A, we are
effectively in a classical situation and the answer is given by a classical
coordinate transformation: relative to B, we would see S at position
~rSjB ¼~rSjA �~rBjA. But what ifB is in a quantum superposition of different
positions? Since the location ofB relative toA is uncertain andA is at afixed
distance fromS, the position ofS relative toB is uncertain too. But if bothA
and S are described jointly relative to B, they have to be correlated in the
positionbasis as they are afixeddistance fromeachother (and thedistance is
invariant under changing the origin of the coordinate system). This means
thatS cannot be in a pure state relative toB, even though it is in a pure state
relative to A. This shows that the descriptions of S relative to the two
reference frames A and B cannot be related by a unitary transformation.

One can propose a potential solution to this problem using the
transformation found in ref. 37. There, one obtains reversible transforma-
tionsbetweenQRFsby including eachQRF in theother’s description. In this
case, the state ofAS relative toB canbepure andunitarily related to the state
ofBS relative toA, without contradicting the expected correlations between
A and S in the perspective of B.

However, imagine that in addition to the described particles, we extend
the systems under consideration, adding another particle, S0, localised at a
fixedposition relative toA. Furthermore,weassume thatS0 is sufficiently far
away from the rest of the systems, so that it cannot influence them in any
way. In operational formulations of quantum theory, one is always allowed
to add extra systems to the description, so that adding S0 in the perspective
of A seems to be innocuous. However, following the same argument as
before, the state ofAS relative toB could not be pure, since the positions of
A andS relative toBmust be correlatedwith the position ofS0 relative toB.

Therefore, it seems that the QRF transformation rule of 37 leads to a
conflict: not including the system S0 (from the perspective of A) leads to a
pure state of AS relative to B, whereas including it leads to a mixed state.
This ambiguity entails not only different descriptions of the same physical
situation – ultimately a matter of taste—but rather leads to conflicting
physical predictions: one can always distinguish a pure state from a mixed
one by performing suitable measurements.

A possible answer is that we obtained a contradiction because we failed
to include particle S0 in the former analysis. The system S, which for
simplicity we assumed to be a single particle here, must in principle contain
all particles that are not in translationally invariant states relative toA. Only
then are these unitary transformation rules supposed to hold. Indeed, as put
forward by the perspective-neural approach38, and as we will see again here,
the unitary transformation rules37 for jumping between different QRFs for
the translation groupcanbederived assuming that the total systemABS has
a vanishing total momentum. A vanishing total momentum can be shown
to guarantee, in particular, that, relative toA, there are no systems outside of
BS in translationally non-invariant states. This forces the systemS0 to be in
a state of vanishing momentum, thereby avoiding the paradox.

How shall we interpret physically the condition of zero totalmomentum?
Wedistinguish twopossibilities: (1)Theconditionof zero totalmomentumis a
constraint, implying a redundancy in our description. This interpretation,
however, rejects the possibility of extending our description to other degrees of
freedom transforming nontrivially under translations. In a cosmological con-
text, this conditioncouldbenaturally justified fromaglobalDiracconstrainton
theHilbert space of the full universe42. However, such a constraint is in general
only supposed to hold on all physical systems and need not hold for arbitrary
subsystems of the universe. Even in field theories like general relativity, where
themomentumconstraint is local,meaning that the totalmomentumvanishes
at each point in space, there could be different separations of the fields into
subsystems, such that the constraint holds for the full system but not for the
subsystems.Moreover, sucha constraintwould arise fromthequantisationof a
full dynamical theory, given by a specific (translation-invariant) Lagrangian,
and not from symmetry considerations alone. Indeed, different Lagrangians
with the same symmetry (up to a total derivative) could lead to different
constraints (see Methods: Lagrangians for translation gauge symmetry for an
example). (2)Alternatively, thesystemABSmustbeexplicitlyassumedtohave
a total momentum zero with respect to some external observer E. This,
however, is a rather restricted scenario for reasonably confined systems, which
in practice cannot capture even the case of localised reference frames such as
those that we use in everyday situations.

A natural question then is whether it is at all possible to formulate
reversible QRF transformation rules that apply to arbitrary subsystems. As
we show in this paper, the answer is positive. Our key insight is that in order
to obtain such reversible transformations, wemust define the perspective of
each frame as containing all invariant degrees of freedom of the reference
frame and system of interest, which is a strictly larger set than the set of
degrees of freedom describing the system of interest relative to the frame.
The end result is a framework that transforms the invariant, operationally-
defined description of one observer, who can only perform invariant
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measurements on a subsystem of a potentially larger system, to the invar-
iant, operationally-defined description of another observer with the same
restrictions. Note that this operational interpretation differs from that of the
perspective-neutral framework, presented in ref. 40, where a quantum
reference frame transformation is a change ofmathematical description of a
state before imposing symmetry invariance.

Results and discussion
Modelling a quantum reference frame
Let us now introduce the basic ingredients of our framework. In particular,
we define the notion of quantum reference frame that we will use
throughout this work.

Consider the one-party setup of Fig. 1. An observer, Alice, possesses a
reference frame A, associated with the symmetry group G. She uses it to
perform quantum operations on a system S, which transforms under some
unitary representationofG.We treat bothA andS quantummechanically. To
dothis,we imagineanexternalobserver,Eve,withareference frameE,whohas
full access to both systems. Eve assigns aHilbert space to the composite system

HASjE ¼ HAjE �HSjE: ð3Þ

The reason for the notation jE in Eq. (3) is that the quantum mechanical
description ofA andS is defined with respect to the reference frame of Eve.
In the remaining of this section, we will omit this label, as we will be
concerned with Eve’s description only. However, in Subsection Relative
subsystems, this point will be important andwe shall introduce the notation
again to distinguish it from the “internal” perspective of Alice, who has only
access to operators that are invariant under the action of G. Eventually, we
will do away with the external observer by considering only operators living
in the invariant subspace.At this level of description, Eve regards thedegrees
of freedomofAlice’smeasurement apparatus (andAlice herself) as implicit.
They lie on the “other side” of Heisenberg’s cut. If desired, the cut can be
moved to include such degrees of freedom explicitly.

To make contact with the standard situation in quantum mechanics,
where reference frames are assumed to be classical and are treated implicitly,
we assume that the QRFA is perfect. That is, it can be prepared in a basis of
states that break the symmetry ofGmaximally3. Therefore, theHilbert space
of A, HA, is the span of a fully distinguishable basis of “classical” states

labeled by group elements, ∣giA. Because basis states are fully distinguish-
able, we have hgjg 0i ¼ δðg�1g 0Þ. Here, δ(g) denotes the Dirac delta dis-
tribution for continuous groups, where the group identity element e plays
the role of the real number 0, or the (single-argument) Kronecker delta for
discrete groups. Thus,HA consists of square-integrable functions onGwith
respect to the invariant measure dg. (In this work, we consider only
unimodular groups, that is, groups forwhich the left-invariant and the right-
invariant measure are the same.) HA carries the left- and right-regular
representations of G. The left-regular representation, LA, acts as

LAð gÞ∣g 0iA ¼ ∣gg 0iA; ð4Þ

for all g and g 0 in G. The right-regular representation, RA, acts as
RAð gÞ∣g 0iA ¼ ∣g 0g�1iA or all g and g 0 in G. Both LA and RA are unitary
representations. The only assumption we make on S is that it transforms
under a unitary representation,US, ofG. Mathematically, this setup closely
resembles that of ref. 4, where the regular representation is used as a token in
a quantum communication scheme.

The regular representation is highly reducible—it contains all irreducible
representations (irreps) of the group. We can write the basis states ∣giA as2

∣giA ¼
Z

dqdxdy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðqÞ
jGj

s
DðqÞ

xy ð gÞ∣q; x; yiA; ð5Þ

where q is the “charge” labelling a specific irrep. For compact groups, dimðqÞ
denotes the dimension of the irrep labeled by q, and ∣G∣ denotes the order of
G. The complex numbers DðqÞ

xy ð gÞ are matrix elements of the irrep q for
g∈G. The left-regular representation LAð gÞ acts on the “colour” degrees of
freedom, labeled by x, whereas the right-regular representation RAð gÞ acts
on the “flavour” or multiplicity degrees of freedom, labeled by y2. For the
regular representation, the dimension of themultiplicity degrees of freedom
for a given irrep q equals the dimension of q.

Although Eq. (5) is written under the assumption that both dimðqÞ and
∣G∣ are finite, a similar equation holds more generally, not only for compact
groups. For example, for translations, Eq. (5) reduces to the well-known
Fourier transformrelationbetweenpositioneigenvectors ∣xi andmomentum
eigenvectors ∣pi: ∣xi ¼ ð1= ffiffiffiffiffi

2π
p Þ R dp expð�ipxÞ∣pi. Strictly speaking, the

vectors ∣xi, more generally ∣gi, are not elements of the Hilbert space. How-
ever, we will work with them as is customary in the physics literature. As we
will see inSubsectionCentrally extendedGalilei group,Eq. (5)will beuseful in
the case of the centrally extended Galilei group, where the quotient
dimðqÞ=jGj is replaced by the mass parameter,m, labeling the irrep.

For an example in the case of compact groups, supposeG is the rotation
group SU(2). In this case, q corresponds to the total angular momentum, and
the integral with respect to q is replaced by a sum that runs over all values of
total angular momentum, or equivalently, all irreps of SU(2). As the labels x
and y are discrete, the integral in Eq. (5) is also replacedby a sumrunning over
all possible projections for a given irrep. From Eve’s point of view, G acts
physically on the colour degrees of freedom of A, leaving the multiplicity
degrees of freedom untouched. For SU(2), the action of G corresponds to
physically rotating the reference frameA. In this case, the label x corresponds
to all the projections of the angular momentum along a specific axis, say ẑ.

The previous discussion implies thatHA has the following associated
decomposition:

HA ¼
M
q

HðqÞ
AL

�HðqÞ
AR
; ð6Þ

where thedirect sumruns over all possible valuesof the chargeq. The charge
could take discrete or continuous values, where in the latter case the states
pertaining to the subspaces labeled by q need to be properly normalised as
elements of the full Hilbert space. For the time being we will ignore this
technicality, and revisit it again in Subsection Centrally extended Galilei
group and Methods: Basis vectors for centrally extended Galilei group.

Fig. 1 | One-party setup. An observer, Alice, has only access to the degrees of
freedom that are invariant under the action of the group G. The latter is defined
relative to some external observer. As we show in Subsection Relative subsystems,
the invariant degrees of freedom are independent of any external observer or
reference frame. These invariant degrees of freedom include the systemS (in purple)
relative to the reference frameA (in orange). They are described by a set of operators
forming an algebra, calledSjA. Alice’s apparatuses, bymeans of which these degrees
of freedom are accessed, are not part of the quantum system under consideration.
They lie on the “other side” of Heisenberg’s cut.
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The left (HðqÞ
AL
) and right (HðqÞ

AR
) tensor factors in each subspace labeled

by the charge correspond, respectively, to the colour and flavour degrees
of freedom of A. With respect to this decomposition, the left-regular
representation has the form LAð gÞ¼

L
qD

ðqÞ
AL
ð gÞ � 1ðqÞ

AR
, where DðqÞ

AL
ð gÞ is

an irrep of G corresponding to the charge q. Similarly, the right-regular
representation has the form RAð gÞ¼

L
q1

ðqÞ
AL

� Dðq�Þ
AR

ð gÞ, where Dðq�Þ
AR

denotes the conjugate representation corresponding to the charge q. Given
a choice of basis as defined in Eq. (5), DðqÞ�

AR
is obtained by complex-

conjugating the matrix elements of DðqÞ
RA
.

In general, a Hilbert space decomposing as a direct sum of tensor pro-
ducts, like in Eq. (6), is said to decompose into subsystems58,59. Here, we will
use a slightly more general terminology, associating a subsystem with a
subalgebra of operators60,61. In particular, we will speak about the left sub-
system, which is associated with the subalgebra of operators of the form

TL¼
L

qT
ðqÞ
AL

� 1ðqÞ
AR
, and about the right subsystem, which is the commu-

tant of the left, and consists of operators of the formTR¼
L

q1
ðqÞ
AL

� T ðqÞ
AR
. A

given (type-I von Neumann) subalgebra (equivalently, its commutant)
always induces a decomposition of theHilbert space of the form (6)58,59. Note
that the basis vectors ∣giA generally involve nontrivial superpositions of
vectors belonging to the subspaces corresponding to different charges.

