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Tensor network methods are numerical tools and algorithms to study many-body quantum systems in
and out of equilibrium, based on tailored variational wave functions. They have found significant
applications in simulating lattice gauge theories that approach relevant problems in high-energy
physics. Compared to Monte Carlo methods, they do not suffer from the sign problem, allowing them
to explore challenging regimes such as finite chemical potentials and real-time dynamics. Further
development is required to tackle fundamental challenges, such as accessing continuum limits or
computations of large-scale quantum chromodynamics. This work reviews the state-of-the-art tensor
network methods and discusses a possible roadmap for algorithmic development and strategies to
enhance their capabilities and extend their applicability to open high-energy problems. We provide
tailored estimates of the theoretical and computational resource scaling for attacking large-scale

lattice gauge theories.

Gauge theories play a role of paramount importance in our understanding
and description of the fundamental constituents of matter, their spectrum,
and their interactions. At low energies, gauge theories characterize a large
variety of collective phases of matter and phenomena, such as ferromagnetic
superconductivity, spin liquids, topological order, and the fractional
quantum Hall effect'™. At high energies, as elegantly summarized in the
standard model of particle physics, they are at the heart of the microscopical
description of the building blocks of our universe, i.e., quarks, leptons, and
their interactions mediated by gauge bosons™’.

A powerful approach to studying and simulating gauge theories in
nonperturbative regimes lies in lattice gauge theories (LGTs), where matter
and gauge degrees of freedom are discretized and regularized on a finite
lattice. LGTs were originally introduced by Wilson to encode quantum
chromodynamics (QCD) on a lattice, as a model for quark confinement
beyond the perturbative regime®’. In LGTs, matter and antimatter fer-
mionic fields are defined on lattice sites, whereas the gauge fields live on the
links connecting nearest-neighbor sites. This approach has opened the
doors to the application of powerful numerical methods, such as Monte
Carlo (MC), to the simulations of LGTs on classical computers®. In the last
decades, MC methods have provided a wide variety of significant results on
LGTs in the context of high-energy physics, such as phases diagrams at
equilibrium, characterization of the quark-gluon plasma, precise determi-
nation of the masses of quarks, mesons, and baryons, hadronic and nucleon

form factors, hadronic spectra, and predictions for dark-matter models’.
Furthermore, MC simulations of LGTs currently represent a powerful
numerical tool to predict and interpret data from multiple large-scale high-
energy experiments, such as the ones performed at the large hadron
collider™.

Despite their impressive success, MC sampling methods are limited in
some regimes of parameters of LGT', such as in the presence of finite baryon
chemical potentials, topological 6-terms, or for simulating out-of-
equilibrium dynamics in real-time. In these cases, the notorious sign pro-
blems make the MC numerical approach ineffective and inaccurate'",

Ranging from these problems, sign-problem circumventing methods
based on tensor networks (TNs) have found significant applications in the
simulations of LGTs in recent years'*™*. TNs were originally introduced as a
class of variational wave functions in the field of quantum many-body
(QMB) physics'*"*. They provide a compressed representation of physical
states based on their entanglement content, capable of efficiently reprodu-
cing equilibrium properties, such as phase diagrams, and real-time
dynamics of interacting quantum systems"~>. TNs can also be employed
to compute partition functions via transfer-matrix methods and tensor
network renormalization algorithms™ . This approach can further be
generalized to evaluate path integrals of gauge theories through field
discretization™. Here, we focus on the application of TN to study ground-
state properties and out-of-equilibrium dynamics in the Hamiltonian
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picture, where they represent one of the state-of-the-art numerical tools for
simulating QMB systems, even with strong correlations.

In the context of high-energy physics, TN methods have proven
noteworthy achievements in simulating LTGs in (1 + 1) dimensions for
both Abelian and non-Abelian gauge groups™~>*. They have recently found
applications to Abelian LGTs up to (3 + 1) dimensions**, and also in
simulating (2 + 1)-dimensional non-Abelian SU(2) models™. Despite their
effectiveness in these first important applications, further and intensive
developments are still required to tackle, with TN methods, high-energy
physics problems at the center of current research efforts, such as large-scale
non-Abelian LGTs and their continuum limits.

In this work, we present a general overview of TN methods for LGTs,
and we discuss a possible roadmap in terms of algorithmic development and
strategies to improve TN capabilities toward the ambitious long-term goal of
applying TNs to (3 4 1)-dimensional QCD.

Importantly, TN methods share a common language with quantum
computers and simulators. Thus, these developments could also be relevant
for encoding, validating, and benchmarking the current and future quan-
tum computations and simulations of LGTs on experimental quantum
hardware® ™,

TNs overview

In this section, we present a general overview of TN methods with a
particular focus on tree tensor networks (TTNs), the latter being
beneficial for LTGs in higher dimensions™***. However, this work’s
main concepts and ideas can be easily generalized and applied to
other TN structures. Consider a QMB system defined on a lattice of
N sites. The generic site j is described by a d-dimensional local
Hilbert space ;, spanned by a local basis of vectors [i); ;<4 The
quantum states of the whole system live on the total Hilbert space
H=H,®H,® - ®Hy, that is the tensor product of the local
Hilbert space of the lattice sites, with dimension d". Then, any pure
state of the system |y) can be exactly expanded in terms of a com-
plete basis set of H:

d
|V/> = Z Cil,izuu,ii\, Iyl ey 1N> ’ (1)
iy =1
where |i}, iy, ...,1i N> represents the tensor product of the local basis vectors,

ie. |i1> ® |i2> Rl...)® |iN>. The coefficients of the linear combination
Ci i,....iy, are in general, complex scalars; their number scales as dV,ie., they
scale exponentially with the system size N.

This is a fundamental limitation when solving a QMB problem on a
classical computer since an exponential scaling with the number of degrees
of freedom implies that the exact representation described in (1) is com-
pletely unfeasible from a computational and numerical point of view.

Nevertheless, a great variety of natural QMB systems happens to be
described by ground and thermal equilibrium states that have little to
moderate entanglement content. The physical states of these systems,
instead of exploring the exponentially large dimension of the Hilbert space,
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Fig. 1 | Examples of tensor network structures. a Matrix product states (MPS);
b Projected entangled pair states (PEPS); ¢ Tree tensor networks (TTN) for an
underlying one-dimensional system; d TTN for an underlying two-dimensional
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live in a small corner of it, which can be efficiently targeted and para-
meterized. This property is formally described by the entanglement area law,
fulfilled by low-energy states of local Hamiltonians”: the entanglement
between a contiguous subsystem and the rest is proportional to the area of
the boundary between them, instead of its volume, as happens for the
majority of states in the Hilbert space. Thus, obeying area law implies that
the state contains many fewer quantum correlations than expected for a
generic (or random) QMB state. Small corrections to the area law exist, for
instance, close to a transition point for one-dimensional quantum systems
(logarithmic corrections). However, the entanglement remains overall
moderate”®. From a theoretical point of view, the entanglement area law has
been rigorously proven for (i) one-dimensional gapped local Hamiltonians,
where the locality means that a lattice site interacts only with neighboring
sites, without two-body all-to-all interactions”*'; (II) for a one-dimensional
local Hamiltonian, if the Renyi entropy S, « < 1 is bounded from above by
clog(N) for any bipartition, where ¢ is a constant and N the system size";
(iii) for quantum states at thermal equilibrium, independently from the
dimensionality of the system®; (iv) if the to-be-approximated state has
exponential decay of correlation functions for every pair of observables
(even with unbounded support)*’. Even though rigorous proof for QMB
systems in higher dimensions is lacking, several numerical and phenom-
enological results suggest that area law still holds in the presence of local
interactions”**,

The area law has important implications on the TN simulation of
quantum lattice models: indeed, it is possible to obtain an approximate but
efficient representation capable of describing the main properties of these
states if the entanglement content is low-to-moderate”’; the condition
applies, for example, to ground-states and first excited states of local
Hamiltonians. TNs give a natural language for this representation, by
replacing the complete tensor of rank-N¢; ; ; of (1) with a chain of
smaller tensors interconnected using auxiliary bond indices. The network
keeps a number N of physical indices of dimension d (one for each lattice
site), whereas the dimension of the bond indices (called bond dimension) is
a control parameter y that can be tuned in the numerical simulations and is
related to the Schmidt decomposition™*.

