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radiation
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Cherenkov radiation of charged particlesmovingwith superluminal velocities in transparentmedia is a
well-studied phenomenon with a plethora of applications. Its microscopic origins can be traced to the
polarization of atomic shells, characterized by time scales in the subfemtosecond range— dynamics
that eludes conventionalmacroscopic treatment. Herewe present a theoretical framework for probing
the intrinsic dynamics of Cherenkov radiation, unveiling quantum features absent in classical realm
and even in a fully quantum theory in momentum space. These features include a finite formation
length and spreading time of the photon, the latter becoming negative nearby the Cherenkov angle, a
finite flash duration tied to the size of the electron packet, along with a shift in the photon arrival time
that can be either positive or negative and necessitates going beyond the far-field approximation. The
calculated time scales lie in the attosecond range for the relevant parameters, thus linking this
macroscopic phenomenon back to its atomic origins. Finally, we propose that by measuring the
duration of the Cherenkov flash one can in principle retrieve the length of the emitting packet,
deepening our understanding of quantum coherence effects in photon emission.

Cherenkov radiation (ChR) by charged particles inmedia1–10 is the simplest
example of a wide range of phenomena embracing transition radiation,
diffraction, Smith–Purcell radiation, and other mechanisms of photon
emission11–14. Their commonmicroscopic origin is atomic bremsstrahlung15

due to dynamic polarization of atomic shells by the field of the charge, and
the characteristic time scales are femto- and attoseconds, typical for the AC
Stark effect16. Alongwithnumerous applications of classical ChR for particle
detection in acceleration experiments and cosmic rays studies17, neutrino
telescopes18,19, gamma-ray astronomy20,21, and other fields10, it has also
recently attracted attention of the biomedical community as a new tool for
molecular imaging and therapy in cancer treatment22–24.

A quantum theory of ChR in momentum space was presented in
1940 by Ginzburg4 and Sokolov5 who predicted a correction to the
classical Tamm-Frank result due to quantum recoil, which is negligibly
small for the overwhelming majority of applications of ChR. Interest in
inherently quantum features of ChR was revived in 201625–27 after vortex
electrons with quantized orbital angular momentum projection were
generated at electron microscopes28,29. Some flaws in the initial analysis of
Ref. 25 were corrected in Ref. 26. More recently, it has been argued that
the spatiotemporal features of ChR can be connected to the spatial
coherence of the emitting charged particle30, whereas generalized mea-
surements of either the final electron or the photon can lead to the
generation of a wave packet of the other particle with the needed
properties31.

The spatiotemporal characteristics of radiation in the pre-wave zone
are neccesary for applications of such close relatives of ChR as transition,
diffraction, and Smith–Purcell radiation, for instance, in bunch-length
measurements at accelerators12,32. The classical theory of the Cherenkov
wake fields in the near-field zone has also been developed for beam position
monitors and radiation sources at accelerators and free-electron lasers33–35

and even alternative concepts of the Cherenkov wakefield acceleration have
been proposed36. However, no quantum theory of ChR and its general-
izations exists so far beyond the far-field approximation. The latter is
tightly linked to the conventional momentum-space approach, whereas a
spatiotemporal analysis of the photon field at a finite distance from the
emitting particle necessitates working in real space and time, and that is
always tricky in relativistic quantum theory. Although the flash duration of
ChR was first estimated by Frank as early as in 1956 from classical
considerations8,9, the microscopic atomic dynamics in the formation of the
ChR field remains hidden even in the fully quantum treatment of ChR in
momentum space.

Herewe point out that one can access atomic time scales inChR and in
its generalizations byusing a quantumtheory inphase spacewhere—similar
to quantum optics37—we employ a Wigner function to characterize the
emitted photon field. We demonstrate how to probe the field in the pre-
wave—or formation—zone12,32,38 in which the partial waves interfere, the
Cherenkov cone is not formed yet, and the emitted energy propagates in real
space and time as a spreading wave packet. We find that our theory
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establishes a link between the evolving coherence length of the electron
packet, the Cherenkov flash duration, and a quantum temporal delay that
the photon experiences in medium and that can only be quantitatively
studied beyond the far-field approximation. This delay falls within the
attosecond range, a time scale characteristic of atomic excitation processes
explored in attosecond spectroscopy and metrology39, and it can be either
positive or negative, that is, the photon wave packet can reach the detector
on average later or sooner than one can expect from the classical far-field
considerations. This temporal detuning also shares some similarities with
tunneling-related time effects, such as those observed in electron
ionization40 and emission41. The quantum shift in the photon arrival time,
coupled with the finite flash duration and the spreading dynamics, unveils
intricate coherence properties that enable refined temporal control in
quantum emission processes, enriching the landscape of quantum optics,
ultrafast physics, and of applications of ChR and related phenomena.