What is the physical realisation of an ideal quantum reference frame as
defined above? The answer generally depends on the group. In Subsection
Centrally extended Galilei group, we will discuss reference frames for the
centrally extendedGalilei group.Wewill show that for this groupa reference
frame is physically equivalent to twoparticles—one that serves as a reference
for position and the other one as a reference for velocity.

Relative subsystems
Here we construct the description of the setup in Fig. 1 from Alice’s refer-
ence frame. First, wefind the subsystemof the fullA andS system thatAlice
has access to. Afterwards, we construct a map form the Hilbert space
associated to the external observer, Eve (see Subsection Modelling a quan-
tum reference frame), to aHilbert space with a tensor product structure that
is natural from the point of viewA. This map entails a refactorisation of the
Hilbert space, which can be interpreted as “jumping” into Alice’s reference
frame.We study how the representation of the invariant subsystem changes
under this refactorisation.We find that the full invariant subsystem is larger
than the algebra of relative observables between the system and frame. It
contains an extra subsystem, which we call the “extra particle,” due to its
physical realisation in the case of the Galilei group, discussed in Subsection
Centrally extended Galilei group.

The invariant subsystem. FromEve’s perspective, theHilbert space ofA
and S factorises as HASjE ¼ HAjE �HSjE. We call this tensor product
factorisation the standard partition. In the standard partition, G acts
transversally on operators T, as T 7!LAð gÞ � USð gÞTLyAð gÞ � Uy

Sð gÞ,
for g∈G. Throughout, we assume thatG is a unimodular group and that
theHilbert space onwhich it acts is separable. Unless otherwise stated, all
operators are assumed bounded.

What are the degrees of freedom that Alice has access to, and how
would she describe them?By assumption,Alice has no access to the external
reference frameE. Therefore, she has only access to theG-invariant degrees
of freedom of theAS system. That is, operators onHASjE that are invariant
under the transversal action of G: T ¼ LAð gÞ � USð gÞTLyAð gÞ � Uy

Sð gÞ,
for all g∈G. Note that she has access to all these degrees of freedom. This
fact can be derived from the description of relative operators given inEq. (8):
if an observer loses access to the reference frame relative to which their
description of the system is given, they would still be able to make sense of
the subset of relative operators that are localised entirely on the system, and
these are exactly the set of invariant operators on the system. This argument
justifies our use of an incoherent group averaging approach to QRFs.

Therefore, we see that symmetry considerations alone donot imply the
coherent group averaging approach. Indeed, when we use coherent twirling
instead of incoherent, we domore than implementing a symmetry resulting

from the lack of a reference frame—we impose a charge sector.Moreover, as
we show in Methods: Group action in A’s decomposition, this result is
independent of the external reference frame that is assumed in the deriva-
tion, which justifies lifting it to a general principle that holds even when an
external reference frame does not exist physically.

The set of all bounded G-invariant operators forms an algebra, which
we call the invariant subsystem. We assume that Alice has access to all of
these (and only these) operators.

Note that any unitary representation of a locally compact groupG on a
separable Hilbert space H induces an analogous decomposition to that in
Eq. (6),H¼LqJ ðqÞ �KðqÞ, such thatG acts irreducibly on eachJ ðqÞ and
trivially on each KðqÞ. In general, the labels q need not go over all possible
irreps, like in the case of the regular representation, and the Hilbert spaces
KðqÞ need not be of the same dimension as J ðqÞ. This decomposition is a
consequence of the fact that a generally reducible representation splits into a
direct sum of irreps, some of whichmight have nontrivial multiplicities. By
Schur’s lemma, all invariant operators are proportional to the identity on
J ðqÞ for all q and are possibly nontrivial on the multiplicity factors KðqÞ.
These operators form the invariant algebra, or the invariant subsystem. Its
commutant—which is the algebra with trivial action on the multiplicity
factorsKðqÞ—iswhatwe call the gauge subsystem.For example, in the caseof
the Galilei group for a system of particles, the gauge subsystem corresponds
to the centre of mass degrees of freedom7–9.

In our case, any operator on the gauge subsystem is physically irrele-
vant forAlice—it is redundant. This redundancy can be removed by aplying
a superopertaor projectorT AS that projects the algebraof operators over the
Hilbert space onto the invariant algerba. In the case of compact groups, this
projector is given by the G-twirl3,

T AS ¼
Z

dg LAð gÞ � USð gÞ � LyAð gÞ � Uy
Sð gÞ: ð7Þ

As shown in ref. 3, this operation is equivalent tofirst projecting the operator
into a block-diagonal form over the charge sectors (i.e., killing off-diagonal
elements between subspaces corresponding to different charges), followed
by applying fully depolarising channels in the left tensor factors. In the
standard partition, the space of physically relevant (bounded) operators
from the point of view of Alice, denoted by BinvðHASjEÞ, is defined by those
operators which are invariant under the G-twirl, T inv ¼ T AS½T inv�.
BinvðHASjEÞ is a proper subspace of the vector space of operators on
HASjE, called LðHASjEÞ.

Note that BinvðHASjEÞ is independent of Eve’s external reference
frame, E, with respect to which the systems A and S, and the action of G
were defined. More precisely, as we show in Methods: Independence of
external frame, the invariant algebra of a given system (in this caseAS) is the
largest common subalgebra of the “relative algebra” (to be defined precisely
shortly)ASjE for all conceivable external reference framesE. The invariant
algebraBinvðHASjEÞ can thus be regarded asmeaningful on its own.We can
imagine external reference frames being “out there”ornot; our framework is
agnostic to their existence.

Let us now turn to Alice’s perspective on S. Imagine that Alice
describes an operator T acting on the system from her point of view. What
would be the corresponding operator in the standard tensor product
decomposition?We denote the operator TS onS relative to A by TSjA. All
operations on S from Alice’s viewpoint correspond to elements of the
algebra of system S relative to reference frame A, denoted SjA. In the
standard partition, elements TSjA 2 SjA are of the form3,4,13,14

TSjA ¼
Z

dg ∣gi h g∣A � USð gÞTSU
y
Sð gÞ; ð8Þ

where TS is an operator onHSjE. Seen as an abstract mathematical object,
SjA is independent of the choice of tensor product decomposition: as we
will see below, it can have different representations, which are natural to the
viewpoint of different reference frames. A rough analogy is that of a point or
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a tangent vector to a manifold, which can be represented in different
coordinate systems, which are natural from the viewpoint of different
observers.

Note that SjA is not the full algebra of G-invariant operators. This is
because the reference frameA lives in aHilbert space that carries the regular
representation of G, which is reducible (see Eq. (6)). As such, it has multi-
plicity subspaces that are invariant under the action ofG2,3. Themultiplicity
degrees of freedom are invariant under the transversal action of G, as this
action is defined in terms of the left-regular representation. As a con-
sequence, any operator TR onHASjE of the form

TR ¼
M
q

1ðqÞ
AL

� T ðqÞ
AR

� 1S ð9Þ

isG-invariant.Here, thefirst tensor factor denotes the subsystemofAwhere
LAð gÞ acts, the second denotes the subsystem of A where RAð gÞ acts (see
Eq. (6)) and the third one denotes S’ degrees of freedom (all in Eve’s
standard partition). Note that operators of the form (9) generally overlap
with SjA, but do not belong to it. Therefore, the full invariant system is
strictly larger than SjA. This fact will be important in what follows, as we
shall introduce an “extra particle” belonging to the full invariant system.

Change of preferred tensor product factorisation. We now construct
a representation of the invariant subsystem that captures Alice’s per-
spective in a natural way. Namely, a representation that (i) contains only
degrees of freedom accessible to Alice (i.e., it is gauge-free), (ii) contains
SjA as an explicit tensor factor. We call this representation “Alice’s
perspective.” This term is motivated by the conventional treatment of
subsystems in quantum mechanics, where each subsystem has a tensor
factor of its own (more generally, as noted in Subsection Modelling a
quantum reference frame, a subsystem is associated with a subalgebra).
Thus, when Alice refers to “the system,” she is implicitly referring to the
system relative to her reference frame. Alice’s perspective makes this fact
explicit. Moreover, it is justified from an operational perspective (see for
example ref. 62), where Hilbert space operators represent experimental
procedures defined with respect to laboratory instruments – Alice’s
reference frame, A, in this case.

The first step is to note that there exists an alternative factorisation of
HASjE that is induced by the algebra SjA and its commutant, C:

HASjE ffi HC �HSjA ¼: HC;SjA: ð10Þ

To see that this is the case, let us construct explicitly a Hilbert space iso-
morphism. First, define

FE!A∣giAjE � ∣αiSjE ¼ ∣giC � ∣αiSjA; ð11Þ

where ∣αiSjE and ∣αiSjA are fixed yet arbitrary bases of HSjE and HSjA,
respectively. The isomorphism can then be written as a map
VE!A : HASjE �!HC;SjA, defined by VE!A ¼ FE!A°U

y
SðĝAÞ, where

Uy
SðĝAÞ ¼

Z
dg ∣gi hg∣A � Uy

Sð gÞ: ð12Þ

As a consequence of the orthogonality of the vectors ∣giA,Uy
SðĝAÞ is a

unitary operator on HASjE. It then follows that HC carries the left- and
right-regular representations ofG, andHSjA carries a representationUS∣A of
G which is isomorphic to US. (A transformation of the form of Eq. (12) is
called a “trivialisation map” or a “disentangler” in ref. 38 and ref. 52.)

A straightforward calculation shows that the super-operator VE!A ¼
VE!A � Vy

E!Amaps the representationofSjE inHASjE to the tensor factor
HSjA,

VE!A

Z
dg∣gi hg∣A � USð gÞTSU

y
Sð gÞ

� �
¼ 1C � TSjA; ð13Þ

where hα∣STS∣βiS ¼ hα∣SjATSjA∣βiSjA.
Note that, from Alice’s perspective, operators on HC;SjA are not

redundancy-free. This is because we have not projected out the gauge
subsystem as in Eq. (7). To do so, we use that VE!A maps the gauge
subsystem to the left-regular representation ofHC:

VE!A½LAð gÞ � USð gÞ� ¼ LCð gÞ � 1SjA: ð14Þ

We prove Eq. (14) in Methods: Group action in A’s decomposition.
Therefore, we can equivalently eliminate the gauge degrees of freedom from
any operator by projecting it onto the operator subspace that is invariant
under the action of the left-regular representation in HC. Let
T C ¼ VE!A°T AS°V

y
E!A. Using Eq. (14), it is straightforward to verify

that this is a superoperatorprojector on the invarinat subsystemwith respect
to the left-regular representation inHC. The full procedure of refactorising
the Hilbert space and eliminating the redundancy is captured by the map
EA ¼ T C°VE!A ¼ VE!A°T AS. In Methods: Explicit form of the EA

transformation, we obtain a useful expression for this transformation in the
case of compact groups. This means that removing the redundancy and
changing the factorisation commute in a natural way.

Following the reasoning leading to Eq. (6) and the discussion below it,
we see that all operators in BinvðHC;SjEÞ are of the form

T inv ¼
M
q

1ðqÞ
CL

� T ðqÞ
CR;SjA; ð15Þ

where T ðqÞ
CR ;SjA is an operator onHðqÞ

CR
�HSjA, with a notation analogous to

that of Eq. (6). Clearly, the identity operators 1ðqÞ
CL

are not physically mean-
ingful for Alice, as she cannot access the gauge subsystem. For this reason, we
could define Alice’s perspective by projecting Eq. (15) on each charge sector q
and then tracing out the correspondingHðqÞ

CL
Hilbert space. However, we will

keep the operators1ðqÞ
CL

as in Eq. (15) formathematical convenience, as will be
clear in Subsection Quantum reference frame transformations.

To summarise, in the perspective of A, the full Hilbert space is asso-
ciated with the following decomposition:

HC;SjA ¼
M
q

Hq
CL

�Hq
CR

 !
�HSjA; ð16Þ

where the left subsystem of C contains the gauge degrees of freedom.