The key advantage of passing from the exact representation of (1) to a
TN representation is that the number of parameters in the TN is of the order
O(poly(d)poly(N)poly(y)), e.g., O(Ny max (y, d)*) for the TTN. The scaling
with the system size is now polynomial and not exponential. In this way, we
obtain an efficient representation of the quantum state in terms of com-
putational complexity. It is worth noting that the bond dimension y
determines the degree of entanglement and quantum correlations encoded
inthe TN, e.g., for y = 1 the TN describes a product state (no entanglement),
whereas one recovers the exact but inefficient representation in the limit
x S d". Tuning y properly allows interpolation between these two extreme
regimes, efficiently reproducing the entanglement of the quantum state.

The most widely used TN architectures are represented in Fig. 1.
Matrix product states (MPS) are an established ansatz for one-dimensional
systems, in which the structure of the lattice is reproduced with a network of
tensors, one for each lattice site®. As shown in Fig. 1a, each tensor in the bulk
of the network has three indices: one physical leg of dimension d

TTN (d 2D TTN

square lattice. The physical links with local dimension d and the virtual links with
bond dimension y are highlighted in all the panels.
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representing the local degrees of freedom and two virtual legs of dimension y
connected to the neighboring sites. In open boundary conditions, the ten-
sors at the boundaries have one trivial leg together with one physical and one
virtual leg. MPS intrinsically satisfies the area law and allows for efficient
computation of scalar products between two states and physical observables.
Currently, the MPS-based density matrix renormalization group (DMRG)
stands as one of the most consolidated and accurate techniques for
numerical simulations of one-dimensional QMB systems as well as quasi-
one-dimensional systems such as ladder structures™. The computational
complexity of this ground state searching algorithm for MPS is of the order
O(Ndy’ + Nd’y’) or O(N&’y’), depending if the algorithm optimizes a single
MPS tensor at a time, or two-tensors simultaneously™”'. Two-site optimi-
zation is usually important to avoid getting stuck in local minima or meta-
stable configurations during the energy variational minimization’ . The
subspace expansion is an intermediate approach with the benefits of the
two-tensor update and a tunable computational cost between the two
approaches™.

The generalization of the MPS ansatz to two- or higher-dimensional
lattices is represented by the projected entangled pair state (PEPS)**”. In this
case, each tensor in the bulk has a physical leg of dimension d, and a number
of y-dimensional virtual legs depending on the coordination number of the
considered lattice. For example, this coordination number is four in the case
of a two-dimensional square lattice, as shown in Fig. 1b. PEPS directly
encode in their structure the area law of entanglement; however, their exact
contraction is an exponentially hard problem, meaning that PEPS can not be
efficiently contracted for numerical computing, e.g., scalar products of states
or physical observables™. To circumvent this problem, approximate con-
traction methods have been developed during the last years and are still at
the center of current research efforts”. But even with exploiting these
approximate techniques, the computational complexity for ground state
optimization remains quite high, e.g., of the order of O(Nd’y*)”"**, limiting
the maximum reachable bond dimensions (typical values are of the
order y = 10).

Another important family of TN ansitze is represented by TTN, in
which the wave function is decomposed into a hierarchical network of
tensors that do not contain internal loops™”. This way, the network can be
efficiently contracted and manipulated in polynomial time. A particular
class of TTN is represented by binary TTNG, reported in Fig. 1c—d for one-
and two-dimensional lattices. In these structures, tensors in the lowest layer
have two physical legs of dimension d (representing two lattice sites) and a
virtual leg of dimension x, whereas, in the upper layers, they have three
virtual legs of dimensions up to x. The network intrinsically encodes a
renormalization procedure, in which, at each layer, two sites are mapped
into a single effective one. In models with finite-range interactions, ground
search algorithms for binary TTN architectures display a numerical com-
plexity of the order O(Nd’y’ + Ny'), see™. This is a much more favorable
scaling concerning equivalent algorithms for other TN structures, such as
PEPS, that allows reaching quite large values of bond dimensions
(x=500)"". The drawback of loopless structures, such as binary TTN, is that
the area law may not be explicitly reproduced in dimensions higher than
one'”", which becomes a limiting factor when large systems are addressed.
The convergence and the precision of the numerical results obtained via a
variational optimization of TTN can be analyzed and kept under control,
e.g., by exploiting the wide range of available bond dimensions. Further-
more, it is possible to explicitly encode the area law of high-dimensional
systems in the TTN ansatz by introducing an additional layer of indepen-
dent disentanglers acting on different couples of lattice sites and connected
to the corresponding physical legs. This process augments the expressive
power of TTN, and the resulting ansatz is known as augmented Tree Tensor
Network (aTTN)'”. The computational complexity of variationally opti-
mizing an aTTN structure, which means optimizing both the tensors and
the disentanglers, is of the order O(Ny'd" + Nyd’). We point out that the
scaling of the computational costs with the local dimension d is particularly
severe in the case of aTTN due to the presence of the disentanglers layer.

Besides variational optimization for ground state searching, the pre-
vious TN families can also be exploited to simulate the real-time dynamics of
local Hamiltonians'”; in the following, we describe two popular methods.
The time evolved block decimation (TEBD) algorithm, is based on a Suzuki-
Trotter decomposition of the time evolution exponential'*. The total evo-
lution time is discretized in small time steps. The corresponding evolution
operator is computed as products of local terms, such as two-body opera-
tors, and repeatedly applied to the TN wave function to generate the time-
evolved state. Each application can determine an increase in the bond
dimension of the network, so an optimized truncation is needed to maintain
an efficient and manageable description of the quantum state. This trun-
cation reduces the bond dimension back to y and is performed through a
singular value decomposition that minimizes the distance between the
evolved and the truncated state. In general, the TEBD method allows the
simulation of the real-time dynamics for nearest-neighbor or finite-range
Hamiltonians; one time-step with an MPS for a one-dimensional system
with local interactions comes with a computational cost that is below a two-
tensor sweep for the ground-state search algorithm.

Another method for simulating the evolution of quantum states via TN
is the time-dependent variational principle (TDVP), which does not rely on
the Suzuki-Trotter decomposition'™'”. In general, TDVP constrains the
time evolution to the specific TN manifold considered, such as MPS or TTN,
of a given initial bond dimension'”. This is obtained by projecting the action
of the Hamiltonian into the tangent space of the TN manifold and then
solving the time-dependent Schrédinger equation within this manifold.
This approach automatically preserves the energy and the norm of the
quantum states during the time evolution. Both the TDVP algorithm and
the variational ground state search rely on a set of Krylov vectors and, hence,
have the same computational scaling for one time step compared to one
sweep'”.