Results
Photon emission in phase space
The system of units ℏ = c = 1 is used, the electron velocity is β = up/c≡ up,
m = 0.511MeV is the electron mass, 1/m≡ ℏ/mc = 3.86 × 10−11 cm is the
reduced Compton wavelength, and the corresponding timescale is tC = 1/
m≡ ℏ/mc2 ≈ 1.3 × 10−21 s. When an electron emits a photon, the two-
particle state within the first order of the perturbation theory in quantum
electrodynamics is ∣e0; γ

� ¼ ð1̂þ Ŝ
ð1ÞÞ∣ini, where ∣ini ¼ ∣eini � ∣0γi and

Ŝ
ð1Þ ¼ �ie

R
d4x ĵ

μðxÞÂμðxÞ42. Figure 1 illustrates how the photon field
gradually becomes spatially separated from the electronpacket, spreads, and
eventually turns into a planewave propagating at the angles θ,ϕ. If we detect
the electron in a plane-wave state p0; λ0

�
∣, λ0 ¼ ± 1=2, the state of the

photon becomes

∣γ
� ¼ p0; λ0

�
∣ein
�
∣0γ
E
þ
X
λγ

Z
d3k

ð2πÞ3 ∣k; λγ
E
Sfi: ð1Þ

The second term here is a coherent superposition of plane waves with the
momenta k and the helicity λγ = ±1 and a matrix element is
Sfi ¼ k; λγ; p

0; λ0
D

∣Ŝð1Þ∣ in i. We treat the incoming electron as a Gaussian
packet with a wave function f ðinÞe ðp; λÞ ¼ p; λ

�
∣ein
�
, a mean momentum

p
� �

, an uncertainty σ≪m, which means that the rms size—also called
coherence length—of the packet is much larger than the Compton
wavelength, σx = 1/σ≫ 1/m. For the moment, we take a simplified model
with the packet, spherically symmetric in the laboratory frame,
σ⊥ = σ∥ ≡ σx = 1/σ.

Let us define the energy density of the photon field in real
space and time, an electric part of which is (Supplementary Notes 1 and 2)

1
8π

γ
�
∣Ê2ðr; tÞ∣γ�! 1

4π
∣ 0h ∣Êðr; tÞ∣γ�∣2 ¼ Z d3k

ð2πÞ3 Wðr; k; tÞ; ð2Þ

wherewe have subtracted a contribution of the vacuumenergy and Êðr; tÞ is
a secondary-quantized electric field operator43. A contribution of the
magnetic field can be written in a similar way. Here

Wðr; k; tÞ

¼ 1
4π

X
λγ;

~λγ

Z
d3~k

ð2πÞ3 E�
~λγ
ðk � ~k=2Þ � Eλγ

ðk þ ~k=2Þ e�it ωðkþ~k=2Þ�ωðk�~k=2Þð Þþir�~k ð3Þ

is a Wigner function of the photon, and Eλγ
ðkÞ ¼

iω
ffiffiffiffi
4π

pffiffiffiffiffiffiffi
2ωn2

p ekλγ
P

λ

R d3p
ð2πÞ3 f

ðinÞ
e ðp; λÞSðpwÞfi ; ekλγ � k ¼ 0; is a positive-frequency

component of its electric field.
According to the standard interpretation43, the energy density Eq.