The extra particle. What is the physical meaning of the right-regular
subsystem ofC? To answer this question, consider a general operator on
C,
R
dg 0dgTðg 0; gÞ∣g 0i hg∣C � 1SjA, and act on it with T C. The result is

T inv ¼
Z

dg 0 dgTðg 0; gÞRy
Cðg 0ÞRCð gÞ � 1SjA: ð17Þ

Tinv isG-invariant, and therefore represents a physically meaningful operator,
expressed in Alice’s perspective. We call the set of these operators the algebra
SjA. It is thecomplementofSjA in the full invariant subsystem,BinvðHC;SjAÞ,
in the sense that its tensor product with SjA gives the full invariant sub-
system, BinvðHC;SjAÞ ¼ SjA� SjA.

In the standard partition, SjA corresponds to a subsystem which is
non-trivial in both the right-regular representation and the system, as can be
seen by applying the inverse of Eq. (12) to a general operator on SjA.
Explicitly, in the standard partition, SjA consists of operators of the form

T
SjA ¼

Z
dg 0 dg∣g 0i hg 0∣TR

AjE∣gi hg∣AjE � USjEðg 0ÞUy
SjEð gÞ; ð18Þ

where TR
AjE is left-invariant.

We call the algebraSjA the “extra particle,”because it formally satisfies
(in a single mass sector) the algebra of a single particle in the case of the
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centrally extended Galilei group, as we show in Subsection Centrally
extended Galilei group. As we will see in Subsection Quantum reference
frame transformations, SjA is essential to the unitarity of quantum refer-
ence frame transformations at the level of algebra of observables. For this
reason, we argue that, in a fully relative formulation of quantummechanics,
the “extra particle” has to be considered standardly when we refer to a
quantum system. In this way, the relative nature of quantum objects with
respect to a reference frame,which is normally considered implicit, becomes
explicit in our formalism. Moreover, the extra particle is key tomaking our
formalism consistent with the potential existence of an external frame, thus
solving the problem presented in the Introduction.

One might wonder under which circumstances the extra particle does
not play a significant role and can be considered implicitly. This is the case
when the state of the reference frameA inE’s factorisation is classical, that is,
for states onHAS of the form ∣gi hg∣A � ρS for g∈G and ρS a state onHS,
or any convex combination (probabilistic mixture) of such states. Applying
T C°VE!A to any such state, we immediately see that the extra particleSjA
is in themaximallymixed sate and in a tensor product with the state ofSjA.
In this sense, the extra particle carries information about the “quantumness”
of the reference frame state. This “quantumness” is independent of any
potential external observer, as SjA is part of the invariant subsystem. This
implies that our framework distinguishes between a coherent superposition
of states related by a “gauge transformation” and a classical mixture thereof
(both as defined in Eve’s perspective). This is not surprising: these two states
are indeed different, and there is no reason to expect that they should
coincide in the invariant subsystem. Alice can check this difference even if
she does not have access to Eve’s reference frame. However, she cannot see
the difference by doing operations onSjA alone—the algebraSjA is key in
this distinction. This fact distinguishes our approach from the perspective-
neutral framework for quantum reference frame transformations, in which
a coherent superposition and a mixture of states related by a “gauge
transformation” are mapped to the same zero-charge state63. The reason
behind this is that the perspective neutral framework does not consider the
information carried by SjA and its correlations with SjA.

Quantum reference frame transformations
Consider now 2 observers, Alice and Bob, with QRFsA andB, respectively.
The total Hilbert space in the standard partition isH ¼ HA �HB �HS

(we omit the explicit reference to Eve’s reference frame for simplicity). As
before, A and B are perfect reference frames, soHA andHB each carry the
left- and right-regular representation of G.HS carries an arbitrary unitary
representation of G. Following the procedure of Subsection Relative sub-
systems, we can express the invariant subsystem of the joint systemABS in
the perspective of Alice. This gives rise to the invariant subalgebra
BinvðHC;BSjAÞ, where HC;BSjA ¼ HC �HBSjA ¼ HC �HBjA �HSjA,
with obvious notation. The spaceHC decomposes into a left- and a right-
invariant part. The left-invariant part is the subsystem BSjA and the right-
invariant part is the gauge subsystem.

An analogous procedure gives rise to Bob’s perspective, corresponding
to the algebraBinvðHD;ASjBÞ. As in the case of Alice,HD decomposes into a
left- and a right-invariant parts, which are the extra particle ASjB and the
gauge subsystem from B’s perspective, respectively. In what follows, we
construct a unitary map that relates Alice’s and Bob’s perspectives. To
this end, we note that both perspectives are unitarily related to the
standard decomposition (E). Then, to “jump” between the perspective of
A andB, we canmap the representation ofA to that ofE and thenmap the
representation of E to that of B. This same logic is used to relate different
QRFs in the “perspective neutral” approach38.

We define a quantum reference frame transformation from Alice to
Bob, SA!B : BinvðHC;BSjAÞ�!BinvðHD;ASjBÞ, as

SA!B ¼ VE!B°V
y
E!A: ð19Þ

Following the same logic as in Subsection Change of preferred tensor pro-
duct factorisation, we define VE!B ¼ VE!B � Vy

E!B and

Vy
E!A ¼ Vy

E!A � VE!A. Here, VE!B ¼ FE!B°U
y
ASðĝBÞ and

VE!A ¼ FE!A°U
y
BSðĝAÞ, where

UBSðĝAÞ ¼
Z

dg ∣gi hg∣A � LBð gÞ � USð gÞ; ð20aÞ

UASðĝBÞ ¼
Z

dg LAð gÞ � ∣gi hg∣B � USð gÞ: ð20bÞ

FE!A acts as FE!A∣giA∣hiB∣αiS ¼ ∣giC∣hiBjA∣αiSjA, and an analogous
equation holds for FE!B.

The quantum reference frame transformation of Eq. (19) generalises the
one of ref. 37 for Lie groups by including the algebra of the extra particle. To
see this, we write Eq. (19) in a similar form to that of ref. 37. Assume thatG is
a Lie group such that, for any g∈G, we can write Uð gÞ ¼ expð�i λg � XÞ,
where λg is a vector of parameters corresponding to g andX is a vector whose
components are the generators of the Lie algebra of G. Under these condi-
tions, as shown in Methods: Exponential representation of quantum refer-
ence frame transformation, we arrive at the following form

SA!B ¼ PA!Be
i
R

dgλg ∣gihg∣BjA �ðXBSjA þXSjAÞ; ð21Þ

wherewe have left tensor products with the identity operator implicit. Here,
X
BSjA is the infinitesimal generator acting on the extra particle BSjA and

XSjA is the infinitesimal generator on the subsystem SjA. The parity-swap
operator PA!B acts as

PA!B∣giBjA ¼ ∣g�1iAjB; ð22Þ

with an implicit trivial action on all subsystems other than BjA. A few
comments are in order: (1) The transformation of Eq. (21) includes extra
degrees of freedom in the form of the extra particle BSjA; (2) the trans-
formation is block diagonal, with each block corresponding to a different
irreducible representation of G, labeled by q, so the choice q = 0 is not
necessary and we can focus on any sector for arbitrary q; (3) for the special
case q = 0, the transformation is compatible with to that of ref. 37. Consider
the translation group as an example. In this case, Eq. (21) reads

SA!B ¼ PA!Be
ix̂BjA p̂

BSjA þ p̂SjA

� �
;

ð23Þ

which differs form the one of ref. 37 due to the extra term p̂
BSjA. In the case of

zero total momentum, this term vanishes and both transformations are equal.
We can now use Eq. (19) to compute the transformation of operators

from the perspective ofA to that ofB. Let us divide the set of operators in the
reference frame ofA into 3 classes. Class 1 is made of operators of the form
1C � 1BjA � TSjA, i.e., elements ofSjA; class 2 is made of operators of the
form 1C � TBjA � 1SjA, i.e., elements of BjA. Finally, class 3 is made of
operators of the form TR

C � 1BjA � 1SjA, where T
R is left-invariant, i.e.,

elements ofBSjA. The transformation of each of these 3 classes of operators
is computed explicitly in Methods: Transformation of relative subsystems.
The result is

SA!B½1C � 1BjA � TSjA� ¼
Z

dg ∣gi hg∣AjB � 1D � USjBð gÞTSjBU
y
SjBð gÞ

ð24aÞ

SA!B½1C � TBjA � 1SjA� ¼
Z

dhdg ∣h�1i hh∣TAjB∣gi hg�1∣AjB�

RDðh�1gÞ � USjBðh�1gÞ
ð24bÞ

SA!B½TR
C � 1BjA � 1SjA� ¼

Z
dg ∣gi hg∣AjB � RDð gÞTR

DR
y
Dð gÞ � 1SjB: ð24cÞ
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Equation (24) fully characterise the relation between A’s natural tensor
product factorisation andB’s. We thus see that a quantum reference frame is
a preferred tensor factorisation of the invariant subsystem. Alice and Bob
have 2 such partitions, natural to their relative degrees of freedom. This fact is
at the heart of the relativity of entanglement under QRF transformations37,52.
As we show in Methods: Restriction to the zero-charge sector, in the zero-
charge sector Eq. (19) reduces to the QRF transformation found in ref. 39,
which is equivalent to that of ref. 37 for the case of translations.

Note thatSjA andSjB partially overlap but are not equal. The same is
true for the subalgebrasBSjA andASjB. For this reason, we cannot expect
these subalgebras to be unitarily related. However, the extra particle comes
to the rescue, as it complements each ofBSjA andASjB to the full invariant
subsystem. This is why the extra particle is essential for unitarity.

It is worth emphasising the generality of the transformations in Eqs.
(24). They do not merely allow us to say how to “jump” between two fixed
reference frames, but also how the description from the point of view of one
reference frame would change if that reference frame is subjected to an
arbitrary active transformation from the perspective of another. For
instance, if Alice applies an active unitary transformation on B, UBjA, the
state of the invariant subsystem in the perspective of Bob would undergo a
corresponding passive unitary transformation, whose form can be com-
puted from Eq. (24b) by plugging UBjA in the place of TBjA. The trans-
formation seen by Bob would generally spread over the system, Alice’s
frame, as well as the extra particle, where the latter is again essential for
recovering unitarity (see Methods: Extra particle and unitarity). The
transformations of Eq. (24) are obviously not restricted to scenarios invol-
ving two reference frames, as additional frames can be included in S.

Note that the extra particle SjA arising in the description of a given
systemS by a given frameA overlaps with any relative system, such asBjA,
that may be brought into the description relative toA, and in this sense can
be said to contain information about the “rest of the world” relative toA (of
course, if we consider the extra particle SBjA, it would be separate from
bothSjA andBjA). This explainswhy, ifwe jump froma classical frame to a
frame in a superposition, any system that was previously in a pure non-
invariant state would look correlated with any other such system in the
universe, yet its purification can be found in its corresponding extra particle
without violating the monogamy of entanglement. It is important to stress,
however, that even though the extra particle overlaps with additional sys-
tems (including other reference frames) relative to the frame in question, it
does not contain gauge degrees of freedom as it is fully within the invariant
subsystem of the system and frame.

To summarise, our framework decomposes the full invariant sub-
system as a network of subsystems, whose “threads” represent the view-
points ofA andB. AQRF transformation is a change from a decomposition
which isnatural toAlice to adecompositionwhich isnatural toBob.Figure2
depicts how each subalgebra in Alice’s reference frame commutes or fails to
commute with each subalgebra in Bob’s partition. The vertical “threads”
correspond toAlice’sQRF,whereas the horizontal ones correspond toBob’s
QRF. More generally, we can imagine multiple reference frames and the
corresponding network of relative subalgebras related via analogous prin-
ciples.A feature of these algebraic relations is that, as commented earlier (see
Methods: Independence of external frame, they concern algebras that are
independent of external reference frames, yet compatible with any potential
external reference frame in the sense that they would automatically embed
as subalgebras of the corresponding larger invariant algebra entailed by the
existence of such a frame. This unveils a mathematical landscape of nested
subalgebras that may represent both actual and potential scenarios.