These algorithms represent important and efficient tools for simulating
with TN the real-time dynamics of QMB systems. While equilibrium states
satisfy the aforementioned area law, out-of-equilibrium time evolution can
generate a linear growth of entanglement. In this case, the time-evolved state
requires an exponential growth of the bond dimension as a function of the
total time". For this reason, TN methods are currently limited to studying
the dynamics for low-to-moderate times or close-to-equilibrium
phenomena'”. In this framework, further developments are extremely
important to avoid or at least mitigate this barrier, by devising new algo-
rithms or optimizing existing strategies' *'".

Hamiltonian LGTs

In the traditional MC approach to LGT, the action of a continuum gauge
theory is regularized by working on a finite and discrete Euclidean spacetime
—i.e., both space and (imaginary) time are discretized’. Instead, TN (and
quantum) simulations typically rely on the Hamiltonian formalism, where
time remains a real, continuous variable while a cubic lattice A replaces D-
dimensional space. Simultaneously, Hamiltonian LGTs present features
that distinguish them from other lattice models commonly simulated via
TN’. We now discuss these properties in more detail and outline the main
steps that have to be taken to exploit TN algorithms in LGT. We focus on
matter-coupled LGTs of the Yang-Mills type, such as those routinely
employed in high-energy physics to describe nature’s fundamental inter-
actions; the paradigmatic example is lattice QCD, the SU(3) LGT describing
quarks, gluons, and their strong interactions.

LGT building blocks

As depicted in Fig. 2, LGTs involve two types of degrees of freedom, matter,
and gauge, hosted respectively on lattice sites x € A and links (x, ), where
denotes one of the lattice basis vectors. Since fundamental interactions of
nature involve gauge theories with compact Lie groups, the following dis-
cussion focuses on such cases. A continuous symmetry implies the existence
ofa color charge, which is carried by matter and gauge fields and labeled here
using Greek letters.

Communications Physics| (2025)8:322


www.nature.com/commsphys

https://doi.org/10.1038/s42005-025-02125-x

Perspective

Ly,y Ryy
Gauge Fields

Matter Fields
ac{@D -}
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Fig. 2 | Graphical representation of 2D LGT degrees of freedom. fermlomc matter
fields /., defined on lattlce 51tes and gauge fields (the parallel transporter, U and
the chromo-electric fields, L., « and R, «)» living on lattice links. A local gauge
transformation at x acts on a matter s1te and all its attached links.

Matter fields. such as the electron or quark fields. We assume that matter
consists of Dirac fermions. In general, discretizing the Dirac operator
introduces additional unphysical solutions in the spectrum, known as
doublers. Various approaches have been developed to tackle this pro-
blem, such as Wilson fermions**''*'"*, which, at the price of breaking the
chiral symmetry, eliminate doublers in any spatial dimension. In this
manuscript, we employ staggered fermions'', which partially resolve the
doubling problem (some doublers remain in D> 1) but have a lower
computational cost. Then a color-multiplet ¢, , of staggered fermion
fields satisfies {{/, ,, ol v} = 0450y, Assuminga single matter flavor in the
fundamental representatlon of the gauge group G, gauge transformations
are generated by Q, = Za_lgl?/;a o Vx> Where (yame
tian generators of G—e.g., the electric charge for U(1) or the three spin
matrices for SU(2). The discussion can be generalized to multiple matter
flavors and other types of lattice fermions.

are the hermi-

Gauge fields. such as the photon or gluon fields. They are represented by
bosonic operators, namely the parallel transporter | U and the gen-

erators of its left and right gauge transformations, L o and R o

sv ~af

Ly Uy = =0y ZA Xl“ (22)
AV ~ af ay v

Ry Uy = 08 Z Uuhrp: (2b)

In the Abelian U(1) case there is only one generator: the electric field,
E = L = Rx w for which parallel transporters act as raising operators,
[EX s Ux #] = Uy, In terms of the above ingredients, a possible dis-
cretization of a matter-coupled Yang-Mills theory is defined by the Kogut-
Susskind Hamiltonian'"

Hygr=— Z Z( yl?/,t,af]iiﬂ/xﬂﬁ + h.c.)

¢ apf
+me YD sl
X 0%
chg?
2007 2 P

x4

> Tr(Ug + uh),

3)
J’_

2ga4D

where cis the speed of light, 7 is the Plank constant, a is the lattice spacing, g
is the gauge coupling, and m is the mass parameter. The first H; g1 term
describes matter hopping between neighboring lattice sites, mediated by the

gauge field; the second term is the mass-energy; sy, and s, are phases that
arise due to the use of staggered fermions''*. Namely, we have:
= (-1 )x+)’ =

s, =1 s = (=1, (4)

X fhy

The last two terms of (3) represent the (chromo)electric and (chromo)
magnetic energy of the gauge field, respectively. The Casimir operator gives
the electric energy density:

Ei.“ = Zu(i:a/‘)z = Zu(ﬁ;aﬂ)z' (5)

The magnetic energy density is a plaquette term that, on a cubic lattice,
corresponds to a four-body interaction:

U=

apy.d

af By -
U Ui U

Ty o~ foa
s U 6)

where g and g span the plaquette’s plane. Plaquette terms only existin D >1,
contributing to the increased complexity of quantum and TN simulations of
LGTs in higher dimensions”.

Gauge field truncation
The link Hilbert space is the space of square-integrable functions on the
gauge group, L*(G), which is infinite-dimensional for a continuous G''°.

In one space dimension, gauge degrees of freedom are unphysical
(absence of transverse polarizations) and can thus be integrated out, albeit at
the price of introducing non-local interactions'".

Beyond one dimension, the removal is much more delicate because it
requires first decoupling the gauge field’s longitudinal component''*'".
When impossible or inconvenient to remove, gauge degrees of freedom
might have to be truncated to perform TN or quantum simulation. Among
known truncation recipes are quantum link Models (QLM)'**"'**, which
have already been adopted for quantum simulation of LGTs""""737*12-1%,
finite subgroups™**'”, digitization of gauge fields'”, and fusion-algebra
deformation'".

Another adopted solutizon is truncating the spectrum of the electric
energy density operator || E, , || <® on each 1ink®>'**, The cutoff is con-
veniently 1mposed in the 1rreduc1b1e representation ( irrep) basis { []mn>}”6
of L*(G), where E u i diagonal:

Eiﬂ I]mn> = G,(j) [;mn> 7)

Here, m and n are indices in the j-irrep of G and C,(j) is the quadratic
Casimir of j''°. In the strong coupling limit, where the electric energy term
dominates Hy gy, this truncation is equivalent to an energy cutoff .

Gauss law and the dressed site

The most distinctive feature of gauge theories is arguably the presence of
local constraints, analogous to the Gauss law of classical electrodynamics,
relating the configuration of the gauge field to the spatial distribution of
charges'”. At the quantum level, Gauss law is the statement that only gauge-

invariant states are physical, namely, G: ¥ = 0Vx, v, where G: are the

phys)
generators of local gauge transformations at x:

Ge=Qutai+ ) Ly + Ryl ®)
u

with g representing eventual static background charges (typically vanish-
ing). On the lattice, Gauss law provides a set of vertex constraints, each
involving a lattice site and its 2D neighboring links. Due to Gauss law, the
physical Hilbert space of LGT's is much smaller than the tensor product of all
local sites and link Hilbert spaces. Properly exploiting gauge symmetries can
thus significantly speed up numerical simulations™. Strategies that solve
Gauss law by eliminating (partially or entirely) either the gauge fields or the
matter fields have been developed. Nonetheless, such approaches come with
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Fig. 3 | Pictorial representation of the dressed site formalism adopted for TN
simulations of LGTs. a Starting from the original formulation of matter and gauge
fields, b each truncated gauge link is split into two representations, one per half-link;
each is equipped with a proper fermionic rishon mode (. ¢ All the half-links are
absorbed into the attached matter site, forming a gauge-invariant dressed site

d whose Hilbert space spans all the possible gauge singlets.

specific limitations: the range of interaction has to be extended, moreover,
integrating-out gauge fields become problematic in D >1"", while the recipe
for removing matter is a model (matter content) dependent'*.