(2) defines probability of detecting a photon in a region of space centered
at the point r at the moment of time t. Clearly, the second marginal
distribution

R
d3xWðr; k; tÞ / ∣SðpwÞfi ∣

2
yields probability to detect a

photon with the frequency ω and a wave vector k, ∣k∣ = n(ω) ω, the
standard result of the quantum theory in momentum space (see26).
Therefore, it is this Wigner function Eq. (3) in phase space that contains
all the information on spatial distribution of the photon energy density at
a given distance r—also in the near-field zone—and on its dynamics.
Consequently, emission takes place in the pre-wave zone even if the
condition of ChR is notmet, but the waves do not constructively interfere
to form a cone in the far field.

We calculate the Wigner function in the paraxial approximation,
σ≪m, in a medium with weak dispersion, ω

nðωÞ
dnðωÞ
dω ≪1, and represent the

tree-level amplitude26,42 as follows:

SðpwÞfi ¼ jSðpwÞfi j eiζ fi : ð4Þ

Here jSðpwÞfi j2 defines the emission rate in momentum space where the
phase28,29,44ζfi does not contribute to the probability, although it is non-
vanishing even in the lowest order of the perturbation theory (see
SupplementaryNote 5). The result of the calculations is (see Supplementary
Note 3)

Wðr; k; tÞ /
Z 1

0
dt0

e�R2=R2
eff ðt0 Þ

Gðt0Þ cos Fðt0Þð Þ; ð5Þ

whereGðt0Þ > 0 is the function particular form of which is of no concern for
the following discussion, the momentum conservation p ¼ p0 þ k is
implied, and

R ¼ r� upt þ ð∂p þ ∂kÞζ fiðp; λe; k; λγÞ: ð6Þ

Fig. 1 | Spatiotemporal dynamics of the Cherenkov radiation generated by a
spreading electron wavepacket. σx stands for the initial size of an electron packet
(blue), e, and n is the refractive index of the medium. The radiation process begins
with the fundamental quantum electrodynamics interaction e ! e0 þ γ, during
which the photon field (pink), γ, gradually separates from the electron packet within
the formation zone and spreads. The electron is detected with a momentum
p0 ¼ jp0jfsin θ0 cos ϕ0; sin θ0 sin ϕ0; cos θ0g, and the Cherenkov cone is formed in the
far-field only if the electron remains undetected. In phase-space picture, the photon
with the momentum k ¼ nωfsin θ cos ϕ; sin θ sin ϕ; cos θg can be detected at a finite
distance, meaning it does not necessarily reach the far field.
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Here up ¼ p=εðpÞ; εðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
; uk ¼ k=ðnjkjÞ; jukj ¼ 1=n, ∂p =

∂/∂p, Fðt0Þ / arctan t0=td contains a Gouy phase of the photon
connected to its spreading with time t0, and td is a diffraction time
(see below).

The spatio-temporal dependenceof theWigner functionEq. (5),which
is not everywhere positive even in the paraxial approximation, is governed
by the ratio

R2

R2
eff ðt0Þ

¼ 1
σ2xðt0Þ

½R× ðup � ukÞ�2
ðup � ukÞ2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
finite at t0 ¼ 0

þ terms vanishing at t0 ¼ 0

0
BBB@

1
CCCA; ð7Þ

where σ2xðt0Þ ¼ σ�2 1þ ðt0=tdÞ2
� �

is an rms size of the electron packet.
When the condition of ChR is met, up > uk, the vector uk− up is directed
backwards with respect to the electron velocity up, and dependence of the
Wigner function onR at small t0 vanishes along uk− up, defining theMach
cone with an angle

θMach ¼ π � arcsin
sin θ

njuk � upj

 !
: ð8Þ

If the electron is detected in a plane-wave state, scattered at the angles θ0; ϕ0,
the radius Reff ðt0Þ depends on the difference ϕR− ϕ between the azimuthal
angle ofR and that of k, so it is anisotropic. The azimuthal symmetry of the
Mach cone is restoredwhen the electron is not detected andwe integrate Eq.
(5) over p0.