Centrally extended Galilei group
In this Subsection, we apply our framework to the case of the centrally
extendedGalilei group.We start by briefly introducing theGalilei group and
its central extension. Then, we compute the algebrasSjA andSjA, and give
a physical interpretation of the regular representation as a quantum refer-
ence frame. For simplicity, we treat the case of 1 spatial dimension and focus
only on spatial translations and boosts, leaving time translations to further

work. Although our treatment is formal, glossing over normalisation issues
and applying our theory to unbounded operators (strictly speaking, it is
developed for bounded operators only), we extract the essential physics and
obtain compelling insights about the physical realisation of the regular
representation as a QRF. It would be interesting to see if our construction
can be cast in the rigorous formulation of covariant “screen observables” for
the Galilei and Poincaré groups64. In addition, the recent developments of
ref. 65 might also be helpful in this regard.

Introducing thegroup. In 1 spatial dimension, theGalilei group consist in
elements (a, v), labeled by a translation parameter a 2 R and a boost
parameter v 2 R. Physically, the transformation (a, v) means changing to
a reference frame which is displaced in space by a distance a and moving
with a constant velocity vwith respect to the original reference frame. The
composition rule of the Galilei group is ða0; v0Þ � ða; vÞ ¼ ða0 þ a; v0 þ vÞ.

Galilean transformations on a quantum particle of mass m are gen-
erated by the momentum operator p̂ (translations) and by the boost
operator k̂ ¼ p̂t �mx̂ (boosts), where t is the time and x̂ is the position
operator. The commutation relation of the group is ½p̂; k̂� ¼ im. The non-
commutativity of theGalileangenerators inquantummechanics implies the
well known fact that the Galilean group has a projective representation in
Hilbert space

U ðmÞða0; v0ÞU ðmÞða; vÞ ¼ ei
m
2 ðav0�a0vÞUða0 þ a; v0 þ vÞ; ð25Þ

where Uða; vÞ ¼ expð�iðap̂þ vk̂ÞÞ. In order to apply our framework, we
consider the central extension of the Galilei group, ~G (see, for example,66,67).
~G has group elements (θ, a, v) and group multiplication rule
ðθ0; a0; v0Þ � ðθ; a; vÞ ¼ ðθ0 þ θ þ φða0; v0; a; vÞ; a0 þ a; v0 þ vÞ, where
φða0; v0; a; vÞ ¼ ðav0 � a0vÞ=2. For a given mass m, we define the (irre-
ducible) representation of ~G by ~U

ðmÞðθ; a; vÞ ¼ eimθU ðmÞða; vÞ. It is easy to
check that Eq. (25) is an ordinary (i.e., not projective) representation of the
centrally extended Galilei group.

Fig. 2 | Natural subsystem decompositions. The full invariant system can be
decomposed in a way that is natural to A (vertical, orange “threads'') and in a way
that is natural toB (horizontal, green threads). A QRF is a preferred factorisation of
the invariant system, and a QRF transformation is a change from one preferred
factorisation to another. In this illustration, when 2 different subsystems overlap it
means that their corresponding operators don’t commute in general. In this way,
when A refers to “the system,” she is actually referring to the subsystem AjB, which
overlaps withSjB andAjB from the point of view ofB. Note that the inclusion of the
subsystemsSBjA andSAjB is essential to find a unitary relation betweenA's andB's
tensor product factorisations.
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The centrally extendedGalilei group involves an additional parameter,
θ, whose physical meaning as the conjugate variable to a dynamical mass
variable has been discussed in the literature67–71. Regardless the specific
meaning of θ, we do not miss any physics by conceiving a (possibly ficti-
tious) reference frame for it, since the physically accessible projective
representations of the Galilei group are naturally recovered in the case of
reference frames of fixed mass. What is more, this treatment highlights the
interesting possibility of having an explicit QRF for dynamical mass,
allowing for coherences between different mass sectors.

QRFs for the centrally extendedGalilei group. Suppose thatA is aQRF
carrying the regular representation of ~G. This representation is spanned
by vectors of the form

∣ðθ; a; vÞi ¼
Z �

dmdp
ffiffiffiffi
m

p ð~U ðmÞðθ; a; vÞ∣m; piLÞ � ∣m; piR; ð26Þ

with θ; a; v 2 R66, and has inner product (see Methods: Basis vectors for
centrally extended Galilei group)

hðθ0; a0; v0Þjðθ; a; vÞi ¼ δðθ0 � θÞδða0 � aÞδðv0 � vÞ: ð27Þ
Consider a systemS carrying an irreducible representation of ~G, labeled

by the mass mS. This is equivaent to a particle of mass mS. (While we are
considering a single such system, our results apply automatically to a system
of multiple particles, where the role of S would be played by the centre of
mass.) Using Eq. (8) we can compute the generators of Galilean transfor-
mations, p̂SjA and k̂SjA, in the standard partition. As shown in Methods:
Relative generators for the centrally extended Galilei group, the result is

p̂SjA ¼ 1A � p̂S �mS

Z
dθdadv v ∣ðθ; a; vÞi hðθ; a; vÞ∣A � 1S; ð28aÞ

k̂SjA ¼ 1A � k̂S þmS

Z
dθdadv a ∣ðθ; a; vÞi hðθ; a; vÞ∣A � 1S: ð28bÞ

Note that the integral terms in Eqs. (28a) and (28b) can be interpreted as
velocity and position operators on the Hilbert space of the reference frame.
In terms of the decomposition into irreducible representations of the
reference frame, the generators read

p̂SjA ¼ 1A � p̂S �mS

Z � dm
m

p̂ðmÞ
AL

� 1ðm�Þ
AR

� 1ðmÞ
AL

� p̂ðm�Þ
AR

� �
� 1S;

ð29aÞ

k̂SjA ¼ 1A � k̂S �mS

Z � dm
m

k̂
ðmÞ
AL

� 1ðm�Þ
AR

� 1ðmÞ
AL

� k̂
ðm�Þ
AR

� �
� 1S;

ð29bÞ

where we have taken t = 0 for simplicity. Here, 1A ¼ R�dm1ðmÞ
AL

� 1ðm�Þ
AR

,
and we have used the same notation as in Subsection Relative subsystems.

We can use Eqs. (29) to compute the algebra of the extra particle in the
standard partition (see Methods: Relative generators for the centrally
extended Galilei group):

p̂
SjA ¼ p̂RA � 1S þ 1A � p̂S �mS

Z � dm
m

p̂ðmÞ
AL

� 1ðm�Þ
AR

� 1ðmÞ
AL

� p̂ðm�Þ
AR

� �
� 1S;

ð30aÞ

k̂
SjA ¼ k̂

R

A � 1S þ 1A � k̂S �mS

Z � dm
m

k̂
ðmÞ
AL

� 1ðm�Þ
AR

� 1ðmÞ
AL

� k̂
ðm�Þ
AR

� �
� 1S;

ð30bÞ

where p̂RA ¼ R�dm1ðmÞ
AL

� p̂ðm�Þ
AR

and p̂ðm�Þ
AR

and k̂
ðm�Þ
AR

are the generators

of the complex-conjugate representation acting on AR. The generators

of the extra particle, p̂
SjA and k̂

SjA, satisfy the commutation relations

p̂
SjA; k̂SjA

h i
¼ �iðM̂A � 1S þ 1A �mS1SÞ, where M̂A ¼ R�dmm1ðmÞ

AL

�1ðm�Þ
AR

. The reason for the minus sign in the commutation relation

of the extra particle is a consequence of the commutation relations

of the complex-conjugate representation p̂ðm�Þ
AR

and k̂
ðm�Þ
AR

, which

satisfy p̂ðm�Þ
AR

; k̂
ðm�Þ
AR

h i
¼ �im1m�

AR
.

Althoughm can take, in principle, values over allR, we can focus on
the positive mass case by restricting the set of states on which our operators
act. Let us now focus on a single mass sector of the regular representation,
corresponding to mass m > 0. In Methods: Basis vectors for centrally
extended Galilei group, we discuss normalisation issues that arise when
restricting to a singlemass sector. In what follows, it will bemore instructive
to deal with position operators instead of boost operators, so we write
the boost operators in terms of position ones in Eq. (29). Thus, we focus on

the momentum operator p̂ðmÞ
SjA ¼ 1ðmÞ

A � p̂S � ðmS=mÞðp̂ðmÞ
AL

� 1ðm�Þ
AR

�
1ðmÞ
AL

� p̂ðm�Þ
AR

Þ � 1S and the position operator x̂ðmÞ
SjA ¼ 1ðmÞ

A � x̂S�
x̂ðmÞ
AL

� 1ðm�Þ
AR

þ 1ðmÞ
AL

� x̂ðm�Þ
AR

� 1S, where 1
ðmÞ
A ¼ 1ðmÞ

AL
� 1ðm�Þ

AR
.

We will now show that the system A can be seen as consisting of two
particles, called Am1

and Am2
of respective masses m1 and m2, such that

m1 + m2 = m, where Am1
serves as a reference for position and Am2

as a

reference for velocity. We define x̂Am1
¼ ðmx̂ðmÞ

AL
� 1ðm�Þ

AR
�m21

ðmÞ
AL

�
x̂ðm�Þ
AR

Þ=2m1, and x̂Am2
¼ ðmx̂ðmÞ

AL
� 1ðm�Þ

AR
þm11

ðmÞ
AL

� x̂ðm�Þ
AR

Þ=2m2. The

momenta p̂Am1
and p̂Am2

are the conjugate variables to x̂Am1
and x̂Am2

,

respectively. In this way, x̂ðmÞ
AL

� 1ðmÞ
AR

(the left-regular representation) can be

seen as the position operator for the centre of mass of a system of our two

particles, Am1
and Am2

. That is, x̂ðmÞ
AL

� 1ðmÞ
AR

¼ ðm1x̂Am1
þm2x̂Am2

Þ=m.

Similarly, the operator p̂ðmÞ
AL

� 1ðm�Þ
AR

is the momentum of the centre of mass,

p̂ðmÞ
AL

� 1ðmÞ
AR

¼ p̂Am1
þ p̂Am2

. On the other hand, the operator 1ðmÞ
AL

� x̂ðm�Þ
AR

(the right-regular representation) is proportional to the relative

distance between Am1
and Am2

, 1AL
� x̂ðm�Þ

AR
¼ ðm2=mÞðx̂Am2

� x̂Am1
Þ,

whereas 1ðmÞ
AL

� p̂ðm�Þ
AR

corresponds to the relative momentum,

1ðmÞ
AL

�p̂ðm�Þ
AR

¼ p̂Am1
� ðm1=m2Þp̂Am2

.
Putting everything together, we arrive at

x̂SjA ¼ 1A � x̂S � x̂Am1
� 1S ð31aÞ

p̂SjA ¼ 1A � p̂S �mS

m2
p̂Am2

� 1S; ð31bÞ

which expresses x̂SjA and p̂SjA as the position and momentum relative to
two different particles, as we wanted to show.

We can also rewrite the algebra of the extra particle in terms of the two
independent particles Am1

and Am2
. For a single mass sector labeled bym,

we plug the definition of Am1
and Am2

into Eq. (30), obtaining

x̂
SjA ¼ 1

m1 þm2 þmS

ðm2 þmSÞx̂Am1
� 1S �m2x̂Am2

� 1S �mS1A � x̂S
� � ð32aÞ

p̂
SjA ¼ p̂Am1

� 1S þ 1A � p̂S �m1 þmS

m2
p̂Am2

� 1S: ð32bÞ
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Note that p̂
SjA in Eq. (32b) is nothing elese than the relative momentum of

particles S and Am1
with respect to particle Am2

.
If we have 2 QRFs, A and B, for the centrally extended Galilei group,

the natural tensor product decompositions associated to A is related to the
decomposition of B via Eqs. (24). In Methods: Relative generators for the
centrally extended Galilei group, we compute explicitly the QRF transfor-
mation connecting the infinitesimal generators of the group “as seen” from
QRF A to those “as seen” from QRF B.