Another possibility is to enforce Gauss law using a dressed site con-
struction, sketched in Fig. 3 and outlined below. Dressed sites have local
dimensions typically larger than those resulting from the aforementioned
approaches, but they are obtained from a model-independent prescription
which has the advantage of preserving the locality of the interactions’'*,

Rishons. As a first step, every link is decomposed into a pair of left (L) and
right (R) rishon degrees of freedom, each associated with a Hilbert space
spanned by the basis states |jm), identifying |jmn)— |jm) 1 ® lin) p and
writing parallel transporters as rishon bilinear":

b R
Z CxtsSxctm—p - )

Abelian link symmetries. Physical gauge link configurations, i.e. those
with the left and right rishons in the same irrep, are selected introducing a
local link symmetry at the TN simulation level”*'*”. Notice this is always
Abelian, regardless of the Abelian or non-Abelian nature of the

gauge group.

Gauge invariant computational basis. Crucially, the gauge generators
G, now involve only the matter site at x and its 2D neighboring rishons.
Fusmg these degrees of freedom in a composite site, Gauss law becomes
an internal constraint that singles out the dressed site Hilbert space as
their gauge invariant subspace:
2D

7_[dress =kerG C 7—tmatt ® (Hrish)® . (10)
The expansion of the gauge singlet basis states of H ., in terms of the
matter and rishon bases is computed via Clebsch-Gordan decomposition'*.

Defermionization. It is possible to effectively eliminate fermionic matter
and treat dressed sites as large spins for any gauge theory where the gauge

field has a well-defined parity. Speciﬁcally, alocal parity operator P_ w= P; u

such that f’i = 1 must satisfy {UX w PW} =0, as it happens for Z,y,
U(N),and SU(2N)“ 13413 Tn this case, it is possible to take fermionic rishons,
and as a result, all physical (gauge invariant) dressed site operators are
genuinely local, i.e. they mutually commute at a nonzero distance (as spins or
bosons)'*. This applies to the Hamiltonian H;gr, making gauge-
defermionization particularly convenient for higher-dimensional systems,
where Jordan-Wigner strings result in long-range interactions'”.

Table 1 | Dressed site Hilbert space dimensions

e d

(2 + 1)-dimensions (8 + 1)-dimensions

u(1) SU(2) SU(3) uQ1) SU(2) SU(3)
1 35 30 164 267 178 3096
2 165 168 752 3437 3670 52,476
3 455 600 3738 18,487 35,280 813,438
4 969 1650 19,878 64,953 214,958 17,490,134
5 1771 3822 43,698 177,155 967,466 69,232,482
6 2925 7840 82,128 408,421 3,509,062 228,461,186
7 4495 14,688 212,496 835,311 10,828,494  1,245,755,754
8 6545 25,650 333,538 1,561,841 29,473,038  2,782,999,996

Forincreasing number £ of allowed electric energy density levels, the corresponding dimensions din
some 2- and 3-dimensional paradigmatic LGTs with dynamical matter and gauge groups U(1),
SU(2), and SU(3) are shown.

Scaling of the local basis dimension

Table 1 lists the dressed site dimension d = dim H .., associated with the
first few nontrivial gauge truncations of three representative LGT models in
D=2, 3 space dimensions. All the considered LGTs include dynamical
matter, represented by one fermionic field multiplet in the fundamental
representation of the gauge group. The ¢-th row of Table 1 is obtained
keeping only the first £ nonzero electric energy levels (ie., using the ¢-th
smallest quadratic Casimir eigenvalue as cutoff ©, see subsection “Gauge
field truncation”). As Table 1 shows, the local dimension increases rapidly
with £. For 3-dimensional non-Abelian LGTs, d ~ O(10*) is reached already
within the first two truncations, making the study of the untruncated limit
prohibitive.

Differently from the models typically encountered in condensed
matter physics, the local dimension of LGTs can thus be a limiting
factor for TN simulation | especially when d becomes comparable to
commonly used TN bond dimensions (100 < xy < 500 for TTN). In
these cases, strategies aimed at further compressing the local com-
putational basis are needed (see subsection “Local basis truncation”).
As just discussed, such truncation strategies are particularly crucial
for high-dimensional LGTs.

Several numerical analyses suggest that, in some cases, a small-to-
moderate truncation of the gauge group is enough for accurately approx-
imating the continuum limits, at least for low-energy states™’***"***,
However, the optimal gauge truncation depends on the Hamlltoman
parameters m and g.

As an example, we consider the (241)D U(1) LGT including dyna-
mical matter (QED), whose Hamiltonian can be obtained from (3):

~ ch Ao } ~
Haep =ZZ[_1% Xt Vx-t,
X
_ (—1)X+y¢lf]x7”y + @xﬂy + H.c.]

+me 3D )

~t
D)7

Since the Abelian U(1) group has only one generator, the gauge fields Ey and

Uy can be represented as

S NG AN () (12)

where ¢*(f) is the spin z-operator in the £ SU(2) irrep, while {(¢) isa € x ¢
ladder operator with Fermi statistics.

E,, =00 U,
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Fig. 4 | Exact diagonalization of a QED plaquette. a For a grid of masses and
couplings m € [107%,10'] and ¢ € [107", 10'], minimal gauge truncation ¢ required
to reach a precision €gune = 10~ in the magnetic energy (Re U5 ). b Scaling of £ with
& for m = 0.1. ¢ Corresponding entanglement entropy S associated with a symmetric

bipartition of the plaquette (see also Supplementary Note I and Fig. S1).

We focus on a single plaquette in open boundary conditions, as it
provides the minimal setting allowing for both electric and magnetic
effects. Then, to characterize the convergence in the gauge truncation ¢,
we consider a candidate observable O and compute its ground state
expectation value (O), for increasing £. We iterate until the relative
deviation between consecutive truncations drops below some threshold
€rrunc: {0 — (O)pr 1| < €qrunc] (O) | for some €. Figure 4a shows the
minimal truncation ¢ at which the magnetic energy operator O =
ReU is converged to €,ync = 10~°. We explore a grid of model para-
meters, whose extent has been chosen according to standard MC
literature®*'*°, ReU  is used as a benchmark due to its relevance in the
weak coupling regime, where the continuum limit of D < 3 lattice QED is
located®. As Fig. 4b shows, ¢ depends heavily on the coupling, growing
asymptotically like £* ~ ¢~ as g is decreased, while m plays almost no role.
An analogous inverse dependence of the minimal gauge truncation on
the coupling is expected for non-Abelian LGT in arbitrary dimensions.
Moreover, the continuum limit of non-Abelian LGTs in D<3 is also
expected at g — 0°, further substantiating the need to compress the local
dimension in TN simulations of LGT whenever extrapolation to the
continuum is in order.