At large t0, we find R2
eff ðt0Þ / σ2xð0Þ t02=t2d and when Reff ðt0Þ≫R

dependence of the Wigner function on r and tvanishes, similar to the
classical wave zone. In the other limiting case, R≫Reff ðt0Þ, the integrand
in Eq. (5) is exponentially suppressed. So, an effective region where
space-time correlation exists is when t0 ≲ td, and R � Reff ðt0Þ is where it
is most pronounced, which is why one can call Reff ðt0Þthe correlation
radius. At t0 ≫ td, both the electron packet and the photon
field spread and so there is no longer space-time correlation within the
region R <Reff ðt0Þ, which is a hallmark of the wave zone. We show in
Fig. 2 that the correlation radius is orders of magnitude smaller than the
distance upt

0 traveled by the electron during the time interval t0 for all
the angles θR of R, except for the Mach angle, θR ≈ θMach (shown
in Fig. 3d).

Spreading time and formation length
Let us discuss now the spreading time, which is found as

td ¼
2
σ2

ðup � ukÞ2

1=ωn2 � ε�1
� �ðup � ukÞ2 þ ε�1 � ω�1ð Þ up × uk

h i2 : ð9Þ

where ðup � ukÞ2 ¼ n�2 þ u2p � 2up cos θ=n; up × uk
h i2

¼ u2psin
2θ=n2

with the z axis directedalong the electronpartialmomentump.One canalso
define the formation length of radiation as Lf = up∣td∣, which turns to infinity
at the Cherenkov angle in the classical Tamm problem11,12,45,46.

Thediffraction timeand the formation lengthhave anextremumeither
at the angle cos θCh:cl: ¼ 1=upn < 1,when theCherenkov conditionup > 1/n
ismet, or at cos θ ¼ upn < 1 otherwise. TheWigner function and the energy
density stay finite in the latter case, but the photon field rapidly spreads (see
the black line in Fig. 3a). Along with the extremum, the time td has two
points in which its denominator vanishes (see Fig. 3b),

cos θ1 � 1
upn

1∓
ffiffiffiffi
ω

ε

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 � 1Þðu2pn2 � 1Þ

q� 	
; ð10Þ

where we have kept the first correction due to quantum recoil, which is
usually very small26, ω/ε≪ 1. Clearly, the diffraction time can only turn to
infinity under the condition ofChR,upn > 1. The angularwidth between the
two points is

Δθ1 � 2

ffiffiffiffi
ω

ε

r ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 1

p
; ð11Þ

and it vanishes for classical emission with no recoil, ω/ε→ 0. For materials
like Al, Si, Be, and Ti, Cherenkov radiation can be observed in the soft X-ray
range at the frequencies46–48ω ≈72.5, 100, 110, 453.8 eV, respectively, which
for ε ~(5–20)m yields Δθ∞ < 1°–2° (cf. Fig. 3c, d).

Between the above points, the time td becomes negative—see Fig. 3b
—and the Gouy phase arctan t0=td changes it sign, as if the electron
packet shrinks during the emission. In the classical regime with no recoil,
both the points merge and so td and Lf turn to infinity at the Cherenkov
angle. Indeed, in a vicinity of this angle the spreading time with the recoil
kept is

td∣cos θ¼1=nup
¼ 2ε

σ2
n2

1� n2
< 0; ð12Þ

where ε = γm. We compare this with the spreading time tðe;restÞd ¼ m=σ2

of an electron packet, which is at rest on average in vacuum49. In the

Fig. 2 | The effective correlation radius of the Cherenkov radiation. The ratio Reff
to the distance upt

0 is given for the electron traveling times t0 ¼ 107 tC (solid black
line), t0 ¼ 1010 tC (dotted red line) and t0 ¼ 1014 tC (dot-dashed green line). At
panel a β ¼ 0:7 ðγ ¼ 1:4Þ; n ¼ 1:5; θ ¼ θCh:cl: ¼ arccosð1=upnÞ � 17:8°; ω ¼
10�6m; σ ¼ 10�5m; ϕR � ϕ ¼ 0 deg, θMach ≈ 107.8°. At panel b β = 0.9999

(γ = 70.7), n = 1.33, θ = θCh.cl. ≈41. 2°, ω = 10−5m, σ = 10−4m, ϕR− ϕ = 0°,
θMach ≈131. 2

∘. Nearby the Mach angle θMach, space-time dependence of the Wigner
function quickly vanishes within the correlation radius R<Reff ðt0Þ, which is a hall-
mark of the wave zone.
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laboratory frame this time is γ times larger, which
coincides with ∣td∣ up to the factor 2n2/(n2 − 1) > 2. So, spreading of the
photon seems to reverse back in a vicinity of the Cherenkov
direction and it is intimately connected with spreading of the electron
packet itself.