In conclusion, the regular representation of the centrally extended
Galilei Group can be seen as a system of variable mass, which under a
properly normalised restriction to a fixedmass sector, consists of 2 particles,
one of them serving as a QRF for position and the other as a QRF for
velocity. These particles transformunder the usual projective representation
of the Galilei group. (In future work, it would be interested he formalism
presented here can be extended to the case of projective representations).
The case of a single mass sector withm1 =m2 =m/2 is depicted in Fig. 3.

Comparison with other frameworks. It is instructive to compare our
framework in a given mass sector with other proposals for the relational
description of multi-particle systems under Galilei and translation
symmetries7,9,37,38. Assume that our reference frame A in the given mass
sector is realised by particles 1 and 2 (we drop the label A for simplicity)
serving as references for position and velocity, respetcively, and let the
systemS consist ofN–2 particles, labeled by i = 3,⋯ ,N. Denote themass
of particle i bymi and the pair of its position andmomentum operators in
the standard partition by (x̂i, p̂i), i = 1,⋯ ,N. TheHilbert space of such an
N-particle system defined relative to a hypothetical external observer
decomposes as9 H ffi HCM �Hrel , where HCM is the gauge subsystem
corresponding to the centre of mass, defined by the position and
momentum operators x̂CM ¼Pimix̂i=M; PCM ¼Pip̂i, where
M = ∑imi, and Hrel is the invariant subsystem containing relational
degrees of freedom.

In our framework, the choice of particles 1 and2 as aQRFgives rise to a
decomposition of the invariant subsystem into a tensor product of theN–2
“system” particles defined relative to the QRF, plus the corresponding extra
particle. The relative particles are given by the canonically conjugate pairs of
relative position andmomentumoperators ðx̂ij1; p̂ij2Þ, where x̂ij1 ¼ x̂i � x̂1,
and p̂ij2 ¼ p̂i � mi

m2
p̂2; for i = 3, ⋯ , N, and the extra particle by the cano-

nically conjugate pair (30) restricted to the respective mass sector.
In comparison, ref. 9 considers only a single particle as a reference for

either the position or velocity of the remaining particles. For example, if
particle 1 is used as a reference for position, this is associated with a
decomposition of the invariant subsystem into N − 1 relational particles,
defined by the relative position operators x̂ij1 ¼ x̂i � x̂1, i = 2, ⋯ , N and
canonically conjugatemomenta p̂ij1 ¼ p̂i � mi

M p̂CM . Note that, as seen from
an external observer, themomenta in this case donot have an interpretation
as the relative momenta of one particle relative to another, as the centre of
mass is not a separate subsystem from such a perspective but rather it
depends on the positions andmasses of the whole collection of particles. In
contrast, the relativemomenta definedhere dependonly on themomenta of
two particles: the momentum p̂i, i = 3, ⋯ , N and the momentum of the
reference frame for velocity, particle 2.

Reference 37 has a completely internal treatment, where one
“jumps” form the QRF of one internal observer to that of another one
without invoking an external observer. It treats translations and Galilean
boosts in 1 dimension as 2 separate cases, introducing a QRF transfor-
mation for translations and a different QRF transformation for boosts.
Similar to refs. 7,9, ref. 37 uses a single-particle model of QRF. A single
particle of finite mass m can be either a perfect reference frame for the
translation group, or a perfect reference frame for the group of Galilean
boosts in one dimension, but not for both. In contrast, here we consider,
in a fixed mass sector, a system of 2 particles serving as a QRF for both
translations and boosts (which combined form the Galilei group in 1
dimension). Note that, in the limitm→∞, a single particle can serve as a
perfect reference frame for both position and velocity. It would be

interesting to investigate the connection between this limit and the QRF
model presented here.

Reference 38 obtains the QRF transformation for translations of ref. 37
by means of a gravity-inspired momentum constraint, which forces the
centre-of-mass momentum of a “perspective neutral” state to vanish,
p̂CM ∣Ψi ¼ 0. Within the p̂CM ¼ 0 subspace, the relational variables of
refs. 37,38 are equivalent to that of 9. However, the perspective-neutral state
of ref. 38 does not have an immediate operational interpretation, as there is
no external observer “out there” to measure such a state. Our framework is
agnostic to whether such an external observer exists or not, and the con-
straint state ∣Ψi can be interpreted as a state whose centre-of-mass
momentum vanishes “as seen” by the external observer. This can be mod-
elled in our framework by introducing an external reference frame for
velocity, aligned with the velocity of the centre ofmass. In this case, we would
have a total of N+ 1 particles, where particle N+ 1 serves as a reference for
velocity (and thereby momentum), while one of the other particles, say
particle 1, serves as a reference for position. Note that Particle N+ 1 in this
example corresponds to what we have called particle Am2

in the previous
subsection. The total relative momentum with respect to particle N+ 1 thus
coincides with the momentum of the extra particle given in Eq. (32b).

Ignoring the extra particle, and assuming that the total momentum of
all particles from 1 to N is zero relative to particle N+ 1, we recover the
descriptionof refs. 37,38. Inparticular, the jumping transformations derived
there canbe understood as corresponding to changingwhichparticle from1
to N serves as a reference for position, while keeping the reference for
velocity fixed. As shown in Methods: Restriction to the zero-charge sector,
our framework, restricted to the zero-charge sector for a general group
reduces to the QRF transformation found in ref. 39. For the case of trans-
lations, this recovers formally the perspective-neutral computation of the
QRF transformation developed in ref. 37.

In Methods: Compatibility with an external zero-charge state, we
develop further the connection between our framework and the perspective
neutral oneby showing that, for compact groups, any state ρ

SjA;SjA inAlice’s
viewpoint is consistent with the existence of a reference frameB and a pure
state living in the zero-charge sector. Specifically, we show that if ρ

SjA;SjA is
an arbitrary (invariant) state of SjA and SjA in Alice’s perspective, then
there is a pure state ∣ϕiABS in Eve’s perspective such that

Fig. 3 | Physical interpretation of the regular representation of the centrally
extended Galilei Group. For a given mass sector m, the regular representation can
be seen as a system of 2 particles. Here we depict the case where each particle has a
mass m/2. In this interpretation, the left regular representation corresponds to the
degrees of freedom of the centre of mass, CM, of the 2-particle system. The right
regular representation corresponds to the distance of any of the 2 particles to the
centre of mass, or half their relative distance, REL. Imagine that Alice, using the
reference frame A (orange flag), describes an operation on the system S (in purple).
We can then ask how this operation “looks like” from the standard partition
viewpoint. Roughly speaking, in this viewpoint, A uses one of the particles,Am1

(left
orange circle), as a reference frame for position, and uses the other particle, Am2

(right orange circle), as a reference frame for velocity (see Eqs. (31)).
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(i)UABSð gÞ∣ϕiABS ¼ ∣ϕiABS for all g (i.e., the state lives in the zero-charge
subspace) and (ii) Ifwe trace outB and “jump” toAlice’s reference frame,we
obtain ρ

SjA;SjA. Notice, however, that although such a “purification” in
terms of the perspective-neutral framework is always possible, it is by no
means necessary, as our framework contains the full invariant algebra of A
and S. In fact, the extension to a zero-charge pure state is done at the
expense of adding more (gauge and invariant) variables.

Finally, the work of Angelo et al.7, proposed a relational description of
particleswithin the invariant subsystemthatuses a singleparticle, e.g., particle
1, as a reference for bothposition andvelocity of the other particles, leading to
a notion of relational particles with position and momentum operators
ðx̂ij1; p̂ri Þ, i = 2,⋯ ,N, where p̂ri ¼

m1mr
m1 þmr

ð p̂imi
� p̂1

m1
Þ (note that this notion of

relative momentum is not equal to the relative velocity of the respective
particle times its mass, but times the reduced mass of the particle and the
reference, which is needed to ensure the canonical commutation relations for
eachparticle).As emphasised in ref. 7, theseparticles arenot separate systems,
since their algebras do not commute with each other, and the canonical
commutation relations are only recovered in the limitm1 →∞.

The fact that ðx̂ij1; p̂ri Þ, as defined by Angelo et al. are not a separate
subsystems for different i has drastic consequences, as ref. 7 illustrates by
introducing the “paradoxof the 3rdparticle”. In short, the paradox concerns
the observation that, if one uses a single particle as a reference frame for both
position and velocity in the context of Galilei symmetry, one arrives to the
conclusion that the state of particle S2 defined relative to particle S1
depends on whether, relative to an external classical reference frame E
(which canbemodeledby a veryheavyparticle), there exists anotherparticle
S3, separate from S1 and S2.

The resolution of the paradox proposed in ref. 7 is that two systems that
are separate relative to E (in this case S2 and S3) may be overlapping when
described relative toS1, and therefore one cannot trace outS3 from the state
relative to S1. Note, however, that this conclusion is obtained for a different
model of QRF than the one we consider. In our framework, two separate
systemsare always separate relative toanyQRF, andonecan trace themout in
any reference frame. Nevertheless, one should do this with care. As we have
seen, when two observers using different QRFs refer to the same “system”,
they are referring to DOFs that belong to two different, albeit overlapping,
subalgebras. Thus, in general their descriptions of the “system” would not
contain the same information.Moreover, even if twoobserversAlice andBob
each describe the reference frame of the other in addition to the systemS, the
description of BS relative to Alice is given by an algebra BSjA that is not
equal to the algebraASjB describingAS relative toB. Thus, even in this case
their descriptionswould not contain the same information. The full invariant
information, which is accessible by both observers, is only obtainedwhen the
extra particle is included in the description.

Recently, ref. 40 proposed a different analysis of the paradox of the
third particle. They introduce a “relational partial trace” as a mathematical
procedure for discarding subsystems, in an attempt to resolve theparadox in
a gauge-independent way. That procedure, which has different operational
grounds, leads to conclusions that are inequivalent to ours.

Discussion
Symmetry transformations betweenQRFs can lead to amore general notion
of symmetry inquantummechanics, potentially sharpeningour operational
understanding of spacetime at the quantum level. For this reason, it is very
important to understand what is at the root of the key differences between
classical and quantum reference frame transformations. In this work, we
have developed an approach to QRF transformations that focuses on the
algebraof relativeobservables betweena systemanda reference frame.From
this point of view, aQRF transformation is a change from a preferred tensor
factorisation to another one. Moreover, given a set of QRFs, our approach
fully characterises how different subsystem decompositions are connected
to eachother.This leads to apictureof the full invariant systemof aquantum
system as being composed by a network of subalgebras, with different parts
of the network corresponding to different QRF viewpoints. A recent “per-
spective neutral” approach, presented in ref. 72, also develops QRF

transformations algebraically, for a large class of symmetry groups. While
both approaches use similar mathematical techniques, our approach is
applicable to the full invariant subsystem rather than to the zero-charge
subspace. As discussed in the introduction, this implies a significant dif-
ference in the scope and physical interpretation of the two frameworks.

Our framework is naturally compatible with an incoherent-twirling
approach to QRFs rather than a coherent twirling approach. This feature
makes our approach a good candidate for studying QRF symmetries in a
proper subsystem of the universe in the most general way. Approaches that
restrict to a given charge subspace restrict the possible states in which the
subsystem of the universe under study can be with respect to potential new
systems out there. For this reason, a framework that focuses on a given
charge subspace fails to capture the potential relation that the subsystem of
interest might have with external degrees of freedom. Our approach,
developed at the level of the full invariant subsystem of a given system, is
compatible with extending the systemwe are interested in an arbitrary way.
In this sense, our framework supports the view that, in some situations,
incoherent twirling should be preferred to coherent twirling in the quan-
tisation of systems with gauge symmetries3,73.

There are several research avenues that our work opens. On the one
hand, it would be very interesting to study QRF transformations with
respect to relativistic groups, i.e., the Lorentz and Poincaré groups, and ask
what operational notion of spacetime arises from such reference frames.
These QRF transformations would allow us to study proper subsystems
transforming under Lorentz and Poincaré symmetries, which is not thor-
oughly understood, and would be an important step towards ultimately
incorporating general relativistic symmetries, which would be important in
quantum gravity. We believe our approach is general and powerful enough
tomake such a study feasible.We note that there are recent examples in the
quantum gravity literature that do not impose a total charge equal to zero in
the Hamiltonian constraint; see, for example,74.