Apart from the growth of the local dimension, extrapolation to the
continuum is further complicated by the fact that the continuum limit of
a lattice quantum field theory corresponds to a critical point of the
underlying lattice model". Close to criticality, quantum correlations are
boosted and violations of the entanglement area law are expected”. The
higher entanglement entropy in the proximity of the continuum
(g m < 1 regime) is already captured by the single-plaquette analysis of
Fig. 4c. Continuum limits of LGT's are thus an area of potential advantage
for quantum computation over classical methods, as the former is not
limited by entanglement. Nonetheless, quantum computation is also
affected by the need to relax gauge truncations when g — 0, either by
increasing the number of qubits used to encode a dressed site, which is at
least [log,(d)], or by using hybrid devices with both qubits and bosonic
modes'”.

Roadmap for advanced simulations

As detailed in the previous subsections, LGT models present some peculiar
features that make TN simulations particularly challenging, especially for
large system sizes and for studying the continuum limits in terms of gauge
field truncation, lattice spacing, and volume.

State-of-the-art techniques, such as TTN algorithms, have been applied
for simulating ground state properties of QED in (2 + 1)- and (3 + 1)-
dimensions for small-to-intermediate sizes’***. Very recently, they have also
been applied to the SU(2) Yang-Mills model in (2 + 1)-dimensions®. In all
these simulations, small non-trivial representations of the gauge groups
have been exploited, e.g., three electric field levels for QED and the first two
IRREP of SU(2) for the Yang-Mills model.

Nowadays, lattice computations with MC-based techniques are per-
formed on large lattices, e.g., of the order 64° x 128 sites (space and time
discretization), and with no truncation of the gauge fields. These large sizes
are required to control finite-volume effects and to perform extrapolations
toward the continuum limits'**. In the last decades, the impressive progress
in algorithmic development, high-performance optimizations, and the
availability of increasingly powerful supercomputer facilities have played a
major role in the advancement of MC-based LGT computations. Indeed,
this progress has opened the doors to large-scale simulations, that currently
represent the standard approach for studying non-perturbative phenomena
in quantum field theory.

However, MC techniques are generally based on computations of path
integrals, in which observables are calculated as weighted sums. Many
physically relevant scenarios, such as finite baryon density regimes or real-
time dynamics of quarks, give rise to a change in the sign of the weights and
highly oscillating behaviors. Thus, numerical evaluations suffer from the
near cancellation of the opposite-sign contributions to the integrals. This is
the essence of the infamous sign problem, a long-standing issue of LGT
simulations with MC methods'".

Hence, the quest of conceiving, developing, and optimizing alternative
approaches that enable simulating these regimes, being the latter at the heart
of many open problems related to our understanding of high-energy
physics.

As described in the previous subsections, TNs represent a promising
complementary method, which found the first applications in simulating
non-trivial instances of high-dimensional LGTs on small-to-intermediate
lattice sizes. TNs are intrinsically sign-problem-free, enabling the simulation
of both static properties at equilibrium, such as low-energy states, and real-
time dynamics, even in the presence of finite chemical potentials or non-
trivial topological terms. It is worth noting that, in addition to local obser-
vables and correlation functions, TNs allow the numerical computations of
entanglement properties, such as entanglement entropies and central
charges, that could potentially shine new light on LGT phenomena*.

Nevertheless, TN simulations of high-dimensional LGTs still represent
a challenging problem, especially for large lattice sizes or higher repre-
sentations of gauge groups needed for analyzing continuum limits. In this
framework, further and intensive developments are required to tackle TNs’
current problems related to LGTs, such as QCD’s non-perturbative effects
on lattices of sizes comparable with MC simulations. In this regard, sign-
problem-free TN ansitze can also be used in combination with variational
MC methods to tackle high-dimensional LGTs with arbitrary gauge
groups'”.

In the following, we present a possible roadmap in terms of algorithmic
development and optimization strategies that we foresee as crucial for
making the TN approach competitive as a complementary method to MC
techniques. Therein, the first two subsections, i.e., “Local basis truncation”
and “Tailored initial states”, can be approached with existing TN algorithms
and a good intuition on LGT problems; then, subsections “Leverage HPC
techniques for local optimization” and “Sweeps and HPC parallelization”
outline optimization for existing algorithms to leverage HPC systems;
finally, we discuss new classes of ansitze to tackle finite temperature pro-
blems in subsection “Finite temperature regime.” In some parts, we focus on
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Fig. 5 | Graphical representation of methods for handling large local bases. a The
pseudo site DMRG (PS-DMRG) approach, in which a single site having large local
dimension d is replaced with 1, pseudo sites with a smaller local dimension, e.g.,
two; b the local basis optimization embedded in the MPS ansatz (LBO-MPS), so that
an additional layer of tensors connected to the physical legs of the MPS performs the
reduction from a large local basis with dimension d into an effective basis with
smaller dimension d’; x is the bond dimension of the MPS.

TTNs, but the vast majority of the presented concepts and techniques can be
straightforwardly applied to other TN ansitze.

Local basis truncation

One of the main issues in simulating LGTs with TN methods lies in the
very large local basis dimension d that one needs to handle to represent
matter and gauge-field degrees of freedom properly. To some extent, this
situation is very similar to some condensed matter models, e.g., the
Holstein model, involving lattice fermions coupled with phonons'®, or
bosonic systems coupled to optical cavities'"'*’. Also, in these cases, the
local Hilbert space is, in principle, infinite-dimensional, and a truncation
to a fixed cutoff is needed for performing TN simulations. For one-
dimensional systems of this type, some efficient algorithms based on
MPS have been developed in the last years'”'®, e.g., the pseudosite
DMRG (PS-DMRG) method'”, and the DMRG with local basis opti-
mization (DMRG-LBO)'",

The key idea of the PS-DMRG is to replace a single site having large
local dimension d with 1, ~ log,(d) pseudo sites of local dimension 2, as
shown Fig. 5a. Since a large class of optimization algorithms for TN scale
at least quadratically with the local dimension but linearly with the total
number of sites, as detailed in subsection “TNs Overview”, one obtains a
more efficient and manageable representation according to this
procedure.

The price to pay lies in the range of the interactions: short-range
interactions in the Hamiltonian are transformed into long-range operators
due to the pseudo-site encoding of the local degrees of freedom. As a con-
sequence, PS-DMRG should require a larger bond dimension and a larger
number of variational steps to converge, and the benefits offered by the
pseudo-sites could progressively fade for increasing values of n,, at fixed
bond dimension. PS-DMRG has been applied to one- and two-dimensional
QMB systems with d up to O(100)"*'®.

The core of the DMRG-LBO algorithm, instead, lies in a LBO protocol
that enables a controlled and efficient truncation of the local Hilbert space'®.
For each site x of the lattice, the optimized local basis is computed by

starting from its reduced density matrix, i.e.

px’ = Trx#x/|w>(V]|7 (13)
where |y) is a general state of the whole system and the trace is over all the
degrees of freedom which do not involve the site x'. By performing the
diagonalization procedure, the eigenvalues A, and the eigenvectors v, of p,,
can be easily determined. The set of values A, represents the probabilities
associated with the states v,. If A, is small, e.g., below a certain numerical
threshold, the related eigenvector v, can be discarded from the local basis of
the site x’, with a controllable loss of accuracy for the state |1g/>. Thus, for
reducing the local basis dimension of x’ from d to a smaller value d’, an
optimal choice is keeping the d’ eigenvectors of p_, with the largest prob-
abilities. Then, the original state |y) can be projected on the new basis
without losing the relevant physical information. Let us notice that the site x’
can also be a generic unit cell of the system, composed of a certain number of
lattice sites.