The coherence lengths of non-relativistic electrons amount to
σx(0) ~1–10 nm nearby the standard sources like cathodes of the electron
guns in accelerators or electron microscopes49–53. These estimates can
likewise be obtained by using the emission duration of photo-electrons
from a tungsten tip40 for which the measured sub-femtosecond duration
yields nanometer-sized packets. Therefore for γ≳ 1–2, n≳ 1 the electron
spreading time is tðeÞd ≳ 10�2 � 10 ps , and the time td for the photon is of
the same order of magnitude nearby the Cherenkov angle, see Fig. 3. The
time of flight of an electron through a target of a few centimeters in
length is roughly 0.1 ns, and therefore spreading of the electron can be
relevant even not far from θCh.cl., especially for non-relativistic particles
and for large Cherenkov generators employed, for instance, in neutrino
telescopes.

One can use the peculiar behavior of the diffraction time nearby the
Cherenkov angle as a means for detecting the quantum recoil in ChR in
UV or soft X-ray range. For that, one needs to measure the size of the
photon wave packet at different distances close to the electron path—that
is, in the pre-wave zone—and at different polar angles θ with an angular
resolution of at least 0.1°, which is definitely challenging, but not
inconceivable.

Shift of the photon arrival time and flash duration
Dependence of the Wigner function Eq. (5) on the detection time t comes
exclusively from the following envelope:

exp � R2

R2
eff ðt0Þ

n o
/ exp � ðt�t0Þ2

2σ2t ðt0Þ

n o
;

σ2t ðt0Þ ¼ σ2xðt0Þ
2

ðup�ukÞ2

up × uk½ �2 :
ð13Þ

Here, natural duration of the Cherenkov flash is defined by σtðt0Þ and
t0 ¼ l0 � ðrþ ð∂p þ ∂kÞζ fiÞ is a time instant at which the probability to
catch the photon around the point r is maximized,
l0 ¼ ½ðup � ukÞ× ½uk × up��=½up × uk�2. We will call the time t0the mean
arrival time.

One canneglect the termwith the phase ζfi inREq. (6) in thewave zone
where ∣r− upt∣ ≫ ∣(∂p+ ∂k)ζfi∣, and then the Wigner function Eq. (5) and
the emitted energy seem to be concentrated in a vicinity of the classical
electron trajectory54, r ~upt. The detector registers a photon in the far field
emitted at t = 0, r0 = 0 by a classical point-like electron at the time instant

tðfar�f :Þ
cl: ¼ r=uk ¼ r n; ð14Þ

which will be called the classical arrival time. Let us compare this prediction
with the above t0, derived quantum mechanically. Orienting the z axis along
the electron momentum p, we find k ¼ nωl; l ¼ fsin θ cos ϕ; sin θ

Fig. 3 | The spreading time td of the photon field, angular spans Δθ∞ defining
negative areas for td and the Mach cone of the emission. Panel a We take
ω = 0.51 eV, σ = 10−5 and the packet width σx = 1/σ ≈38 nm. The spreading time td
(in picoseconds) from Eq. (9) is displayed for the electron velocity β = 0.65 and
refractive index n = 1.46 (solid black), β = 0.7 and n = 1.46 (dashed blue),
β = 0.9999 and n = 1.05 (dotted green) and β = 0.9999 and n = 1.3 (dot-dashed red
line). The sharp maxima are nearby the angle θCh:cl: ¼ arccos 1=upn as illustrated
by the arrows. The Cherenkov condition is notmet for the black line, which is why
the photon field quickly spreads during hundreds of attoseconds. Panel b The

inverse spreading time is plotted for parameters n = 1.5, β = 0.9, σ = 10−4 m and
ω = 51.1 eV (solid black), ω = 5.1 eV (dashed blue) and ω = 0.51 eV (dotted green
line). In the angular span of a size Δθ∞ between two points given by Eq. (10) the
spreading time turns negative due to the quantum recoil (ω/ε ≠ 0, see Eq. (11)).
Panel c A close-up picture of the spreading time td for parameters
n = 1.5, β = 0.999, ω = 5.1 eV, σ = 10−4 m, θCh.cl ≈48.1°. Panel d Formation of the
Mach cone of the electron emission. The electron moves with velocity up exceeding
the photon velocity uk. The photon field produces the Mach cone with an angle
θMach according to Eq. (8).
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sin ϕ; cos θg; r 	 r � l; tðfar�f :Þ
cl: ¼ r � l n; and l0 ¼ sin�2θ ððu�1