On the other hand, we have focused on a very restrictive notion of
quantum reference frame, namely, that corresponding to the regular
representation of the group. The reason for doing this is to make explicit
contact with our more familiar classical notion of reference frame view-
points and transformations. Admittedly, the regular representation is a
highly idealised object, and it would be very important to learn how to treat
situations in which our reference frame is bounded in resources3,7,8,73. The
first steps towards applying our framework to non-ideal frames appear in
ref. 75. We believe the solution to this open problem can yield important
insights beyond the approximation of superpositions of semiclassical causal
structures and spacetimes, as for example the case considered in ref. 76.

Methods
Lagrangians for translation gauge symmetry
Here we give an example of two different Lagrangians that have the same
gauge symmetry but impose different constraints. Our starting point is
Eq. 57 of ref. 38. In the case V = 0, it reads

L ¼ 1
2

XN
i¼1

_q2i �
1
2N

XN
i¼1

_qi

 !2

: ð33Þ

This Lagrangian specifies the dynamics of an N − particle system with
coordinates qi, i = 1,…N. It is invariant under gauge transformations rea-
lised by time dependent translations, qi → qi+ f(t), _qi ! _qi þ _f . Com-
puting the canonical momenta pi ¼ ∂L=∂ _qi and adding them up, we get a
constraint on the total momentum, P =∑ipi = 0.

At this point, it would seem that gauge invariance of the dynamics
implies that the total momentum is constrained to be zero. However, there
are more general possibilities. Consider the Lagrangian

L0 ¼ 1
2

XN
i¼1

_q2i �
1
2N

XN
i¼1

_qi �
p
N

 !2

: ð34Þ
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It is easy to check that the new Lagrangian L0 is related to L by a total
derivative. Moreover, L0 has the same gauge symmetry as L. Under time-
dependent translations, L0 changes by a total derivative.

Therefore, L0 is a completely valid Lagrangian under the lack of an
external reference frame for spatial translations. However, L0 imposes a
different constraint on the total momentum. We now
have P ¼Pipi ¼

P
i∂L

0=∂ _q ¼ p.
We have constructed an example of two systems with the same gauge

symmetry but different constraints on the total momentum, showing that a
Lagrangian having a translation gauge symmetry (q→ q+ f(t)) up to total
derivatives does not necessarily impose a vanishing total momentum as a
constraint. At the quantum level, this argument shows that the coherent
gauge condition P̂∣Ψi ¼ 0 comes froma specific choice of the Lagrangian (L
instead of L0 in our case), which imposes a constraint on a specific
momentum sector.

As explained in the main text, the condition P̂∣Ψi ¼ 0 can be inter-
preted in 2 ways: (1) P̂ is notmeasurable and is set to vanish by convention.
In this case it is clear that P = k ≠ 0 is also a valid choice. This view is
supportedbyour analisis ofL andL0 above. (2) P̂ ismeasurable and found to
vanish, as determined by some translation-invariant reference frame for
momentum. If we admit the possibility that such translation-invariant
reference frame for momentum could exist tacitly in our description, we
should express the lack of a reference frame for translations in a way that
makes no extra assumptions on the total charge. This is done by demanding
½P̂; ρ� ¼ 0 instead of P̂∣Ψi ¼ 0.

Basis vectors for centrally extended Galilei group
Here we compute the inner product between the basis vectors ∣ðθ; a; vÞi of
the regular representation of the centrally extended Galilei Group, and
discuss the normalisation of states belonging to a single mass sector. For
simplicity of notation, we omit the subscripts referring to the QRF
perspective.

The Hilbert space of the regular representation of the centrally
extended Galilei group is of the form

H ¼
Z �

dmHðmÞ
L �Hðm�Þ

R ; ð35Þ

whereHðmÞ
L (Hðm�Þ

R ) corresponds to the colour (flavour) degrees of freedom
for mass m. The left-regular (right-regular) action of the group is trivial in

Hðm�Þ
R (HðmÞ

L ) for allm. For allm, the subspaceHðmÞ
L �Hðm�Þ

R is spanned by
vectors of the form ∣m; p; qi, satisfying hm; p; qjm; p0; q0i ¼
δðp� p0Þδðq� q0Þ. The labels p and (q) are eigenvalues of the momentum

operator onHðmÞ
L (Hðm�Þ

R ). The inner product of 2 states, ∣φi ¼ R�dm ∣φmi
and ∣ψi ¼ R�dm ∣ψmi is defined by

hφjψi ¼
Z

dm hφmjψmi: ð36Þ

A normalised state ∣ψi satisfies ∫ dm 〈ψm∣ψm〉 = 1.
By analogy with the compact group case of Eq. (5), vectors corre-

sponding to a fixed group element (θ, a, v) are given by

∣ðθ; a; vÞi ¼
Z �

dmdp
ffiffiffiffi
m

p ð~U ðmÞðθ; a; vÞ∣m; piLÞ � ∣m; piR; ð37Þ

where ~U
ðmÞðθ; a; vÞ ¼ eiθe�iððaþvtÞp̂�mvx̂Þ. We show that they are ortho-

normal in a generalised sense.
Using the Baker-Campbell-Hausdorff formula, we have

~U
ðmÞðθ; a; vÞ ¼ eimðθþv

2ðaþvtÞÞe�iðaþvtÞp̂eimvx̂: ð38Þ

With the help of Eqs. (37) and (38), we can compute straightforwardly the
inner product between 2 basis elements

hðθ0; a0; v0Þjðθ; a; vÞi¼
Z

dmdpm hm; p ∣~U ðmÞ
θ � θ0 � 1

2
ðav0 � a0vÞ; a� a0; v � v0

� �
∣m; pi

¼
Z

dmdpm eimðsþβ
2ðαþβtÞÞe�iðαþβtÞpδð�mβÞ;

ð39Þ

where s ¼ θ � θ0 � 1
2 ðav0 � a0vÞ, α ¼ a� a0 and β ¼ v � v0. Because for

any normalised state there will always be an integral over β, we can use the
identity δ(−mβ) = δ(β)/m. Performing the integral over p, and going back to
the original variables, the end result is

hðθ0; a0; v0Þjðθ; a; vÞi ¼ δðθ � θ0Þδða� a0Þδðv � v0Þ; ð40Þ

as we wanted to show.
Given the fullHilbert spaceH, howdowe representnormalisable states

on a single mass sector labeled bym? Becausem is a continuous parameter,
we will only be able to do this in an approximate way. Consider the states

∣φi
mi ¼

R�dm0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðm�m0Þ

p
∣φi

m;m0 i 2 H, for i running over a set of

indices I . Let f∣φi
m;m0 igi2I be an orthonormal basis onHðm0Þ

L �Hðm0�Þ
R for

eachm0, and Δðm�m0Þ be a sharply peaked function aroundm, such that
we can approximate it by a Dirac delta, δðm�m0Þ. Then, in this limit, we
say that a normalisable state ∣ψmi 2 H belongs to the sector ofmassm if it is
of the form ∣ψmi ¼

P
iψ

i
m∣φi

mi, with
P

ijψi
mj2 ¼ 1. Then, formally, we can

write the normalised basis states of a subspace of definite massm as

∣φi
mi ¼

Z �
dm0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δðm�m0Þ
p

∣φi
m;m0 i; ð41Þ

and the projector onto the massm sector is given by

Πm ¼
X
i

∣φi
mi hφi

m∣: ð42Þ

Using the properties of the Dirac delta function, one can check that
Π2

m ¼ Πm. For an explicit constructions of a set of functions converging to
the square root of the delta function on three dimensions, see ref. 77.

Group action in A’s decomposition
Here we prove Eq. (14). By direct calculation, we find

VE!AðĝAÞ½LAð gÞ � USð gÞ� ¼
Z

dh0dh ∣h0i hh0∣ LCð gÞ∣hi hh∣C � Uy
SjAðh0ÞUSjAð gÞUSjAðhÞ

¼
Z

dh0dh ∣h0iChh0jghihh∣C � Uy
SjAðh0ÞUSjAð gÞUSjAðhÞ

¼
Z

dh LCð gÞ∣hi hh∣C � Uy
SjAðghÞUSjAð gÞUSjAðhÞ

¼ LCð gÞ � 1SjA;

ð43Þ
Where we have used that FE!A is its own inverse to change the labels in the
first step. This proves Eq. (14).

Independence of external frame
LetQ be a generic quantum system (in the context of SubsectionModelling
a quantum reference frame,Q ¼ AS). LetE be an external reference frame
with respect to which Q is described. We now show that, for any other
possible external reference frame F describing Q, the invariant subalgebra
BinvðHQÞ is the largest subalgebra common to bothBðHQjEÞ andBðHQjFÞ.
This implies that BinvðHQÞ is independent of any potential external refer-
ence frame and at the same time compatible with any such reference frame,

https://doi.org/10.1038/s42005-025-02036-x Article

Communications Physics |           (2025) 8:187 11

www.nature.com/commsphys


in the sense that it is automatically a subalgebra of the larger invariant
subalgebra arising from the addition of such a frame. It is easy to see that due
to the assumed transversal action of the symmetry group, enlarging a given
system by tensor-multiplying it with a new system always leads to a larger
invariant subsystem that contains the old one as a subsystem.

Consider a Hilbert space containing all systemsQ, E and F,HEFQ ¼
HE �HF �HQ (definedwith respect to a yetmore powerful observer). By
definition, BðHQjEÞ is formed by operators TQjE onHEFQ of the form

TQjE ¼
Z

dg ∣gi hg∣E � 1F � UQð gÞTðEÞ
Q Uy

Qð gÞ: ð44Þ

Analogously, BðHQjFÞ is made of operators of the form

TQjF ¼
Z

dg 1E � ∣gi hg∣F � UQð gÞT ðFÞ
Q Uy

Qð gÞ: ð45Þ

On the other hand, operators T on BinvðHQÞ have the form

T ¼ 1E � 1F � T inv
Q ; ð46Þ

where T inv
Q is an invariant operator,UQð gÞT inv

Q Uy
Qð gÞ ¼ T inv

Q for all g∈G.
From these definitions, it is clear that BinvðHQÞ is a common subalgebra of
BðHQjEÞ and BðHQjFÞ, as Eq. (46) is a particular case of both Eqs. (44)
and (45).

Now, let T be a common element of both BðHQjEÞ and BðHQjFÞ. We
want to show thatT 2 BinvðHQÞ. For anyHilbert space carrying the left- and
right-regular representations of G, define ∣Ωi ¼ R dg∣gi. If we set Eq. (44)
equal to Eq. (45), multiply each side of the equality by ∣Ωi hg∣E � ∣Ωi hh∣F �
1Q for arbitrary g and h, and take the partial trace on E and F, we find that

UQð gÞT ðEÞ
Q Uy

Qð gÞ ¼ UQðhÞT ðFÞ
Q Uy

QðhÞ; ð47Þ

for arbitrary g and h. Setting g = h givesT ðEÞ
Q ¼ T ðFÞ

Q ¼ TQ. Setting g = e and

h arbitrary gives TQ ¼ UQðhÞTQU
y
QðhÞ for all h. This shows

that T 2 BinvðHQÞ.