A crucial point of the LBO procedure is the knowledge of the original
state |y ), generally the ground state of the system, that is not known prior.
This issue can be overcome in several ways: by performing exact diag-
onalization of the system’s Hamiltonian with local dimension d for small
lattice sizes, to determine |y), and then truncating the basis from d to d’ for
increasing values of the cutoff d'. From this procedure, we can obtain an
optimized local basis, ensuring a controlled approximation of the original
ground state. This optimized basis can then be exploited in optimization
algorithms for simulating larger lattice sizes, such as DMRG. Another
strategy directly incorporates the LBO procedure in the tensor network
ansatz, as shown Fig. 5b: by inserting an additional tensor on each physical
leg of the MPS, the large local basis with dimension d is transformed into an
effective basis with a smaller dimension d'. In this way, the MPS tensors only
see the effective basis in the optimization procedures, with a significant
reduction of the computational costs described in subsection “INs Over-
view". This method has been used for both static DMRG and time evolution
algorithms, such as TEBD, for the study of one-dimensional quantum
impurity models and correlated electron-phonon systems' """,

Benchmarks and performance analysis concerning PS-DMRG and
DMRG-LBO for QMB systems have been extensively discussed in'®. Let us
mention that some of the main features of these two methods can be
combined into more sophisticated algorithms, such as the projected purified
DMRG"".

In the context of LGTs, the dimension of the local basis d can easily go
beyond values of the order of 10° especially for higher-dimensional non-
Abelian models and large representations of the gauge groups, as shown in
subsection “Hamiltonian LGTs.” In this scenario, numerical simulations
with TN are practically infeasible without an optimized scheme for trun-
cating the local degrees of freedom. Techniques like PS-DMRG might offer
some benefits for small system sizes, such as unveiling the most relevant
degrees of freedom in the low-energy states, but it is not easy to scale them up
for large sizes due to the long-range interactions induced between the
pseudo-sites. Also, the local constraints imposed by Gauss law would
become highly non-local when splitting a single site into multiple pseudo-
sites representing the matter and link fields.

In principle, LBO-based procedures could instead represent a well-
grounded route for addressing the problem. Their use in condensed matter,
e.g., bosonic systems, is a rather consolidated approach, whereas their
application to TN simulations of LGTs currently is an uncharted but pro-
mising territory. The main steps that we foresee as needed and important in
this direction are the following:

(i) Employing exact diagonalization, testing the convergence of LBO
procedures for one-dimensional systems, such as the ¢*-theory or the
Schwinger model, for which analytical solutions, at least in some
regimes of the phase diagram, and numerical results are widely
available, also in the limit of no gauge field truncations. In this way, we
can obtain valuable information about the scaling of the basis cutoffs

Communications Physics| (2025)8:322


www.nature.com/commsphys

https://doi.org/10.1038/s42005-025-02125-x

Perspective

concerning the final accuracy of the state representation for small

system sizes.
(ii) Performing the same analysis on (2 + 1)-dimensional LGTs, such as
QED or SU(N) models, for one unit cell, like a single lattice-plaquette,
to systematically study the effects of the magnetic interactions on the
local degrees of freedom. Indeed, the QLM representation of LGTs,
detailed in subsection “Hamiltonian LGT,” generally exploits the
“electric field" basis, in which the electric field terms of the Hamiltonian
and Gauss law are diagonal. In this scheme, the magnetic interactions
correspond to non-diagonal operators which can increase the number
of local electric states to include for an accurate description of the
system, especially for small values of the coupling constant g of (3), as
highlighted in the numerical analysis in subsection “Scaling of the local
basis dimension”.
Exploiting the optimized local bases obtained from exact diag-
onalization as input of TN simulations for larger sizes, testing the
effects on the global ground state accuracy and in computing physically
relevant quantities, such as the mass gap'>.
In the same spirit of LBO-MPS, implementing LBO protocols directly
in TN ansitze that are more suitable for simulating high-dimensional
LGT models, such as TTN. This step could be of great benefit in
particular for aTTNs, which encode the area law for the entanglement
but are severely limited by large local bases (see subsection “TNs
Overview”).By following and combining all these steps, we expect to
reduce the effective local basis of LGT models, potentially enabling TN
simulations for large representations of Abelian and non-Abelian
gauge groups.
It is worth noting that constructing optimal bases for numerical and
quantum computation of LGTs is an active area of research. Several
approaches that have been recently proposed involve performing canonical
transformations of the gauge degrees of freedom before truncation'”*'7*"'7°.
By exploiting a resource-efficient protocol of this type, ref. 129 has shown
that the number of local states required to reach a 1% accuracy level when
computing the expectation value of the plaquette operators in two-
dimensional (2 + 1)-dimensional QED can be reduced by more than 94%
compared to the unoptimized truncation. Integrating these approaches into
TN algorithms could greatly benefit LGT simulations.

(iii)

(iv)

Tailored initial states

In TN algorithms for ground state searching, the optimization procedure

generally starts from a random TN initial state |y, , ), i.e., the tensors in the

network are filled with random coefficients at the beginning. This strategy
usually guarantees that the probability of overlapping with the true ground
state | Wini Wgs)lz does not vanish. To reach a small error in the final energy,
this procedure typically requires from 10 to 50 optimization sweeps for

LGTs simulations, depending on the specific models, the Hamiltonian

parameters, and the lattice size. Since the time for completing a sweep can be

very long, especially for large bond dimensions, strategies for reducing the
number of needed sweeps could be beneficial for scaling up system sizes.

From this perspective, constructing appropriate states to be used as initial

guesses can speed up the convergence, similar to the choice of the trial wave

function for variational MC simulations. We consider the following options:
(i) Physical insight: Initial states can be constructed by following physical
intuition, at least in those regimes in which analytical or partial
numerical results are available. For instance, initial guesses can be
constructed by starting from the TN ground states numerically
obtained for a lower representation to simulate large spin representa-
tions of the gauge fields.

(ii) Machine learning: Machine learning-assisted protocols can improve
the construction of tailored initial states in the different regimes of the
model parameters. For instance, feed-forward neural networks have
been proposed as trial wave functions for quantum MC simulations'”,
and machine learning techniques have been used to feed TN
simulations'”®. Also, neural network quantum states (NNQS) have
demonstrated their ability to represent the quantum states of many-

body systems with great accuracy'”’. Using this approach, neural
networks could be trained as variational ansatzes to approximate low-
energy states of LGTs. These states might then be used as initial guesses
for TN simulations, potentially reducing the computational overhead
associated with optimization sweeps. Furthermore, a recent study'*’
has explored combining NNQS with TN methods to hybridize their
strengths, offering a promising avenue for large-scale simulations.
TN results: Following the idea of the physical insight, it is also possible
to feed neighboring ground states as initial guesses into a ground state
search. This option exists especially when scanning a phase diagram
and varying parameters in a small increment, such that the overlap
between neighboring wave functions is sufficient; this overlap
decreases for two points on the opposite sides of a quantum critical
point. The same idea can be implemented by preparing an initial guess
quenching from an easily accessible ground state to the target para-
meters. Such an approach is well-known in the case of an adiabatic state
preparation'®’, especially for challenging problems with strong
localization. The quench does not necessarily have to be adiabatic or
free of numerical errors, but it must only have sufficient overlap with
the true ground state. The advantage here is that one quench can
generate multiple initial guesses along the quench for different
parameters.

(i)

Leverage HPC techniques for local optimization

We dedicate the two following subsections to the numerical optimization of
the TN algorithms. In this subsection, we give an overview of the topic and
discuss possible strategies to improve the optimization. The more technical
steps are discussed in the following subsection, “Sweeps and HPC
parallelization.”