p � n cos θÞ
p=jpj þ ðn� u�1

p cos θÞlÞ. In a vicinity of the Cherenkov angle, we have
l0 → l n and so for ζfi = 0 we get t0 ! tðfar�f :Þ

cl: ¼ r � l n, in accordance with
Eq. (14).

However, the phase ζficannot be ignored in the formation zone and in
the near-field (in the latter case, r ≈upt, so that R ≈(∂p+ ∂k)ζfi) and this
makes the photon arrival time t0 different from the classical value tðfar�f :Þ

cl: . In
this regime, we call tcl. = r ⋅ l0 for arbitrary emission angles and so the
quantum shift is

Δt ¼ t0 � tcl: ¼ l0 � ð∂p þ ∂kÞζ fi: ð15Þ

This shift is not necessarily positive and the physical origin of this delay
or advance is the electric dipole moment density ∝ e(∂p+ ∂k)ζfi induced
in medium by the field of the electron. We deal with an analog of the AC
Stark effect16 with the atoms being off-resonantly polarized by a
broadband spectrum Δω of pseudo-photons. Similarly to the observed
time delays—positive and negative—when a laser propagates in a
medium55–57, here we encounter delays induced by the virtual photons,
reemitted as real ones. Classically, one can look at this as if the photon
was emitted not from a point-like electron, but from a point shifted
laterally to the distance Δρ ~βγλ/2π from the electron trajectory closer or
further from the detector, which is a mean free path of the virtual
photon12,32. Numerically Δρ/c ~βγλ/2πc = βγ/ω ~1–100 fs for photons
from IR to UV ranges and γ = ε/m≲ 10.

When measuring the quantum shift in the photon arrival time
from its classical value, the flash duration σtðt0Þ is crucial because the
deviations can hardly be discerned with σtðt0Þ≫ jΔtj occurring for
t0 ≫ td far from the Cherenkov angle. This duration was estimated
classically by Frank8,9 to be ~1/Δω < 1 ps where Δω is a frequency
interval for which the emission takes place. Quantum estimates from
the uncertainty principle yield roughly the same result both in the
macroscopic theory of ChR30 and for the microscopic off-resonant AC
Stark effect in single atoms16, 1/Δω ~0.1–100 fs for Δω ~10−2–10 eV.
Our quantum model predicts the following flash duration nearby the
Cherenkov angle:

σtðt0Þ ! n σxð0Þ=
ffiffiffi
2

p
; ð16Þ

because in this case td→∞. Clearly, only the electron packet’s length at the
target entrance (t0 ¼ 0) contributes to the flash duration nearby θCh.cl. For

realistic electrons with σx(0) ~1–100 nm, we find

σtð0Þ � 10 as � 1 fs : ð17Þ

In Figs 4 and 5, we show that the typical shifts indeed belong to the
attosecond range and that theflashduration is generally larger than the shift.
The electron transverse momenta are chosen to be p⊥ = σ ~(10−7–10−4) m
because they correspond to the spatial widths 1/p⊥ = σx(0)≳ 1 nm–1 μm,
respectively, and we also neglect the spreading. Note that within the pre-
wave zone the emissiondoesnot takeplace only at theCherenkov angle. The
sign of the shift swaps between the two kinematic scenarios (Supplementary
Notes 4 and 5), which is why the absolute value ∣Δt∣ is shown. Fixing the
detector at certain angles θ, ϕ and the distance r, one would see that the
photons equally probably arrive either later (time delay) than tcl. or sooner
than that (an advance or negative delay), if the electron is not detected. Note
that integrationof theWigner functionoverp0 puts the electronmomentum
to the definite valuep0 ¼ p� kwith subsequent integration overpwith the
Gaussian distribution. If one wishes to catch only the shifts with one par-
ticular sign, one should detect the photon and the electron in coincidence,
which is technically more challenging.