Explicit form of the EA transformation
Here we obtain an explicit form of the transformation EA ¼ T C°VE!A ¼
VE!A°T AS in the case of compact groups. Here, T AS is a superperator
projector onto the algebra of invariant (bounded) operators and
T C ¼ VE!A°T AS°V

y
E!A, where VE!A is defined above Eq. (13) in terms

of the isomorphismVE!A, defined above Eq. (12). IfG is a compact group,
T AS has a concrete representation in terms of the G-twirl, and we obtain

EA½TAS� ¼ VE!A°T AS½TAS�

¼ Uy
SjAðĝCÞ

Z
dgLCð gÞ � USjAð gÞTC;SjAL

yð gÞC � Uy
SjAð gÞUSjAðĝCÞ

¼
Z

dg LCð gÞ � 1SjAU
y
SjAðĝCÞTC;SjAUSjAðĝCÞLyCð gÞ � 1SjA

¼ T C°VE!A½TAS�:
ð48Þ

To pass from the second to the third line, we havemultiplied by the identity
in the form USjAðĝCÞUy

SjAðĝCÞ on the left of T and in the form
Uy

SjAðĝCÞUSjAðĝCÞ on the right. Then we have used Eq. (14).
In the case of compact groups, for any operator TAS ¼R

dg 0dg∣g 0i hg∣A � TSðg 0; gÞ in the standard partition, we can find its G-
invariant version in the reference frame of Alice by applying the map EA.
The answer is

EA½T� ¼
Z

dg 0dg Ry
Cðg 0ÞRCð gÞ � Uy

SjAðg 0ÞTSjAðg 0; gÞUSjAð gÞ: ð49Þ

Proof:

EA½TAS� ¼ T C°VE!A½TAS�

¼
Z

dg 0dg Ry
Cðg 0Þ

Z
dh∣hihh∣CRCð gÞ � Uy

SjAðg 0ÞTSjAðg 0; gÞUSjAð gÞ

¼
Z

dg 0dg Ry
Cðg 0ÞRCð gÞ � Uy

SjAðg 0ÞTSjAðg 0; gÞUSjAð gÞ:

ð50Þ

Exponential representation of quantum reference frame
transformation
Herewe derive amore intuitive expression for the quantum reference frame
transformation of Eq. (19). We work at the operator rather than at the
superoparator level. First, we establish a useful notation for our purposes.
We write

VA!E ¼
Z

dg dh dα ∣giAjEhg∣C � ∣hiBjEhg�1h∣BjA � ∣αiSjEhα∣SjAUSjAð gÞ;

ð51Þ

and

Vy
B!E ¼

Z
dg dh dα ∣h�1giAjBhg∣AjE � ∣hiDhh∣BjE � Uy

SjBðhÞ∣αiSjBhα∣SjE;

ð52Þ

where the operators VA!E and Vy
B!E are defined below Eq. (19).

The quantum reference frame transformation is given by

SA!B ¼ Vy
B!EVA!E ð53Þ

¼
Z

dg dh dα ∣giAjBhhg∣C � ∣hiDhg�1∣BjA � ∣αiSjBhα∣SjAUSjAð gÞ: ð54Þ

Rearanging terms and using hhg∣C ¼ hh∣CRCð gÞ, we find

SA!B ¼
Z

dg dh dα ∣giAjBhg�1∣BjA � ∣hiDhh∣C � ∣αiSjBhα∣SjA

�
Z

df ∣f ihf ∣BjA � Ry
Cðf Þ � Uy

SjAðf Þ:
ð55Þ

Form the last expression it is manifest that SA!B acts trivially on the gauge
subsystem. (We say that a given operator acts trivially on a given subsystem
defined by some subalgebra, if and only if the operator belongs to the
comutant of that sublagebra). In the spirit of ref. 37, we now write the
transformation in exponential form. We assume that G is a Lie group such
that for all g∈G and for all representations U of G we have
Uð gÞ ¼ expð�i λg � XÞ.We can thus rewrite the second factor of Eq. (55) in
exponential form, arriving at

SA!B ¼ PA!Be
i
R

dgλg ∣gihg∣BjA � X
BSjA þXSjA

� �
;

ð56Þ

where we have left tensor products with the identity operator implicit. Here

X
BSjA ¼

Z �
1ðqÞ
DL

� XðqÞ
DR

ð57Þ

is the infinitesimal generator acting on the extra particleBSjA, in a notation
consistent with Eq. (16). Note thatX

BSjA is a direct sum of the right-regular
generators of the irreducible subspaces labeled by q, XðqÞ

DR
, with identity on

the left-regular part, DL. Therefore, XBSjA commutes with any operator in
the gauge subsystem, which corresponds to DL in B’s frame. On the other
hand, XSjA is the infinitesimal generator on the subsystem SjA. We have
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defined the parity-swap operator PA!B as

PA!B ¼
Z

dg dh dα ∣giAjBhg�1∣BjA � ∣hiDhh∣C � ∣αiSjBhα∣SjA: ð58Þ

Alternatively, PA!B can be defined by its action on the subsystem BjA,
acting trivially on all other subsystems:

PA!B∣giBjA ¼ ∣g�1iAjB: ð59Þ

Transformation of relative subsystems
Here we compute the transformation of observables from A to B. For
operators in class 1, we have

SA!B½1C � 1BjA � TSjA� ¼VE!B°V
y
E!A½1C � 1BjA � TSjA�

¼
Z

dg 0dg ∣g 0gi hg 0g∣AjB � ∣g 0i hg 0∣D � USjBðg 0gÞTSjBU
y
SjBðg0gÞ

¼
Z

dg∣gi hg∣AjB � 1D � USjBð gÞTSjBU
y
SjBð gÞ:

ð60Þ
For operators in class 2, we have

wherewehave done the changes of variables ðh0Þ�1h�!h and ðh0Þ�1g�!g
to pass from the second equality to the third one. Finally, for operators in
class 3, we have

SA!B½TR
C � 1BjA � 1SjA� ¼VE!B

Z
dh0dh ∣h0i hh0∣TR

A ∣hi hh∣A � LBðh0ÞLyBðhÞ � USðh0ÞUy
SðhÞ

� �

¼
Z

dgdh0dh ∣g�1i hg�1∣AjB � Ry
Dð gÞ∣h0i hh0∣TR

D∣hi hh∣RDð gÞ � 1SjB

¼
Z

dg ∣gi hg∣AjB � RDð gÞTR
DR

y
Dð gÞ � 1SjB:

ð62Þ

This proves Eqs. (24).

Restriction to the zero-charge sector
Here we consider the special case of the zero-charge sector of the invariant
subspace, and show how to formally obtain the transformation rule of 39

from our framework. The derivation follows the perspective neutral
framework38 applied to a general group G.

Consider 2 reference frames A and B and a quantum system S. As in
the main text, the total Hilbert space decomposes into a sum of charge
sectors. Suppose we have a quantum state ∣Ψi in the zero-charge sector of
the total Hilbert space. In the standard partition, such a state satisfies
LAð gÞ � LBð gÞ � USð gÞ∣Ψi ¼ ∣Ψi for all g∈G.Note that this condition is
strictly stronger than requiring the invariance of the density matrix ρ under
the action of G: LAð gÞ � LBð gÞ � USð gÞρLyAð gÞ � LyBð gÞ � Uy

Sð gÞ ¼ ρ.
The state ∣Ψi can be obtained by “coherent group averaging” over an
arbitrary state ∣φi ¼ R dgAdgB ∣gAiA � ∣gBiB � ∣φðgA; gBÞiS. Then we
have

∣Ψi ¼
Z

dg LAð gÞ � LBð gÞ � USð gÞ∣φi: ð63Þ

As in the main text, the state in the partition natural to A is found by
applyingUy

BSðĝsfAÞ on ∣Ψi. The result is that the state of the reference frame
A factors out for any initial state ∣φi. That is

Uy
BSðĝAÞ∣Ψi ¼ ∣ΩiC �

Z
dgLyBjAð gÞ � Uy

SjAð gÞ∣φð gÞiBjA;SjA; ð64Þ

where ∣Ωi ¼ R dg∣gi, as in Methods: Independence of external frame, and

∣φð gÞiBjA;SjA ¼ R dg 0∣g 0iBjA � ∣φðg; g 0ÞiSjA. We interpret
R
dgLyBjAð gÞ �

Uy
SjAð gÞ∣φð gÞiBjA;SjA as the state of B and S “as seen” form A.

By construction, applying the operator SA!B ¼ Uy
ASðĝBÞUBSðĝAÞ to

Uy
BSðĝAÞ∣Ψi gives

Uy
ASðĝBÞ∣Ψi ¼

Z
dgdg 0 LAjBð gÞy � 1D � Uy

BjSð gÞ∣g 0iAjB�

∣ΩiD � ∣φðg 0; gÞiSjB;
ð65Þ

Which is the analogue of Eq. (64) with B playing the role of A. Now define

D̂ ¼ SWAPAB°1C �
Z

dh ∣h�1i hh∣BjA � Uy
SjAðhÞ; ð66Þ

where SWAPAB is the operator that swaps A and B’s Hilbert spaces. A
straightforward calculation gives

D̂Uy
BSjAðĝAÞ∣Ψi ¼ Uy

ASjBðĝBÞ∣Ψi; ð67Þ

showing that SA!B and D̂ coincide in the zero-charge subspace. The
operator D̂ is the one found in ref. 39 up to an arbitrary exchange of the roles
between the left- and right-regular representations. In ref. 39, the state
associated to the reference frame whose perspective we “jump” into is the
neutral element of the group e. This can be fixed in the present perspective,
up to normalisation, by conditioning the state of the reference frame to be
∣ei38. In conclusion, we have shown that our results formally reduce to those
of 39 in the zero-charge subspace.

Extra particle and unitarity
To appreciate the importance of the extra particle for obtaining a unitary
(passive) transformation in Bob’s descriptionwhen Bob’s reference frame is
subject to a unitary (active) transformation relative to Alice, consider a
simple scenario. LetA be in a classical state and letB be in the state ∣ei he∣BjA
in the perspective ofA. Thismeans thatA is also in the state ∣ei he∣AjB in the
perspective of B (i.e., the two reference frames are aligned).

Let S be in some pure state ∣ψi hψ∣, which would be the same in both
perspectives, i.e., we have ∣ψi hψ∣SjA and ∣ψi hψ∣SjB. If now a unitary is
applied in BjA, taking the state of B relative to A to a nontrivial super-
position of group states, ∣ϕi hϕ∣BjA, where ∣ϕiBjA ¼ R dgϕð gÞ∣giBjA, such
that this state is not invariant under the action of the group, it is easy to see
that Bob would describe the system and reference frame of Alice by the

SA!B½1C � TBjA � 1SjA� ¼VE!B

Z
dg∣gi hg∣A � LBð gÞTBL

y
Bð gÞ � 1S

� �

¼
Z

dhdgdh0 ∣h�1h0i hg�1h0∣AjB � ∣hi hðh0Þ�1h∣TD∣ðh0Þ�1gi hg∣D � Uy
SjBðh0hÞUSjBðh0gÞ

¼
Z

dhdg ∣h�1i hh∣TAjB∣gi hg�1∣AjB � RDðh�1gÞ � USjBðh�1gÞ;

ð61Þ
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mixed state

ρASjB ¼
Z

dg jϕð gÞj2∣g�1i hg�1∣AjB � Uyð gÞSjB∣ψi hψ∣SjBUð gÞSjB; ð68Þ

which cannot be unitarily related to the initial pure state
∣ei he∣AjB � ∣ψi hψ∣SjB. In other words, some information has been lost.

A naive attempt to recover this information by searching for it in the
rest of the universe outside ofA andB can be immediately seen to fail since
any systemS outside ofA andBwill be in an analogous classical correlation
withA from the perspective of Bob. The resolution to this apparent paradox
is that the state of ASjB is purified on the extra particle ASjB, which is
inside the invariant subsystems of ABS. This should come as no surprise
since the active unitary transformation we considered was confined within
this invariant subsystem.

Onemay nevertheless ask how come any other system in the rest of the
universe gets correlated with A in the perspective of Bob if the transfor-
mation is so confined. The answer is that even thought other systems in the
perspective of Bob correspond to separate subsystems, such AjB, SjB, etc.,
each of these subsystems overlaps with the subsystem BjA on which the
unitary acts (in the sense that the corresponding algebras do not commute),
hence they would generally all be affected.

Relative generators for the centrally extended Galilei group
Herewederive Eqs. (29) of themain text.Wework in the standardpartition.
By definition (Eq. (8)),

p̂SjA ¼
Z

dθdadv ∣ðθ; a; vÞi hðθ; a; vÞ∣A � ~U
ðmSÞ
S ðθ; a; vÞ p̂S ~U

ðmSÞy
S ðθ; a; vÞ;

ð69aÞ

k̂SjA ¼
Z

dθdadv ∣ðθ; a; vÞi hðθ; a; vÞ∣A � ~U
ðmSÞ
S ðθ; a; vÞ k̂S ~U

ðmSÞy
S ðθ; a; vÞ:

ð69bÞ

A straightforward calculation of the second tensor factor in Eqs. (69) gives

p̂SjA ¼ 1A � p̂S �mSv̂
reg:
A � 1S; ð70aÞ

k̂SjA ¼ 1A � k̂S þmSâ
reg:
A � 1S; ð70bÞ

where

âreg:A ¼
Z

dθdadv a ∣ðθ; a; vÞi hðθ; a; vÞ∣A; ð71Þ

v̂reg:A ¼
Z

dθdadv v ∣ðθ; a; vÞi hðθ; a; vÞ∣A: ð72Þ

(The superscript reg. stands for “regular”, as in the regular representation).
Therefore, it all amounts to calculating âreg:A and v̂reg:A .