To scale up TN simulations of LGTs, in particular regarding lattice
sizes, another important factor is the number of optimization steps to be
carried out. The number of optimization steps scales linearly with the
number of sweeps as well as with the system size for MPS, PEPS, and TTN.
The choice of the number of sweeps is set such that the algorithm reaches
convergence when computing ground or low-energy states. Let us briefly
describe the general procedure for ground state searches: we focus on the
TTN optimization, however, the main points described here can be applied
to other TN structures, such as MPS or PEPS. For a complete technical
description of the algorithms and implementation details, see ref. 30.

Consider a generic QMB Hamiltonian H and a generic normalized
state |1//>, defined on the same Hilbert space. To numerically determine the
ground state of H, the following global minimization problem has to be
solved:

rlrllyi)n{E(ll/O)} = rlrllyi>n(leII//>~ (14)

If |y) is written in terms of the TTN ansatz introduced in subsection “TNs
Overview”, the variational parameters are the coefficients in the TTN. In this
case, the global optimization problem of (14) is broken down into a
sequence of smaller optimizations, each involving only a minimal subset of
tensors in the TTN. The algorithm solves the optimization via an eigen-
problem searching for the eigenvector with the lowest eigenvalue. Without
any loss of generality, one single tensor at a time is optimized in the simplest
case, as shown in Fig. 6a. In detail, the energy is computed by contracting the
Hamiltonian between the TTN and its complex conjugate. Then, we start
the optimization procedure from a target tensor T, by computing its
environment, i.e., the network without the tensors T and T*, which repre-
sents the effective Hamiltonian H.g for the local problem. At this stage, an
eigenproblem of H.g is solved, and the tensor T is updated with the newly
found ground state. The whole procedure is sequentially iterated for all the
tensors in the network, performing an optimization sweep.

For each operation, efficient algorithms from linear algebra are typi-
cally used, e.g, the Arnoldi algorithm implemented in the ARPACK
library'**'**. We recall that the numerical complexity of this procedure for a
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(a)

Tt

Fig. 6 | Effective operators and parallel tensor networks. a Procedure for opti-
mizing a TTN to find the ground state of a QMB system: the energy is computed by
contracting the Hamiltonian H (yellow tensor) with the TTN, representing the state
|w>, and its hermitian conjugate, representing (y/|. The variational optimization
starts from a target tensor T'(red tensor), by computing its effective Hamiltonian Heg
and then solving the local eigenvalue problem for the latter. The tensor T is then
updated with the newly found ground state, and the procedure iterates over all the
tensors in the network (sweep). b The workload itself consists of optimizing each
tensor held by the MPI thread ¢, which requires effective operators calculated by

N

A=2 || Aj=2 | 'A1=3 || 'A=3" | A1=3" || 'A[=3

other MPI threads. We dub delaysA; the number of optimization cycles needed to
obtain the information of tensors in the i-th MPI thread in another MPI thread via
MPI communication. MPS naturally split into sub-chains, which communicate with
one or two neighboring MPI threads to obtain updated effective operators. Delays
for updates scale with the distance between two MPI threads along the chain. Each
MPI thread can use threading or openMP, e.g., in a hybrid openMP-MPI approach.
¢ Similarly, TTNs can be split into sub-trees for each MPI thread, allowing for
optimizing the sub-tree without communication with other MPI threads. Delays due
to updating scale logarithmically as any distance in a TTN.

single TTN-tensor is O(d’y” + x*). Therefore, a single optimization can be
time-consuming when y is very large, e.g., y = 1000, as for simulating high-
dimensional LGTs. We point out the established and promising future
parallelization schemes for the single tensor optimization:

(i) opemMP: an efficient openMP implementation of the contraction
between the effective operators with the tensor can speed up simula-
tions. Moreover, the Arnoldi algorithm of ARPACK is optimized for
large-scale linear algebra operations and supports intra-node multi-
core parallelization based on openMP'"; thus, ARPACK does not
become a bottleneck in the openMP implementation. Nonetheless,
many simulations remain expensive in computation time even with 64
or more cores available in HPC facilities; therefore, we consider more
approaches beyond the well-established openMP path.

(ii) Accelerators: graphics processing units (GPU) and tensor processing

units (TPU) offer a path to accelerate linear algebra routines, where
both have demonstrated their usefulness'®: GPUs have reported
speedups of up to a factor of 10 due to the efficient tensor
manipulations'*""’; TPU have shown great potential in large-scale
simulations of several quantum systems, e.g,, drastically reducing the
computational time of DMRG calculations with very large bond
dimensions from months to hours'*"'””. TPU are application-specific
integrated circuits originally introduced for machine learning; we
consider the integration and tuning of TPUs therefore as a step after the
successful integration of GPUs. While single GPUs can solve TTN-
problems up to a bond dimension of y < 1000, multi-GPU support is
available for libraries; HPC systems typically provide hardware with
four GPUs per node.

Multi-node approaches to local tensor optimizations: both CPU and
GPU algorithms can be further scaled by using multiple nodes. The
underlying linear algebra routines of the local eigenvalue problem are
parallelizable via libraries such as ScaLAPACK or MAGMA. Both
libraries provide routines for distributed memory machines''; more-
over, MAGMA supports CPU and GPUs. In this way, the workload of
the eigenproblem procedure can be split into several computation
nodes. Then, it is important to analyze the performance as a function of
the bond dimension y to test the effectiveness of this approach against
the latency of the inter-node communications.

(i)

(iv) Tuning of parameters and algorithms: accelerators developed for
machine learning applications have excellent support for lower and
real precision. Tuning parameters over the different sweeps is bene-
ficial, e.g., increasing the precision towards the end of the sweep. This
approach profits from faster single-precision implementations during
the first sweeps. Selecting algorithms like random singular value

195

decompositions can also bring benefits ™.

Sweeps and HPC parallelization

So far, we have parallelized single tensor optimizations within a sweep, but
the sweep itself was sequential, i.e., serial. Recent works formulated parallel
versions of MPS algorithms for ground state search and time evolution, e.g.,
via the message passing interface (MPI)"**"”. The main difference between
the serial and parallel algorithms is the effective operators used in the
optimization. In the serial version, the effective operators contain the
information of the most recent version of all other tensors. This update is
delayed in the parallel version, i.e., the tensor that entered the effective
operator is not necessarily the one of the current sweep, but can be the
version of an earlier sweep.

If the delay becomes an obstacle to convergence, there is the option to
modify parameters during the sweeps. Typically, ten to fifty sweeps are
necessary to converge on a solution. As the initial state is usually random,
MPI can be used especially at the beginning. To ensure convergence, one can
consider serial steps at the end; even a gradual reduction of the MPI pro-
cesses as the sweeps proceed is possible and gradually reduces the delays.

Considering the MPS scenario of a chain in Fig. 6b, we split the chain
into equal parts of (N/7rpr_threads) Sites. Each part of the chain commu-
nicates with its two neighbors apart from the two boundaries. The effective
operators take into account the tensors of the same MPI process with zero
delay as in the serial case. The tensors of the i-th neighboring MPI process
have a delay of i. The worst-case scenario of the delay scales linearly with the
number of MPI processes. The delay can be avoided by communicating the
effective operators after each update through the chain, which is a quasi-
serial step with no more than two MPI processes active at the same time.