FromFigs. 4 and5we conclude that the difference between the classical
flash duration σt (green line in both figures) and the temporal shift is
minimized for angles θ≲ 10° and media with small refractive indices
n ~1.01–1.5, whereas the ratio σt/∣Δt∣ ≲ 2 for all the angles θ < 10°. The
argument is correct only when spreading is not taken into account because
σtðt0Þ growswith time t0 and the shift does not. For larger angles, θ≳ 10°, or
for n≳ 2 the difference between the flash duration (the green line) and the
shift increases.When trying todetect the quantumshift for the transmission
electron microscope (TEM) energies, β ~0.7, a target made of fused silica
with n ~1.44–1.47 (see, for example,58,59) in the optical range can do the job,
whereas for ultrarelativistic electrons, γ≫ 1, aerogels with n~1.01–1.30 can
be employed (see, for example,60,61), which are already used as Cherenkov
generators62–64. The use of Brewster-Cherenkov detectors65 can also come in
handy here. Note, however, that for the TEMs energies there also be tran-
sition radiation generated at a boundary of a real target, which propagates at
the angles of θ ~ γ−1 and can, therefore, interfere with the Cherenkov signal.
Although microscopically this type of radiation has a similar origin as ChR
and, therefore, similar temporal shifts are likely to take place, one can start
with studying pureCherenkov emission.One of the alternativeswould be to
employ the so-called diffraction Cherenkov radiation12,46 where an electron
moves close to a dielectric target but does not intersect it. In that case,

Fig. 4 | The quantum shift of the photon arrival time as a function of the
emission angle. We take the electron energy typical for a transmission electron
microscope: εc ≈200 keV, β ≈0.7, p0? ¼ 0:99 × p?; p

0
z ¼ pz � kz � 0:98m; n ¼ 1:5.

The electron momentum uncertainty is equal to the transverse momentum: σ = p⊥.
In panel a p⊥ = 10−5 m, 1/p⊥ ≳ 10 nm; panel b p⊥ = 10−6 m, 1/p⊥ ≳ 100 nm. The
classical Cherenkov flash durations for the emitted photon energies ω = 10−4 m
(green solid line) and 10−7 m (brown dashed line) are compared to the quantum

shifts (Eq. (15)) for ω = 10−4 m (black solid), 10−5 m (red dashed), 10−6 m (blue
dotted) and 10−7 m (orange dot-dashed line). The behavior at small angles is shown
in the inset figures. The quantum shifts are restricted to the regions allowed by the
momentum conservation law and vanish outside of them. They stay roughly the
same for other values of p0?; p

0
z and for ultrarelativistic electrons, γ≫ 1, though the

Cherenkov angle grows.
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diffraction radiation is generated at the angles θ≪ γ−1 and Cherenkov
emission can still be well distinguished at θ≲ 10°.

If we now go beyond the simplified model of the electron packet with
σ⊥ = σ∣∣ and recall that there is Lorentz contraction, σ∣∣ = γ−1σ⊥, the flash
durations can become γ times shorter than Eq. (17). Although photon
spreading can be safely neglected nearby the Cherenkov angle, spreading of
the electron before entering the target can significantly increase these
numbers. According to the quantum dynamics of the electron coherence
length σxðt0Þ—also called the generalized van Cittert-Zernike theorem49—
when an electron is released from a photo-gun or a field emitter with rms
sizes σ⊥ ~ σ∣∣

50 of a few nanometers and an energy up to a few tens of eV, it
spreads to some tens of nanometers at the distance of 1 μm and it reaches
micrometer sizes already at 1mm from the source. Clearly, electron accel-
eration—say, in an RF cavity—mitigates the spreading rate, but a realistic
estimate of the packet length σ∣∣ at the target boundary remains unknown
and it is not usually controlled. Therefore,measuring the flash duration in a
vicinity of theChRangle, one can retrieve the length of the electronpacket at
the target entrance, a complementary approach to interferometry that is
reminiscent of bunch length measurements via classical coherence14.