Let us start by expressing the projector ∣ðθ; a; vÞi hðθ; a; vÞ∣A in the basis
of irreducible representations of ~G. As in the main text, we denote the left-
regular subsystem ofA byAL and the right-regular subsystem byAR. For the
case of the (noncompact) extended Galilei group, the analogue to Eq. (5) is

∣ðθ; a; vÞiA ¼
Z �

dmdp
ffiffiffiffi
m

p ð~U ðmÞðθ; a; vÞ∣m; piAL
Þ � ∣m; piAR

; ð73Þ

where p̂AL
∣m; piAL

¼ p∣m; piAL
. Note the presence of the factor

ffiffiffiffi
m

p
, ana-

logue to dimðqÞ=jGj, which ensures that the normalisation condition is met
(see Methods: Basis vectors for centrally extended Galilei group). With this

identity at hand, together with k̂ ¼ tp̂�mx̂, we can write

∣ðθ; a; vÞi hðθ; a; vÞ∣A ¼
Z �

dmdm0 meiθðm�m0Þe�iðaþvtÞðpþ1
2mv�p0�1

2m
0vÞ

�
∣m; pþmvi hm0; p0 þmv∣AL

� ∣m; pi hm0; p0∣AR

�
:

ð74Þ

The only dependence on θ in both âreg: and v̂reg: comes from the first
exponential in Eq. (74). This means we can perform the integral over θ
straight away, leading to a superselection on themass. (Weneglect factors of
π when using the Fourier transform of the Dirac delta function).

Doing the change of variable a+ vt ⟶ a, it follows by direct calcu-

lation that âreg:A ¼ â0
reg:
A � t v̂reg:A , where

â0
reg:
A ¼

Z �
dadvdmdpdp0 ma e�iaðp�p0Þ∣pþmvi hp0 þmv∣AL

� ∣pi hp0∣AR

ð75Þ
At this point, the integral v̂reg:A follows immediately, resulting in

v̂reg:A ¼
Z � dm

m
ðp̂ðmÞ

AL
� 1ðm�Þ

AR
� 1ðmÞ

AL
� p̂ðm�Þ

AR
Þ: ð76Þ

For each irrep, labeled by m, both the left-regular and the right-regular

operators p̂ðmÞ
AL

� 1ðm�Þ
AR

and 1ðmÞ
AL

� p̂ðm�Þ
AR

are present in Eq. (76). Note that

this integral has a block diagonal structure due to superselection on
the mass.

Finally, using ∣m; pþmviAL
¼ e�i pmx̂∣m;mviAL

, we can compute
â0

reg:
A . The result is

â0
reg:
A ¼ �

Z � dm
m

ðk̂ðmÞ
AL

� 1ðm�Þ
AR

� 1ðmÞ
AL

� k̂
ðm�Þ
AR

Þ: ð77Þ

Putting all the pieces together (at t = 0), we arrive at

p̂SjA ¼ 1A � p̂S �mS

Z � dm
m

ðp̂ðmÞ
AL

� 1ðm�Þ
AR

� 1ðmÞ
AL

� p̂ðm�Þ
AR

Þ � 1S; ð78aÞ

k̂SjA ¼ 1A � k̂S �mS

Z � dm
m

ðk̂ðmÞ
AL

� 1ðm�Þ
AR

� 1ðmÞ
AL

� k̂
ðm�Þ
AR

Þ � 1S; ð78bÞ

which are Eqs. (29).
Let us now compute the generators of the extra particle, p̂

SjA and k̂
SjA.

To do this, we use a trick that is valid for QRFs associated to arbitrary Lie

groups G. Let RAðδÞ ¼
R�dq1ðqÞ

AL
� Dðq�Þ

AR
ðδÞ be the right-regular repre-

sentation of a group element δ (for simplicity of notation, we write RAðδÞ
instead ofRAjEðδÞ). Assume δ is such that, for every value of the charge q, we

can write Dðq�Þ
AR

ðδÞ ¼ e
iϵδ �Xðq�Þ

AR for a parametrisation of δ given by ϵδ and an

infinitesimal generator Xðq�Þ
AR

By the orthogonality of the subspaces corre-

sponding to different q’s, we can write

RAðδÞ ¼
Z �

dq1ðqÞ
AL

� e
iϵδ �Xðq�Þ

AR ¼ eiϵδ �X
R�
A ; ð79Þ

where XR�
A ¼ R�dq1ðqÞ

AL
� Xðq�Þ

AR
. Let us expand RAðδÞ to first order in a

Taylor series around ϵδ, so thatRAðδÞ ¼ 1A þ iϵδ � XR�
A þ � � � .Nowwecan

use this representation ofRAðδÞ to computeX
SjA fromEq. (18). There are 2

ways inwhichwe can compute the right-hand side of Eq. (18) for the case of
RAðδÞ. We can expand to first order in ϵδ and then compute the integral, or
we can first compute the integral and then expand to first order in ϵδ.
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Equating the order ϵδ of both Taylor series gives

X
SjA ¼ XR�

A � 1S þ 1A � XS: ð80Þ

Note that both XR�
A � 1S and 1A � XS have an overall positive sign in

Eq. (80). This is because the right-regular representation is defined in terms

of the complex-conjugate representations Dðq�Þ
AR

¼ e
iϵδ �Xðq�Þ

AR , whereas

US ¼ e�iϵδ �XS .

Applying Eq. (80) to the case of the centrally extended Galilei group
gives immediately

p̂
SjA ¼ p̂RA � 1S þ 1A � p̂S �mS

Z � dm
m

ðp̂ðmÞ
AL

� 1ðm�Þ
AR

� 1ðmÞ
AL

� p̂ðm�Þ
AR

Þ � 1S;

ð81aÞ

k̂
SjA ¼ k̂

R

A � 1S þ 1A � k̂S �mS

Z � dm
m

ðk̂ðmÞ
AL

� 1ðm�Þ
AR

� 1ðmÞ
AL

� k̂
ðm�Þ
AR

Þ � 1S;

ð81bÞ

which are Eqs. (30).
For completeness, let us write down explicitly Eqs. (24) for the infi-

nitesimal generators of the centrally Extended Galilei group. The case of
Eq. (24a) is straightforward from the computation of the algebraSjA, as one
only needs to add an extra identity operator in the Hilbert space of B. We
have already computed this algebra for the centrally extended Galilei group
(see Eqs. (29) and Methods: Relative generators for the centrally extended
Galilei group). The result is

SA!B½1C � 1BjA � p̂SjA�

¼ 1AjB � 1D � p̂SjB �mS

Z � dm
m

ðp̂ðmÞ
AjBL

� 1ðm�Þ
AjBR

� 1ðmÞ
AjBL

� p̂ðm�Þ
AjBR

Þ � 1D � 1SjB;

ð82aÞ

SA!B½1C � 1BjA � k̂SjA�

¼ 1AjB � 1D � k̂SjB �mS

Z � dm
m

ðk̂ðmÞ
AjBL

� 1ðm�Þ
AjBR

� 1ðmÞ
AjBL

� k̂
ðm�Þ
AjBR

Þ � 1D � 1SjB:

ð82bÞ

Expressing the right-regular action in exponential form, as we did in
the derivation that led to Eq. (80), the case of Eq. (24c) follows in essentially
the same way as the case of Eq. (24a), giving

SA!B½p̂RC � 1BjA � 1SjA�

¼ 1AjB � p̂RD � 1SjB �
Z � dm

m
ðp̂ðmÞ

AjBL
� 1ðm�Þ

AjBR
� 1ðmÞ

AjBL
� p̂ðm�Þ

AjBR
Þ � M̂D � 1SjB;

ð83aÞ

SA!B½k̂
R

C � 1BjA � 1SjA�

¼ 1AjB � k̂
R

D � 1SjB �
Z � dm

m
ðk̂ðmÞ

AjBL
� 1ðm�Þ

AjBR
� 1ðmÞ

AjBL
� k̂

ðm�Þ
AjBR

Þ � M̂D � 1SjB:

ð83bÞ

Finally,we can compute the case ofEq. (24b) bymeans of a similar trick
to that leading to Eq. (80). That is, we can compute Eq. (24b) in two
equivalentways and equate the results. In thefirstway,we solve the integrals
in Eq. (24b) for an infinitesimal transformation and then expand the result
to first order in the parametermultiplying the generator. In the secondway,
we expand first and write down the integrals afterwards. Following this

technique for the generators of the centrally extended Galilei group yields

SA!B½1R
C � p̂R�BjA � 1SjA�

¼ �p̂LAjB � 1D � 1SjB þ 1AjB � p̂R�D � 1SjB � 1AjB � 1D � p̂SjB;
ð84aÞ

SA!B½1R
C � k̂

R�
BjA � 1SjA�

¼ �k̂
L

AjB � 1D � 1SjB þ 1AjB � k̂
R�
D � 1SjB � 1AjB � 1D � k̂SjB;

ð84bÞ

SA!B½1R
C � M̂BjA � 1SjA�

¼ �M̂AjB � 1D � 1SjB þ 1AjB � M̂D � 1SjB � 1AjB � 1D �mS1SjB;

ð84cÞ
and

SA!B½1R
C � p̂LBjA � 1SjA� ¼ � p̂R�AjB � 1D � 1SjB þ 1AjB � p̂R�D � 1SjB � 1AjB1D � p̂SjB

�
Z � dm

m
ðp̂ðmÞ

AjBL
� 1ðm�Þ

AjBR
� 1ðmÞ

AjBL
� p̂ðm�Þ

AjBR
Þ � M̂D � 1SjB

þ
Z � dm

m
ðp̂ðmÞ

AjBL
� 1ðm�Þ

AjBR
� 1ðmÞ

AjBL
� p̂ðm�Þ

AjBR
Þ � 1D �mS1SjB;

ð85aÞ

SA!B½1R
C � k̂

L

BjA � 1SjA� ¼ � k̂
R�
AjB � 1D � 1SjB þ 1AjB � k̂

R�
D � 1SjB � 1AjB1D � k̂SjB

�
Z � dm

m
ðk̂ðmÞ

AjBL
� 1ðm�Þ

AjBR
� 1ðmÞ

AjBL
� k̂

ðm�Þ
AjBR

Þ � M̂D � 1SjB

þ
Z � dm

m
ðk̂ðmÞ

AjBL
� 1ðm�Þ

AjBR
� 1ðmÞ

AjBL
� k̂

ðm�Þ
AjBR

Þ � 1D �mS1SjB:

ð85bÞ

Compatibility with an external zero-charge state
Hereweprove that, for compactG, any state ρ

SjA;SjA inAlice’s perspective is
compatible with the existence of a reference frame B and a perspective-
neutral pure state ∣ϕiABS.Without loss of generality, we restrict Eq. (49) to a
pure state, so that

ρ
SjA;SjA ¼

Z
dgdh R

SjAðg�1hÞ � Uy
SjAð gÞ∣ψð gÞihψðhÞ ∣USjAðhÞ: ð86Þ

Consider now, in the standard partition, the zero-charge state ∣ϕiABS
defined by

∣ϕiABS ¼
Z

df dgdh ∣fgiA � ∣fhiB � USðf Þ∣ϕðg; hÞiS; ð87Þ

where

∣ϕðg; hÞiS ¼ 1
jGjUSðhÞ∣ψðh�1gÞiS: ð88Þ

Tracing outB from ∣ϕiABS and then changing to Alice’s perspective via the
EA map defined in the main text, we obtain ρ

SjA;SjA, as we wanted to show.

Data availability
Data sharing not applicable to this article as no datasets were generated or
analysed during the current study.
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