The problem becomes more complicated for the TTNs suggested for
LGT, but we expect a benefit for the parallelization of a TTN versus an MPS
for higher-dimensional systems. Figure 6¢c shows an example of how each
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Table 2 | Extrapolated simulation time

System size X Factor Extrapolated
walltime

64 x 64 450 Ve 4.16 days

64 x 64 900 16 - Thase 66.6 days

256 x 256 450 28 - Thase 116.5 days

256 x 256 900 448 - Thase 5.1 years

16x16x 16 450 4 - Toase 16.6 days

16x16x 16 900 64 - Thase 266 days

64 x 64 x 64 450 1984 - Thase 23 years

64 x 64 x 64 900 31744 - Thase 362 years

We derive the baseline from a single-tensor optimization of a 64 x 64 quantum Ising model in (15)
simulated with 7192 s on a single A100 GPU with 64 GB memory. Further, we assume a single-
tensor update, one tensor and one GPU per MPI thread, and 50 sweeps for the baseline.

To extrapolate to larger systems, we assume a scaling with O()(“ND" ) as well as seven (31) tensors
per MPI thread for 256 x 256 (64 x 64 x 64) systems. The empirical scaling is approximately a factor
of 2.3 for doubling the system size of the two-dimensional system versus a theoretical value of 2; for
doubling the bond dimension, the computation time grows by a factor of 13 versus a theoretical
scaling of 16. The factors are obtained from smaller simulations with x = 225 and for 32 x 32 qubits.
The predictions of times are based on a scaling where d < x.

MPI process gets assigned a sub-tree within the complete TTN. Unlike the
MPS, the number of neighboring MPI processes for communication is at
least three and increases with (N/Mpp1_threads) tensors per thread. For
simplicity, we assume equally shaped subtrees for all MPI processes. The
delay of the tensor update is now 2 - log,(N) in the worst-case scenario.

One-dimensional systems with nearest-neighbor interactions thus
exhibit a delay of 1 in the worst-case scenario in the MPS, while the delay is
up to 2 - log, (N) for the nearest neighbors in the center of the TTN. Rather,
higher-dimensional systems change this aspect, e.g., for an Nx N two-
dimensional system mapped to 1D via a zig-zag mapping. The MPS has a
worst-case delay of the tensor update of N for the slow index. In contrast, the
TTN has the same log behavior and a maximum delay at the center of the
TTNas2 - log,(N?). Thus, the worst-case delay is equal for 16 x 16 systems;
increasing N further, TTNs exhibit smaller maximum delays during parallel
sweeps. Moreover, the TTN is unaffected by the type of mapping used; in
contrast, the worst-case delay for the MPS grows to 2N for the snake
mapping and to at least N°/2 for the Hilbert curve’”. Equal arguments hold
for 3D systems and delays of N° (MPS, zig-zag) versus 2log, (N*) (TTN, any
mapping).

To get an intuition of what parallelized simulations can solve, we sketch
out the specifications for a parallel simulation on the pre-exascale cluster
Leonardo hosted by Cineca. As an example, we focus on a 2D quantum Ising

model with a transverse field in the vicinity of the quantum critical point™":

H:%‘A’ff’“hz&fv (15)

which, despite not resembling the previously described LGT scheme, has
been demonstrated to provide the same Hilbert space dimension scaling of a
gauge theory™®. Then, we choose an MPI approach together with the GPUs.
Leonardo has 3456 nodes with four GPUs, totaling 13,824 GPUs available
for the complete cluster. Bond dimensions on the order of y = 450 consume
54 GB of memory without effective operators (assuming double complex
precision, 40 Lanczos vectors) and allow for solving the eigenproblem on the
GPU without temporarily storing data on the CPU. We use the single-tensor
per MPI-thread with y =450 and initial tensor optimizations™**” as a
baseline where we extract a rough empirical estimate with Leonardo.

Due to the delay of the tensor in the effective operators, the minimum
number of sweeps must be beyond 24. Then, we consider the scaling of the
TTN previously introduced and generate Table 2 with an overview of dif-
ferent system sizes and bond dimensions. These results provide a coarse-
grained estimate, since plaquette terms, different symmetries, entanglement

generation, and optimization time within later sweeps could further impact
the computational time.

Our estimate predicts that a system of 256 x 256 sites takes about two
months for bond dimension y = 450 on 1024 GPU nodes of Cineca’s Leo-
nardo. Future improvements are likely to bring this simulation time down in
comparison to this single-GPU approach, requiring significant data trans-
fer, e.g., the next-generation GPUs beyond the A100, larger GPU memory,
or further optimization in data movement. In contrast, a three-dimensional
system with large entanglement and many sites requires three to four orders
of magnitude improvement, where cluster size and other improvements
have to come together to reach this challenge. Furthermore, Table 2 provides
an estimate of the boundary for a potential quantum advantage in simu-
lating LGT's with quantum computers or simulators.

Finite temperature regime

To date, TN simulations of high-dimensional LGTs, including dynamical
matter, are exploring zero temperature regimes, which are important to
understand the low-energy properties of the models. To explore finite
temperature phenomena, particularly relevant for open research pro-
blems, such as the QCD phase diagram, technical and numerical chal-
lenges have to be tackled, e.g., devising and testing efficient TN
algorithms for targeting quantum states at equilibrium. As suggested in
the next paragraph, we foresee two possible paths toward finite tem-
perature TN states.

Matrix product density operators and locally purified tensor net-
works (LPTNs) provide already today the option to tackle finite tem-
perature regimes via an imaginary time evolution’”". Herein, the
algorithm starts at the infinite temperature state and starts “cooling” the
system via a specified number of time steps and a specified step size to
reach a given temperature. In their original formulation, both approaches
are one-dimensional chains. The matrix product density operator can be
formulated as TTN but faces some challenges in terms of the question of
positivity’” or integrating symmetries. In contrast, tree tensor operators
(TTO) are the tree-equivalent of an LPTN; they are also a positive
loopless representation of density matrices, recently introduced in
ref. 208. However, TTOs cannot represent the infinite temperature state
necessary for the imaginary time evolution approach. Instead, a possible
use of the TTO employed in LGT simulations consists of a variational
algorithm to target finite-temperature states or reconstruct open-system
quantum dynamics, by efficiently compressing the relevant information.
The TTO enables useful measures, e.g., computing the entanglement of
formation as already shown for representative one-dimensional models

at finite temperature™”,

Outlook

The field of TN methods for LGTs has shown great potential in the last
decade, during which significant efforts have been devoted to developing
numerical algorithms and strategies that can be seen as a complementary
approach to MC simulations for high-energy physics. The validity of sign-
problem-free TN algorithms has been proven for one-dimensional LGT
models for both Abelian and non-Abelian scenarios. Recently, TN methods
have also been applied to higher-dimensional LGT's with simple truncated
gauge groups and small-to-intermediate lattice sizes. On the one hand, these
results prove the effectiveness of TN methods for simulating LGTs even in
regimes that are problematic for other numerical methods; on the other
hand, they highlight the challenges that one needs to tackle to address state-
of-the-art research problems, such as accessing the continuum limits or
simulating high-dimensional QCD on large lattices.

In this work, after a general overview of TN methods and their use for
LGT simulations, we have described these challenges, starting from the
problem of the very large local basis required for complex gauge groups and
then discussing several computational bottlenecks in terms of bond
dimensions and system sizes.

To mitigate and possibly overcome these problems soon, we have
presented a feasible roadmap, in terms of algorithmic developments and
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numerical strategies that might have a concrete impact in extending the
range of applicability of TN algorithms to current research problems in
high-energy physics. We foresee that all the presented steps could poten-
tially have a key role in making the TN approach competitive as a com-
plementary method to MC techniques for simulating high-dimensional
LGTs, such as large-scale QCD.

Data availability
The data that support the findings of this study are available from the
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