In practice, achieving attosecond flash durations requires nanometer-
sized electron packets generating radiation with no spreading before the
target, just after the emission from a cathode. A vacuum gap of even a few
millimeters after the source and before the target would yield micrometer-
sized electron packets entering the target, which results in picosecond flash
durations or in subpicosecond ones with acceleration to a fewMeV in the gap
due to the above factor γ−1, measurable by streak cameras. State-of-the-art
Cherenkov counters at accelerators have picosecond time resolution64,66, the
subfemtosecond resolution can be achieved at X-ray free-electron lasers67,68 or
with the frequency-resolved optical gating69, whereas it is nanoseconds for
Cherenkov telescopes in gamma-ray astronomy21 where spreading effects are

notable. Attosecond photon pulses—including twisted photons with orbital
angular momentum—are usually obtained through high-harmonic genera-
tion in the extreme-ultraviolet and even soft X-ray ranges70,71, enabling vortex
electrons generation via photoionization71. The ChR can be a source of
twisted photons26,31, also in the soft X-ray range, and shaping the spatial and
temporal profiles of the electronwave function offers refined tuning of phase-
space profile of the photons. In particular, it seems feasible to generate photon
wave packets with the given spatial profile, vorticity, and the energies up to
the soft X-ray range with the attosecond and even sub-attosecond durations.

Conclusions
The developed quantum framework provides visualization of the emitted
photon energy in phase space and, in particular, in real space and time,
including the near-field zone. This can be desirable for estimating the
Cherenkov wakefields in accelerator chambers as well as for biomedical
applications of ChR in radiotherapy23,24 where only the classical
Tamm–Frank theory in the far field has been used so far, apparently over-
estimating the radiation intensity in the formation zone. We have predicted
several spatiotemporal features of the quantum ChR, absent within the
conventional momentum-space analysis limited to the far-field approx-
imation. In particular, the Cherenkov flash duration close to the Cherenkov
angle turns out to be determined by the electron coherence length upon
entering the medium, opening avenues for controlling this duration by
selecting packets of the desired length and accelerating them in the low-
current regime with no space-charge effects, typical for TEMs. By using the
charged particles with the Lorentz factors γ= ε/m from γ ~10 to γ ~103–104,
one can generate attosecond photon flashes and even the sub-attosecond
ones if the target is installed close to the particle source. Such short photon
pulses can come in handy for various studies in atomic physics, including
those of the temporal effects in electron excitation and photoionization.

Fig. 5 | The quantum shift of the photon arrival time and the classical Cherenkov
angle as a function of the refractive index. Here, the emission angle is chosen to
be θ = 10° and the electron momentum uncertainty is σ = p⊥. We distinguish a
regime of a transmission electron microscope—panel a β ≈0.7 (γ ≈1), and an
accelerator regime—panel b β = 0.9999 (γ ≈70). In both panels a and b we fix
p0? ¼ 0:99× p?; p

0
z ¼ pz � kz , the classical Cherenkov flash duration is shown for

ω = 10−5 m (green solid line), whereas the quantum shifts are given for ω = 10−5 m
(black solid line) and 10−6 m (red dashed line). Panels c and d demonstrate

dependence of the classical Cherenkov angle θCh:cl: ¼ arccosð1=βnÞ on the refractive
index for two types of dielectric media—fused silica and aerogels. The blue shaded
areas in c and d show the boundaries of the refractive indices due to the frequency
dispersion of n(ω) for fused silica or different types of particular chemical solutions
for aerogels. Theminimal refractive index for which the Cherenkov condition is met
in scenario a is n≈1.444, and θCh.cl. = 10° corresponds to n≈1.466 within the range of
n from panel (c). Analogously, in scenario b θCh.cl. = 10° corresponds to n ≈1.016
within the range of n from panel (d).
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Alternatively, measuring photon pulse durations with subpicosecond
resolution can provide a technique for determining the lengths of the
emitting charged-particle packets. This can be used to control the lengths of
the wave packets in electron microscopes and accelerator facilities (linacs or
storage rings with electrons, protons, or ions), as well as of ultrarelativistic
charged particles coming from the cosmos. Naturally, ChR serves as an
exemplary case within a broader class of media-induced emission phe-
nomena where attosecond time scales are accessible via phase-space analysis.

Data availability
Data sharing not applicable to this article as no datasets were generated or
analyzed during the current study.
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